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1. Introduction. In this paper we shall be concerned with the algebraic 
structure of certain rings of functions meromorphic on a non-compact 
(connected) Riemann surface 12. In this setting, A — A (12) and K = i£(12) 
denote (respectively) the ring of all complex-valued functions analytic on 12 
and its field of quotients, the field of functions meromorphic on 12. The rings 
considered here are those subrings of K containing A, which we term A-rings 
of K. Most of the results given here were previously announced without proof 
(15) and are contained in the author's doctoral dissertation (16), completed 
at the University of Illinois under the direction of Professor M. Heins, whose 
encouragement and advice are gratefully acknowledged. 

The ring A itself has been extensively investigated in recent years. The 
fundamental result here is the theorem of Helmer (10), which states that every 
finitely generated ideal of A is principal in A, for almost all of the results 
obtained on the ideal theory of A are based on this theorem. We shall see that 
many of these results extend to any A -ring of K, for we are able to identify 
these as the rings of quotients of A with respect to its multiplicative subsets. 
This allows us to apply general results of commutative algebra in a natural 
and uniform way to the rings in question. Indeed, many results obtained on 
the ideal theory of A by previous authors, such as Henriksen (11; 12) and 
Banaschewski (3), can be derived almost trivially from the algebraic theory 
of rings of quotients, which is presented below in brief outline, together with 
the requisite valuation theory. 

The basic method used is the study and exploitation of the valuation 
theory of K, previously considered by Schilling (19) and Ailing (2). Helmer's 
theorem leads to an immediate identification of those A -rings of K which are 
valuation rings as the localizations of A dit its prime ideals. This result then 
implies that every A -ring is an intersection of valuation rings and a ring of 
quotients of A. 

Having identified the A -rings in this way, some applications of the algebraic 
theory are made to the ideal theory of A itself, and it is shown that a large 
part of the algebraic structure of this ring, such as Helmer's theorem, extends 
to any A -ring of K. The ideal theory of A is then applied to the problem of 
classification of A -rings, some of which can be characterized geometrically 
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and satisfy very restrictive algebraic conditions. These results and methods 
show that the theory of rings of quotients, and valuation theory in particular, 
are the natural framework in which the rings in question should be considered. 

We also briefly discuss the extent to which the conformai structure of 12 is 
determined by the algebraic structure of its A -rings. Problems of this type 
were initially considered by Bers (4), who showed that if 12 is a plane region, 
then 12 is determined to within conformai or anti-conformal equivalence by 
the algebraic structure of A (12), and this was later generalized to arbitrary 12 
by Nakai (17). The corresponding problem with A(Q) replaced by the field 
K(Q) had long been outstanding and had been considered by Heins (9) and 
Royden (18), but was solved in full generality only recently by Iss'sa (13). 
Among other things, Iss'sa proved that the ring A (12) can be characterized 
algebraically in i£(12), and hence it follows from the Bers-Nakai theorem that 
12 is determined to within conformai or anti-conformal equivalence by the 
algebraic structure of K(Q). Here we shall prove a theorem of this type 
relating to isomorphisms between rings of meromorphic functions, but we 
shall not require the Nakai theorem in the proof. 

2. Algebraic preliminaries. In this section we discuss some results in 
commutative algebra which are particularly relevant to rings of analytic and 
meromorphic functions. For further details on this material, the reader is 
referred to Bourbaki (5) and Zariski and Samuel (20). These results, while 
familiar to algebraists, may not be known to many analysts, and therefore the 
required theory will be given in some detail, though no proofs are presented 
and there is no attempt at complete generality. In the following, A will 
denote an arbitrary commutative integral domain with identity 1 ^ 0 and 
K its field of quotients. For the most part, we follow the notation and 
terminology of (20), though the prime and primary ideals of A are always 
assumed to be proper ideals. 

2.1. Rings of quotients. A non-empty subset S of the integral domain A is 
said to be a multiplicative subset of A if xy Ç S whenever x, y Ç 5. For each 
such set 5, the ring of quotients of A with respect to S is the set S~XA = 
{x/y: x Ç A, y Ç S}, which is evidently a subring of K which contains A. 
Also, K is the field of quotients of S~lAy and each x Ç 5 is a unit of S~1A. 
If B is a ring of quotients of A, then {x £ A: x - 1 Ç B] is the largest of the 
multiplicative subsets S of A for which B = S~lA. 

Let S be a multiplicative subset of A, let A* = 5~^4, and let A and A* 
denote the collections of all ideals of A and A*, respectively. Given / Ç A , 
e(I) will denote the ideal of A* generated by / (considered as a subset of ^4*), 
the extension of I to A*. Then 

e(I) = {x/y: x Ç 7, y Ç 5} = {xy: x Ç I, y Ç A*}, 

and e(I) is a proper ideal of A* if and only if I Pi 5 = 0. If 7* Ç A*, then 
r(I*) = 7* H A is an ideal of A, the restriction of I* to A, and r(I*) is a 
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proper ideal of A whenever I* is a proper ideal of A*. Further, e[r(I*)] = /* 
for all I* 6 A*; thus, every ideal of A* is an extended ideal, and for 7 £ A 
we have that 

I C r[e(I)] = \x € A: xy 6 I for some )/ 6 5 j . 

We denote by Ar the collection of all restricted ideals of A ; therefore, 
r[e(I)] = I f ° r aU I € Ar. We have that A = Ar if and only if 5 contains no 
non-units of A, in which case A = A*. The mappings e: Ar —» A* and r: A* —> Ar 

are reciprocal one-to-one inclusion-preserving correspondences between Ar 

and A*. 
Every primary ideal (hence every prime ideal) of A which is disjoint from S 

is a restricted ideal of A, and the mappings e and r define reciprocal one-to-one 
correspondences between the primary (prime) ideals of A* and the primary 
(prime) ideals of A which do not intersect 5. 

A proper ideal of A is said to be S-maximal if it does not intersect S and is 
not properly contained in any ideal of A which does not intersect S. Every 
5-maximal ideal is prime, and every ideal of A which does not intersect 5 is 
contained in an 5-maximal ideal of A. The mappings e and r define reciprocal 
one-to-one correspondences between the maximal ideals of 4 * and the 
5-maximal ideals of A. 

If I G A is principal (finitely generated) in A, then e(I) is principal (finitely 
generated) in A* and is generated in A* by the generator(s) of I in A. Every 
principal (finitely generated) ideal I* of A* is the extension of a principal 
(finitely generated) ideal of A, though the restriction of I* to A need not be 
finitely generated in A. HA is a principal ideal ring (a Noetherian ring), 
then so is A*. 

If I* £ A* has radical J* in A*, then r(I*) has radical r(J*) in A. Also, if 
I Ç A has radical J in A, then e(J) is contained in the radical of e(I) in A*, 
and e(J) is the radical of e(I) if I is a restricted ideal. The intersection of any 
set of restricted ideals of A is again a restricted ideal of A. Finally, if I is the 
product of the ideals 7i, . . . , In Ç A, then e(I) is the product of the ideals 
e(Ii),...,e(IH) 6 A*. 

2.2. Localization. If P is a prime ideal of A, then 5 = A — P is a multi
plicative subset of A. In this case, we write S~*A = AP} the localization of A 
at P . The set {x Ç ^4P: x_ 1 $ ^4P} of all non-units of AP is the extension e{P) 
of P to yip and is the (unique) maximal ideal of AP, for P is evidently the 
unique 5-maximal ideal of A. 

If B is a ring of quotients of A, let S denote the collection of all restrictions 
to A of the maximal ideals of B. Then each P C 2 is a prime ideal of A and 

{x<G Aix'1 £ B} = n (A - P ) . 

This is a multiplicative subset of A with ring of quotients B, and thus each 
ring of quotients of A is determined by some collection of prime ideals of A. 
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As mentioned above, if A* = S^A, then the extension mapping e: A —> A* 
is not one-to-one (except in the trivial case, A = A*) and does not distinguish 
all the ideals of A. However, it is possible to recover an ideal I oî A from its 
extensions to the rings of quotients of A. More precisely, if 2 denotes the 
collection of all maximal ideals of A, then for every ideal I £ A we have that 

I = D rM[eM(I)]f 

where for M Ç 2, rM and eM denote the restriction and extension mappings 
relative to the multiplicative subset A — M. Obviously, for each 7 G A, it 
suffices to consider (in the above intersection) only those M G S which 
contain I. In particular, if I is contained in only one maximal ideal M of A, 
then I = A C\eM{I). 

2.3. Valuation theory. In this section K will denote an arbitrary field. A 
valuation ring of K is a subring R of K such that for each x £ K — {0}, x £ R 
or x~l Ç R. We say that R is non-trivial if R 9^ K. Evidently, R is an integral 
domain with field of quotients K, and every subring of K which contains R is 
also a valuation ring of K. Note that if x, y € R, then x divides y in R or y 
divides x in i?. 

Given a valuation ring R of X, the set M = il^(i?) = {x £ R: x-1 £ R} of 
all non-units of R is the (unique) maximal ideal of R, and R is trivial if and 
only if M = {0}. The set A(i^) of all ideals of R is totally ordered under set 
inclusion. The intersection of any collection of prime (primary) ideals of R 
is again a prime (primary) ideal of R, and every ideal of R has prime radical 
in R. The rank of R is the order type of the (totally ordered) collection of all 
non-zero prime ideals of R, and R is trivial if and only if R has rank zero. 
Every finitely generated ideal of R is principal; therefore, R is a principal 
ideal ring if R is Noetherian. 

THEOREM 2.3.1. Suppose that K is the field of quotients of an integral domain A 
and that R is a valuation ring of K which contains A. Then P = A C\ M(R) is 
a prime ideal of A, R contains the localization AP of A at P, and AP C\ M(R) is 
the maximal ideal of AP. Further, if AP is a valuation ring, then R = AP. Thus, 
if AP is a valuation ring for every prime ideal P of A, then every valuation ring 
of K which contains A is of the form APfor some prime ideal P of A. 

The integral domains A for which each localization AP is a valuation ring 
are commonly called Prilfer domains. These have been investigated in a 
number of recent articles, and the reader is referred to these for further 
details; cf. Gilmer and Ohm (7) for such references. 

A valuation of K is a mapping v from K — {0} — K* into the group of 
integers N so that v(xy) = v(x) + v(y) for all x, y Ç K* and v(x — y) è 
Min{z;(x), fl(30} f° r au< %i J € K* with x 9e y. The valuation v is said to be 
non-trivial if v(x) 5e 0 for some x Ç K*. In this case, the range of v is a non
zero subgroup of N, hence is isomorphic to N; we shall always suppose that a 
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non-zero valuation of K maps K* onto N. (Note: this notion may be generalized 
considerably by allowing the range of v to be an arbitrary totally ordered 
abelian group; however, we shall not consider this here.) 

We shall extend v to K by defining v(0) = <», where °° is an element such 
that oo > n and 00 + ^ = 0 0 for all n Ç N. With this convention, the 
defining relations above are valid for all x, y G K. 

The connection between valuations and valuation rings is described by the 
following theorem. 

THEOREM 2.3.2. If v is a non-trivial valuation of K, then Rv = 
{x £ K: v(x) ^ 0} is a non-trivial valuation ring of K with maximal ideal 
Mv = {x G K: v(x) > 0} and Rv is a Noetherian ring. Conversely, if R ?* K is 
a Noetherian valuation ring of K, then there exists a unique valuation v of K 
such that R = Rv. 

Let R be a non-trivial valuation ring of K for which the maximal ideal 
M = M(R) is principal, and let x G R generate M in R. Then for each k ^ 1, 
the set Mk = {xix2. . . xk: Xi, x2} . . . , xk 6 M) is the principal ideal of R 
generated by xk. Further, P = C^k^iAfk is the largest prime ideal of R which 
is properly contained in M; therefore, R has rank one if and only if P = 0. 
In this case, the function v defined on R — {0} by 

v(y) = sup{& ^ 0: y G Mk}, y G R - {0}, 

can be uniquely extended to a valuation v* of K, and R is the valuation ring 
of ^*; hence, R is Noetherian. Then every non-zero proper ideal of R is of the 
form Mk for some k ^ 1 and is a primary ideal of R with radical M. In par
ticular, every non-trivial Noetherian valuation ring of K has rank one. (The 
converse is false.) 

3. Rings of meromorphic functions. In this section we begin our 
discussion of rings of functions meromorphic on a non-compact Riemann 
surface 12. We first consider the ring A (0) of functions analytic on 12 and discuss 
briefly some results on the ideal theory of this ring. The basic result here is 
the theorem of Helmer, which states that every finitely generated ideal of 
A (12) is a principal ideal of A (12). This theorem is fundamental for the further 
study of A (12) and is the basis of our investigation of the rings of quotients of 
A (12), which we consider in subsequent sections. 

3.1. The ring A(£l). Let 12 be a non-compact Riemann surface. We denote 
by A (12) the collection of all mappings from 12 into the complex plane C which 
are analytic on 12, and by i£(12) the collection of all mappings from 12 into the 
extended complex plane which are meromorphic on 12. Given/ G i£(12) — {0}, 
we denote by df the divisor of/ (see Heins (8, p. 10)), which is an integer-
valued function on 12 supported on the discrete set {a G 12: f(a) = 0, 00}. 
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Evidently, / is analytic at a G 12 if and only if df(a) ^ 0, and / G -4(12) if 
and only if df(a) è 0 for all a G 12. Further, if/, g G if (12) - {0}, then 

Z(jf) = {a G 12: / (a ) = 0} = {a 6 0: df(a) > 0}. 

The theorem of Weierstrass for non-compact Riemann surfaces (Florack (6)) 
then states that for every integer-valued function d on 12 which is supported 
on a discrete subset of 12, there exists/ G K(il) — {0} such that d = df. 

Now, under the operations of pointwise addition and multiplication of 
functions, A (12) is a commutative integral domain with identity (indeed, A (12) 
is an algebra over the complex field C, since it contains the constant functions, 
which we identify with C), and it follows from the Weierstrass theorem that 
if (12) is the field of quotients of A (12). A function / G A (12) is a unit of A (12) 
if and only if df = 0. Given / , g G A (12), / divides g in A (12) if and only if 
df ^ #0, and / and g are associates in A (12) if and only if df = d0. The 
irreducible elements of A (12) are exactly those functions / G 4 (12) for which 
there exists a G 12 such that Z(f) = {a} and df(a) = 1. Finally, if/ G if (12), 
then there exist g, h G 4̂ (12) such that Z(g) H Z(ft) = 0, f = g/ft. 

Given a G 12, we define a map z>a: if (12) — {0} —>N by va(/) = df{a). I t 
is evident from the above that va is a valuation of if (12). The valuation ring 
of va is 

Ra = {/G if(12): »a(f) è 0} = {/G if (12):/(a) ^ « } , 

Mfl = Jlf (i?a) = {/ G if (12): *>«(/) > 0} = {/ G if (12): / (a ) = 0}. 

Thus (Theorem 2.3.2), for each a G 12, Ra is a non-trivial Noetherian valuation 
ring of if (12) which contains the ring .4(12). 

The basic theorem regarding the ideal theory of A (12) is the theorem of 
Helmer (cf. Helmer (10); for a proof in the general case, see Royden (18)). 
More precisely, we have the following theorem. 

HELMER'S THEOREM 3.1.1. Letfi, . . . Jn G A (12), Then the ideal of A (12) gener
ated by fi, . . . , fn is the principal ideal of A (12) generated by / , where f is any 
element of A (12) for which df = Minfd/j, . . . , df } . In particular, if Z(fi) P\ 
. . . Pi Z(fn) — 0, then the ideal generated by flf . . . , fn is all of A (12). 

First note that if I is any ideal of A (12) and if / i , . . . ,fn G I, t h e n / G I for 
each / G -4(12) such that df = Min{d/ , . . . , df }. Hence, if / is a proper 
ideal of .4(12), so t h a t / cannot be a unit of the ring, we must have that 
Z(fi) r\ . . . r\ Z(Jn) 9^ 0. This leads to the following definition, first intro
duced by Kakutani (14). 

Definition 3.1.2. A non-empty collection A of non-empty discrete subsets of 
12 is a b-filter 
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(i) If Dh D2 G A, then Dx H D2 G A; 
(ii) If D\ G A and if D2 is a discrete subset of 12 containing Di, then D2 G A. 

We say that A is fixed if there exists a G 12 such that a G 7> for all 7> G A ; 
otherwise, A is /ree. Finally, A is said to be maximal if A is not properly 
contained in any ô-filter of 12. 

I t follows from Zorn's lemma that every <5-filter of 12 is contained in a 
maximal <5-filter. Further, A is maximal if and only if: for each non-empty 
discrete subset D\ of 12 which is not an element of A, there exists D2 G A so 
that D\ r\ D2 = 0. The fixed maximal <5-filters are exactly those A for which 
there exists a G 12 so that A is the set of all discrete subsets of 12 which contain a. 
If A is maximal and if D G A is such that D = D\VJ D2 with D\ and D2 

disjoint, then either Di G A or D2 G A. If A is not maximal and if A* is 
maximal with A C A*, then for each D G A there exists 7)* G A* — A so that 
D* C D. Finally, if A is free, then A contains no finite subsets of 12. 

Definition 3.1.3. An ideal 7 of -4(12) is fixed if there exists a G 12 so that 
f(a) = 0 for a l l / G 7; otherwise, 7 is free. (Evidently, every proper, principal 
ideal of -4(12) is fixed, but the converse is not true.) 

The connection between the ideals of A (12) and the ô-filters of 12 is given 
by the following theorem. 

THEOREM 3.1.4. If I is a non-zero proper ideal of -4(12), then A (7) = 
{Z(f): f G I, f 9e 0} is a d-filter of 12, and I is fixed if and only if A (I) is fixed. 
Conversely, if A is a ô-filter of 12, then 7(A) = {/ G -4(12): Z(f) G A} \J {0} is 
a non-zero proper ideal of -4(12), and 1(A) is fixed if and only if A is fixed. 
Furthermorej the mappings I —> A (7) and A —> 7(A) define reciprocal, one-to-one 
correspondences between the set of all maximal ideals of A (12) and the set of all 
maximal ô-filter s of 12. 

If A is a ô-filter of 12, then A = A[7(A)], and if 7 is a non-zero proper ideal 
of A (12), then 

7 C 7[A(7)] = {/ G ,4(12): Z(f) = Z(g) for some g G 7J, 

equality holding if 7 is a maximal ideal. If 7 is a proper, free ideal of -4(12), 
then each / G 7 has infinitely many zeros in 12, and the fixed maximal ideals 
are the ideals Ia = {f G -4(12): f(a) = 0}, where a G 12, the ideals generated 
by an irreducible element of -4(12). To show that free (maximal) ideals of 
-4(12) exist, it suffices to exhibit a free ô-filter of 12; to this purpose, simply 
let D be any infinite discrete subset of 12 and define A to be the collection of 
all discrete subsets of 12 which contain all but finitely many points of D. I t is 
evident that the elements of A (12) belonging to free maximal ideals of A (12) 
are exactly those functions/ for which Z(f) is an infinite set. 

Most of the results obtained on the ideal theory of A (12) are based on 
Theorem 3.1.4; cf. Henriksen (11; 12) and Banaschewski (3). In the following, 
we shall use several of these results. First, if 7i, . . . , In are ideals of .4(12), 
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then the set Ii . . . In = {xi. . . xn: xk G Ik, 1 ^ k ^ w} is an ideal of 4̂ (12), 
this following easily from Helmer's theorem. Second, if P is a non-maximal 
prime ideal of A(Q), then P 2 = P . Finally, if P is a prime ideal of -4(0), 
then A(P) is a maximal 5-filter of 12. 

3.2. Rings of quotients of A (12). We now consider the rings of quotients of 
A = A (12), the basic result being Theorem 3.2.5 where it is stated that every 
subring of K = K(Q) which contains A is the ring of quotients of A with 
respect to some multiplicative subset of A. The general theory outlined in the 
second section will apply in a natural way to these rings and yield further 
information on the ideal theory of A and the valuation theory of K. We 
first give some applications of the general theory to the study of the non-
maximal prime ideals of A; cf. Henriksen (12). Throughout this section, A 
will denote the ring A (12) and K its field of quotients, where 0 is a non-compact 
Riemann surface. 

THEOREM 3.2.1. Every non-zero, non-maximal prime ideal of A is a free 
ideal of A. 

Proof. Suppose that P is a non-maximal fixed prime ideal of A and let a be 
the (unique) point of 12 for which P C Ia- Letting S = A — Iai e(P) is a 
non-maximal prime ideal of Ra = 5-1^4. However, Ra is a valuation ring of K 
with rank one; whence, e(P) = 0 and P = r[e(P)] = 0. 

Definition 3.2.2. Given / G K — {0} we define w(f) — sup{d/(a): a G 12} ; 
thus, IT(f) is either + œ o r a non-negative integer, and we define ir(0) = + » . 

THEOREM 3.2.3. The elements of A which belong to non-maximal prime ideals 
of A are exactly those f G A for which w(J) = + oo. 

Proof. Define S = {f G A: *-(/) < +«>}. Since ir(fg) S T(J) + 7r(g) for 
all g G K, S is a multiplicative subset of A. Further, if / G A — S, then 
fg G A — S for all g G A ; thus, the ideal generated b y / in A does not intersect 
5 and is therefore contained in an 5-maximal ideal of A. However, no such 
ideal of A is a maximal ideal of A, for if J is a maximal ideal of A, then 

J = 7[A(J)] = {g G A: Z(g) = ZQt) for some h G J}, 

and each such J contains elements of 5. Thus, non-maximal prime ideals 
exist and each / G A — S belongs to such an ideal. Finally, suppose that P is 
a non-maximal prime ideal and l e t / G P . Given n ^ 1, Pn = P and there 
exist/i , . . . ,fn G P so t h a t / = / i . . .fn. Since P is proper, fu . . . , /n have a 
common zero in 12; whence, df(an) à w for some aw G 12. Since n ^ 1 is 
arbitrary, x(/) = + œ. 

To begin our study of the rings of quotients of A we first consider the 
localizations of A. Now, if / G K, then there exist g, h G A w i t h / = g/A and 
Z(g) r\ Z(h) = 0. By Helmer's theorem,/ and g generate A and cannot both 
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belong to any proper ideal of A, and thus to no prime ideal of A. Therefore, 
AP is a valuation ring of K for each prime ideal P of i , and hence 
(Theorem 2.3.1) the valuation rings of K which contain A are exactly the 
localizations AP of A at its prime ideals. Equivalently, A is a Priifer domain. 
The theory of these rings could now be applied; however, for the ring 
A = A(Q,), the appropriate results are easily obtained directly. 

Definition 3.2.4. An A-ring of K is a subring B of K which contains the 
ring A. 

We first note that each A -ring is a Priifer domain; for, if B is an A -ring of 
K and Q a prime ideal of B, then P — Q C\ A is a prime ideal of A and 
AP C BQ\ therefore, BQ is a valuation ring. Indeed, AP = BQ, by Theorem 2.3.1. 

THEOREM 3.2.5. Every A-ring of K is the ring of quotients of A with respect 
to some multiplicative subset of A. 

Proof. Let B be an A -ring of K and let 2 denote the collection of all maximal 
ideals of B; therefore, B* = (~\Q^BQ is an A -ring of K which contains B. 
Further, if / G £* and / = g/h with g, h G A and Z(g) C\ Zifi) = 0, then, 
obviously, h i Q for all Q G 2, thus h is a unit of 5 and / G B; whence, 
B = B*. I t follows from the remarks above that there is some collection 
2 ' of prime ideals of A for which B = Pipes' AP, and we claim that B = S~XA 
with 5 = f W ' (A - P). Since ST*A C AP for all P G 2/, S"1^ C B. 
Conversely, suppose that f (z B and take g, h G A so that / = g/h and 
Z(g) C\ Z{h) = 0. Then h (£ S, for otherwise we would have that h G P for 
some P € Sr and / € -4p D ^ , a contradiction. 

COROLLARY 3.2.6. L ^ J3 6e aw A-ring of K and define S = {/ G 4̂ : \/f £ B\. 
Then B = 5_1^4 = C]P^ AP, where 2 is the set of all S-maximal ideals of A. 

From the fact that A is a Priifer domain we easily have a number of results 
previously obtained for the ring A and these generalize to the A -rings of K. 
First, note that if M is maximal in A, then the set of prime ideals of A which 
are contained in M is totally ordered by set inclusion, since this set is in 
one-to-one correspondence with the collection of all prime ideals of the valua
tion ring AM. We now introduce the following definition; cf. (20, p. 340). 

Definition 3.2.7. Let B be an A -ring of K. A proper ideal / of B is a valuation 
ideal if there is a valuation ring R of K containing B so that / = J Pi B for 
some ideal / of R. 

THEOREM 3.2.8. Let I ^ {0} be a proper ideal of the A-ring B of K. Then the 
following are equivalent: 

(i) I is a valuation ideal of B; 
(ii) I has prime radical in B; 

(iii) I is contained in only one maximal ideal of B. 
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Proof. Let / ^ {0} be a proper ideal of B = S^A. If (iii) holds and AID I 
is maximal in B, then (i) follows immediately from the concluding remark of 
§ 2.2, since I = e(I) C\B, where e(I) is the extension of / to the valuation 
ring BM. Second, if (i) holds, then there is a prime ideal Q of B so that 
I = J r\ B for some ideal J of BQ. Therefore, J has prime radical in BQ, 
since BQ is a valuation ring, and thus I has prime radical in B since / is a 
restricted ideal of B (with respect to the ring of quotients BQ of B). Finally, if 
(ii) holds and Q is the (prime) radical of I in B} then I C\ A has prime radical 
P = Q C\ A in A. Now, P is contained in a unique maximal ideal M of A, 
since A(P) is a maximal ô-filter of 12, and the set of all prime ideals of A 
contained in M is totally ordered by inclusion. Further, each prime ideal of A 
containing I C\ A contains P , hence, lies in M. Therefore, the union of all the 
prime ideals of A which contain I C\ A and do not intersect 5 is the unique 
S-maximal ideal of A which contains / C\ A ; thus, (iii) follows from (ii). 

The above proof shows that if B is an A -ring and M a maximal ideal of B, 
then the valuation ideals of B contained in M are exactly the ideals of B which 
are restricted with respect to the ring of quotients BM of B. Consequently, 
this set of ideals is totally ordered, for it is in one-to-one correspondence with 
the collection of all ideals of the valuation ring BM. Further, the intersection 
of any collection of valuation (primary, prime) ideals of B contained in M 
is again a valuation (primary, prime) ideal of B} since the corresponding 
statement is true in the valuation ring BM. Moreover, from the remarks of 
§ 2.2, it follows that every ideal of B is an intersection of valuation ideals of B. 
Finally, from the results of § 2.1 on finitely generated ideals in rings of 
quotients, it is obvious that Helmer's theorem can be extended, so that in any 
A -ring of K every finitely generated ideal is principal. 

These remarks generalize to arbitrary A -rings results previously obtained 
for the ring A itself (cf. 3; 11; 12), and many other such results could also 
be easily handled by these methods, which are considerably more algebraic in 
character than were the original proofs. We shall return to the algebraic 
structure of A -rings in the next section, where some examples will be given 
and a classification of these rings will be made. We conclude this section with 
a brief discussion of the valuation rings AP and apply the above results to the 
ring A. 

First note that for P maximal in A, P — I[A(P)] and 

AP = {/ G K: Z{l/f) (Z A(P)}, P-AP = {f G K: Z(f) G A(P)}, 

as obtained by Ailing (2). Further, Ailing also showed the following result. 

THEOREM 3.2.9. If P is a non-zero prime ideal of A, then P-AP = M(AP) 
is a principal ideal of AP if and only if P is maximal. 

Proof. In order t h a t / G P generate P-AP in APl it is evidently necessary 
and sufficient t h a t / divide each g G P in AP. For P non-maximal, however, 
there exist/i, / 2 G P so t h a t / = /1/21 a n d / cannot divide both /1 and fi in P , 
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since then 1/f = (fi/2)//2 would be a unit of AP, which is impossible. Con
versely, suppose that P is maximal; thus, P = 7[A(P)], and there exists 
/ G P so that T(J) — 1. We claim t h a t / generates P-^4P in AP. If not, then 
g// G ̂ 4P for some g G P ; whence, / / g G P-AP. Let fei, &2 £ A so that 
/ / g = Â1A2 and Z(fei) P\ Z(/z2) = 0. Then hi £ P and there exists a G 0 so 
that hi(a) = g (a) = 0; whence, A2(a) ^ 0. We then have that 

Va(fh2) = Va(j) = Vaigh) ^ 2, 

a contradiction to the fact that ir(J) = 1. 

Note. I t can be shown without difficulty that if P is maximal, t h e n / G PAP 

generates P-AP in AP if and only if {a G 0: â /(a) > 1} G A(P).Theorem 3.2.9 
has been applied by Ailing to the quotient field A/P; cf. (2) for further details. 

As an application of the above theorem, it follows from the concluding 
remarks of § 2.3 that for any maximal ideal M of A, H ^ i Mk is the largest 
prime ideal of A contained in M, a result previously obtained by Henriksen 
(12). As a further application of these ideas, we prove the following theorem. 

THEOREM 3.2.10. Let P be a non-zero free prime ideal of A and let / 0 G P , 
/o ^ 0. Let {ak}k^! be a (univalent) enumeration of Z(f0) and suppose that 
f (z A with Z(j) D Z(/o) so that df(ak)/dfQ(ak) —> + co as k —> -\- &>. Then 
there exists a prime ideal Q of A so that / G Q C P , /o $ (?. 

Proof. Define 5* = {/owg: w ^ 0, gG i — P} ; therefore S is a multiplicative 
subset of A containing A — P . Then ^4P C S~1Ay S_1A is a valuation ring, 
and S_1A = AQ for some prime ideal Q of A, where obviously Q C P and 
/o $ Ç- Now, evidently/ € Q if and only if 1/ / G ^4Q. Suppose this is the case; 
whence, 1/f = h/f0

ng for some h ^ A, n ^ 0, g £ A — P. Then for all k ^ 1 
we have that ^,(/owg) è ^ ( / ) , or 

Vak(g) ^ ^ ( / ) - n-vak(fo). 

It follows from our hypotheses that there exists an integer &0 so that dg(ak) ^ 
dfo(ak) for & è *o. Take go G -4 so that Z(g0) = {au . . . , a*o} and d0Q(ak) = 
dfQ(ak), 1 ^ & ̂  fe0. Then/o divides gg0 in 4̂ ; thus, gg0 6 P . However, g0 G P , 
since P is free and Z(g0) is a finite set, and thus g G P , a contradiction; 
therefore/ G (?. 

Thus, every non-zero free prime ideal P of A properly contains another 
ideal of the same type, and thus AP is a valuation ring of infinite rank in this 
case. In fact, more than this is true. 

THEOREM 3.2.11. Let {In}n^i be any countable collection of non-zero free 
valuation ideals of A. Then I = Piw î Ln is a non-zero free ideal of A. 

Proof. First note that An = A(In) is a maximal ô-filter of Œ containing no 
finite subsets of O. Further, since An is maximal, if D G An and if E C Œ is 
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relatively compact, then D — E G An. Now, let {En}n^i be any countable 
exhaustion of Œ; cf. Ahlfors and Sario (1). Fix b G 0 and for each n ^ 1 let 
Dn G An. Then for each w ^ l , £>/ = Dn — En U {6} belongs to An and there 
exists fn G /w so that Z(fn) = Dn*. Now, D* = Uw^i A** is a discrete subset 
of Œ and d = sup{d/n: « ^ 1} is a well-defined integer-valued function sup
ported on D*. Tak ing / G A so that df = d, we see that /w divides/ in 4̂ for 
all n ^ 1, t h u s / G Jn for all n è 1. Further,/(&) ^ 0, since b g £>*. Now, the 
function/ described here can be obtained for any b G 12; therefore, I = f|«^i In 

is free and non-zero. 

COROLLARY 3.2.12. If M is a free maximal ideal of A and if {In}n^i is any 
countable collection of non-zero valuation (primary, prime) ideals of A, each of 
which is contained in M, then I = On^i In is a non-zero valuation (primary, 
prime) ideal of A. 

From this we see that every non-zero free prime ideal P of A contains 
uncountably many distinct prime ideals of A. For if there were only countably 
many such ideals, say {Pn}n^i, then Dn^i Pn is a non-zero free prime ideal of A 
which contains no other non-zero prime ideals of A, in contradiction to 
Theorem 3.2.10. Thus, the valuation ring AP has uncountable rank unless P 
is fixed. 

4. The classification of A -rings. In this section we introduce a classifica
tion of A -rings based on the type of valuation rings which contain them. 
Two types are of special interest, those contained in no Noetherian valuation 
rings of K, and those contained only in Noetherian valuation rings of K. The 
latter are easily identified geometrically and must satisfy numerous strong 
algebraic conditions ; the former, however, are described explicitly only in two 
special cases, and the results on their algebraic structure are generally of a 
negative character. The section concludes with a theorem describing possible 
isomorphisms between rings of meromorphic functions by means of a result of 
Iss'sa (13). 

4.1. Fixed and free A-rings. The distinction between free and fixed ideals 
of A, together with Corollary 3.2.6, suggests a natural classification of the 
A -rings of K. 

Definition 4.1.1. If P is a non-zero prime ideal of A, the valuation ring AP 

is said to be fixed (free) if P is a fixed (free) ideal of A. An A -ring B ^ K is 
called fixed (free) if B is the intersection of a collection of fixed (free) valuation 
rings of K. The field K itself is considered as both fixed and free, but it is 
excluded from consideration in what follows. 

Evidently, B ^ K is fixed if and only if there exists a subset E ?£ 0 of Q 
such that B = {/ G K: f(a) ^ œ , a G E}. This ring will be denoted by A (E). 
In this case, if / , g G A(E) — {0}, then / divides g in A(E) if and only if 
df\E ^ d0\E, and / and g are associates in A (E) if and only if df\E = d0\E. 
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Furthermore,/ is a unit of A (E) if and only if df\E = 0, a n d / is an irreducible 
element of A(E) exactly when there exists a G £ so that Z(J) C\E = {a}, 
df(a) =1. 

Every A -ring is the intersection of a fixed A -ring and a free A -ring (one of 
which may be K), and if B is a free A -ring, then B is contained in no fixed 
valuation ring of K. We shall say that an A -ring B is strongly fixed if B is 
contained in no free valuation ring of K. These rings are, in some sense, the 
antithesis of the free A -rings and satisfy very restrictive algebraic conditions. 

THEOREM 4.1.2. For any A-ring B of K the following are equivalent: 
(i) B is strongly fixed; 

(ii) B = A(E) with E C ^ relatively compact; 
(iii) Every non-zero prime ideal of B is maximal. 

Proof. Suppose that B ^ K is strongly fixed. Then obviously B is 
fixed and B = A(E) for some E C Œ; therefore, B = 5~^4, where 
5 = {/ G A:f(a) 9e 0 V a G E}. If E is not relatively compact, then E 
contains an infinite discrete subset D of 12 and the set / of all elements of A 
which vanish at all but finitely many points of D is a non-zero free ideal of A 
which is disjoint from 5. Then for any 5-maximal ideal P of A which contains 7, 
P is a non-zero free prime ideal for which B C AP, and this is impossible. 
Thus, E is relatively compact. 

Second, suppose that B = A (E) with E ^ 0 relatively compact in 12, and 
let Q be a non-zero prime ideal of B. Then P = Q r\ A is non-zero and prime 
in A,P H S = 0. Now, if P i s free a n d / G P - {0},thenZ> = Z( / ) - £ belongs 
to A(P), which is a maximal, free ô-filter of 12, and there exists g G P with 
Z(g) = Z); whence, g G P P i ^ ^ 0 , a contradiction. Thus, P is fixed, P = Ia 

for some a £ E and is maximal; therefore, Q is maximal in B, being the exten
sion of P to B. Note that this proves that the maximal ideals of B are exactly 
the ideals Ja = {/ G B: f(a) = 0}, a G £ . 

Finally, let 5 be an .4-ring with no non-zero non-maximal prime ideals, 
and let P be a non-zero prime ideal of A for which B C AP. Then AP = BQ, 
where Q is the extension of P to B. Thus, P cannot be free, for in that case 
there would exist non-zero non-maximal prime ideals in BQ, implying that Q 
properly contains a non-zero prime ideal of B, contrary to hypothesis. Thus, 
B is strongly fixed, as desired. 

THEOREM 4.1.3. Let B be an A-ring of K. Then B is strongly fixed if and only 
if B is a principal ideal ring. 

Proof. Let B be strongly fixed; therefore, B = A (E) with E relatively 
compact in 12, and let / ^ {0} be a proper ideal of B. By the above proof, 
the maximal ideals of B are the ideals Ja = {/ G B:f(a) ^ 0}, a G E; thus, 
/ is contained in only finitely many maximal ideals of B, say Jai1 . . . , Jan-
By the remarks of § 2.2, if Ik is the extension of I to the valuation ring 
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Rak = If ^ K: f(ak) 9e °°}, 1 ^ k g n, then there exist positive integers 
qu . . . , qn so that Ik = {/ G i£: 5/(at) ^ f t ) , l ^ i ^ w ; thus, 

n 

I = H hr\B = {f£B: df(ak) è g „ l ^ H ^ ) . 
k=l 

Taking / G 4̂ so that Z(f) = {«i, . . . , an] and d/fe) = gfc, 1 S k ^ w, / is 
evidently the ideal of B generated by J. 

Conversely, suppose that B is a principal ideal ring and let P 9e {0} be a 
prime ideal of A for which B C AP. Then Q = B C\ M(AP) is prime in B 
and ^4P = BQ. That is, ^4P is a ring of quotients of B, and therefore ^4P is also 
a principal ideal ring and P is fixed. 

In view of the fact that Helmer's theorem is valid in any A -ring, the above 
shows that the strongly fixed A -rings are exactly those A -rings which are 
Noetherian rings, and other characterizations are possible. For example, they 
are also those A -rings which are unique factorization domains. Moreover, an 
A -ring is fixed if and only if it is the intersection of a decreasing sequence of 
strongly fixed A -rings. For the fixed A -rings one can also obtain results on 
maximal and prime ideals analogous to those for the ring A. For example, 
in the ring B = A (E) the non-zero elements of B belonging to non-principal 
maximal ideals of B are those / G B — {0} such that Z(J) C\ E is an infinite 
set, and those belonging to non-maximal prime ideals are those / G B such 
that sup{d/(a): a G E) = + oo. Of course, both of these classes of ideals are 
empty when B is strongly fixed. 

Obviously, one could completely describe the A -rings of K if an explicit 
characterization of the free A -rings were available, but this is not possible 
since there is no such characterization of the free prime ideals of A. These 
rings are somewhat pathological and cannot be nicely described except in two 
instances. 

First, let Si denote the collection of all free maximal ideals of A and let 
Si = HP€2I {A — P). Then B± = S^A is the ring of all functions in K which 
have only finitely many poles in 0, the units of this ring being those/ G K for 
which df is supported on a finite set. This ring is evidently the smallest free 
A -ring of K. 

Second, let S2 denote the collection of all non-maximal prime ideals of A 
and let S2 = OP€S2 (À ~~ P)- Then B2 = S2~

XA is the set of all functions 
/ G K for which inf{d/(a): a G Œ} > — oo. The units of this ring are those 
/ G K for which df is bounded on 0. 

In any free A -ring B of K, every non-zero prime ideal of B contains un-
countably many non-zero prime ideals of B. Also, B admits no irreducible 
elements, and no non-zero prime ideal of B is principal. In fact, in the ring B2 

every prime ideal is idempotent, and this will be the case in every A -ring 
which contains B2. 

4.2. Isomorphism theorems. We conclude with a brief discussion of iso
morphisms between A -rings. Here we shall use a result of Iss'sa (13), who has 
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characterized the Noetherian valuation rings of K = i£(12), namely the 
following theorem. 

THEOREM 4.2.1. Every Noetherian valuation ring of K contains the ring A, 
and hence is of the form {/ G K: f(a) ^ °° } for some a G 12, if it is non-trivial. 

Although there exist many valuation rings of K which do not contain A, 
none of these rings is Noetherian. The ring A is then algebraically charac
terized in K as the intersection of the Noetherian valuation rings of K, and 
therefore the conformai structure of 12 is determined by K, since it is deter
mined by A, as shown by Nakai (17). Here we shall use Theorem 4.2.1 to 
prove an isomorphism theorem of this type, but we shall not require Nakai's 
result in the proof. 

THEOREM 4.2.2. Let 121 and 122 be Riemann surfaces, 121 non-compact. Let B\ 
be an A-ring of Ki = i£(12i), and let B2 be any ring of functions meromorphic on 
122 which contains the constants. Suppose that 6: B\ —> B2 is a ring isomorphism 
of Bi onto B2. Then either 

(i) 6i = i and there exists a unique analytic map </>: 122 —> 121 such that 
Of = fo<j>for allf G Bh or 

(ii) Bi = —i and there exists a unique conjugate-analytic map 4>: 122 —-> 12t 
such that Bf = f o 4> for all f G B±. 

Proof. We shall suppose that Bi = i, the other case being treated in a 
similar way. Let K0 denote the field of quotients of B2; thus, KQ is a subfield 
of K2 = K(Q2) and B may be uniquely extended to a field isomorphism 
B: Ki —» KQ of K\ onto K0. Now, K0 contains non-constant functions, since 
the complex field C admits no non-trivial Noetherian valuation rings, and 
therefore for each b Ç 122 the ring Ro(b) = {g Ç K0: g(b) 9e °° } is a non-
trivial Noetherian valuation ring of K0 with maximal ideal Mo(b) — 
{g G KQ: g(b) = 0}. Hence, B^lRoty)] is a non-trivial Noetherian valuation 
ring of Ki, and therefore there exists, by Theorem 4.2.1, a unique a G 121 such 
that B-^RoÇb)] = {/ 6 Ki. f(a) ^ oo}. The map </> in question is defined by 
4>(b) = a. 

Evidently, Ba = a for constants a G Cr, the subfield of C of all complex 
numbers with rational real and imaginary coordinates. Further, the constant 
functions in Kt are algebraically characterized as those / G Kt for which 
(/ — a) has roots of all orders in Ki for all a G CV, i = 0, 1. Therefore, 0maps 
constants into constants, and therefore B\C is an automorphism of the complex 
field C. 

Fix b G 122 and let g G -Ro(&); then g - g(b) G M0(b). The function 
0-ig _ 0_1[g(&)] then belongs to the maximal ideal of 0_1[^o(^)], and hence 
vanishes at 0(6). This implies that (fl-1^) (0(6)) = fl-1^)], since ^-1[g(6)] 
is a constant, and so, t ak ing / G K\ so that 0/ = g, we have that 

« M&) =o\f(.<Kfi))]. 
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This holds for all / 6 Ki with g = 6f £ Ro(b)y and if we define 0co = oo, 
then (*) holds for all / 6 Ku for if g = 6f (? Ro(b), one simply applies the 
above argument to 1/g £ M0(b). 

Now we claim that <j> maps each relatively compact subset of 02 onto a 
relatively compact subset of Oi; cf. Nakai (17). For if not, then there exists 
an infinite subset {bk: k ^ 1} of 122 having a cluster point in S22 such that the 
set {<t>(bk): k ^ 1} is an infinite discrete subset of S2i. T a k i n g / G Xi - {0} 
so that/(*(&*)) = 0 for all ^ 1, (*) implies that (6f)(bk) = 0 for all ife è 1, 
and this is impossible since 0/ is non-constant. 

Second, we show that 6\C is continuous (whence, da = a for all a Ç C). To 
see this, let / G -4 (12i) be non-constant and let U be an open, relatively 
compact subset of £22. From (*) we have, since <t>(U) is relatively compact in 
Qi, that 

sup{\6-i (g(b))\: be U} = sup{ |/(*(6)) | : K P ) < + ^ 

where g = 0/, which implies that g is analytic on U and that B~l\C is bounded 
on g(U). However, U is open and g non-constant; therefore, g(U) is an open 
subset of C on which 6~l\C is bounded, and hence 0-1|C is continuous. 

Equation (*) now states that Of = / o <j> for all f £ Klf and the proof that 
0 is analytic proceeds as usual: given b 6 122, it suffices to take f (z A (12i) so 
t h a t / is univalent in a neighbourhood of </>(b)\ thus, the representation 
$ = / _ 1 o (0/) is valid in some neighbourhood of b. That </> is unique follows 
immediately from the fact that K\ separates points of 12i. 

Note that the map <j>: £22 —> 12i of this theorem is univalent if and only if B2 

separates points of 122, and <j> maps fi2 onto 12i if and only if every non-trivial 
Noetherian valuation ring of K0 is of the form {g G K0: g(b) 9^ <»} for some 
6 G Œ2. In particular, this is the case when S22 is non-compact and B2 is an 
A -ring of K2 = i£(£22). Thus, the algebraic structure of any A -ring of K(£l), 
12 non-compact, determines the conformai structure of 12. (Of course, this 
follows immediately from the results of Iss'sa and Nakai.) 

As a final point, we note that there are always many more free maximal 
ideals of A = A (12) than there are conformai and/or anti-conformal auto
morphisms of 12; cf. Ailing (2). Consequently, not all of the valuation rings 
AM, where M is a free maximal ideal of A, are isomorphic. I t would be of 
interest to determine how the algebraic structure of these rings may differ, for 
none of the theorems available for the ideal theory of A make any distinction 
between different free maximal ideals of A. 
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