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Abstract

Let (X, d, µ) be a metric measure space satisfying the doubling, reverse doubling and noncollapsing
conditions. Let L be a nonnegative self-adjoint operator on L2(X, dµ) satisfying a pointwise Gaussian
upper bound estimate and Hölder continuity for its heat kernel. In this paper, we introduce the Hardy
spaces Hp

L (X), 0 < p ≤ 1, associated to L in terms of grand maximal functions and show that these
spaces are equivalently characterised by radial and nontangential maximal functions.
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1. Introduction and main result

The theory of real variable Hardy spaces Hp(Rn) was highly developed in the 1960s
and 1970s (see, especially, the classical papers [11, 18]). Recall that, for 0 < p < ∞,
Hp(Rn) is defined as the space of all bounded tempered distributions f such that the
Poisson maximal function

MP f (x) := sup
t>0
|e−t

√
−∆ f (x)|

belongs to Lp(Rn). Here, ∆ =
∑n

j=1 ∂
2/∂x2

j is the classical Laplacian and thus e−t
√
−∆ is

the Poisson semigroup.
It is well known that the spaces Hp(Rn) are characterised by some other maximal

functions. To state these characterisations, we need to introduce some notation. For
f ∈ S′(Rn) and ϕ ∈ S(Rn), the radial and nontangential maximal functions of f with
respect to ϕ are defined as

M0
ϕ f (x) := sup

t>0
| f ∗ ϕt(x)| and Mϕ f (x) := sup

t>0
sup
|y−x|<t

| f ∗ ϕt(y)|,
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respectively, where ϕt(x) := t−nϕ(t−1x). For a fixed positive integer N, we set

FN(Rn) := {ϕ ∈ S(Rn) : NN(ϕ) ≤ 1} ,

where
NN(ϕ) :=

∫
Rn

(1 + |x|)N
∑
|β|≤N+1

|∂βϕ(x)| dx.

The grand maximal function of f (with respect to N) is defined as

MN f (x) := sup
ϕ∈FN (Rn)

Mϕ f (x).

The following characterisations of Hp(Rn) are given in [11]: if 0 < p <∞, ϕ ∈ S(Rn)
with

∫
Rn ϕ(x) dx , 0 and N ∈ N with N ≥ bn/pc + 1, then, for all f ∈ S′(Rn),

f ∈ Hp(Rn)⇐⇒ M0
ϕ f ∈ Lp(Rn)⇐⇒ Mϕ f ∈ Lp(Rn)⇐⇒ MN f ∈ Lp(Rn).

On the other hand, the spaces Hp(Rn) are also characterised by various kinds of
square functions. For example, an L1 function f belongs to H1(Rn) if and only if the
Lusin (area integral) function

Sf (x) :=
("

Γ(x)

∣∣∣∣∣ ∂∂t
e−t
√
−∆ f (y)

∣∣∣∣∣2 t1−n dy dt
)1/2

(1.1)

belongs to L1(Rn); see [11, 17]. In 2004, Auscher et al. [1] introduced a class of
Hardy spaces H1

L (Rn) associated to an operator L by means of the square function
in (1.1) with the Poisson semigroup e−t

√
−∆ replaced by the semigroup e−tL , under

the assumption that L admits a heat kernel satisfying a pointwise Poisson upper
bound. Later, Duong and Yan [5] introduced the BMO space (the space of all
functions of bounded mean oscillation) associated to such an L and they proved
in [6] that the BMO space associated to the adjoint operator L ∗ is the dual space
of the space H1

L (Rn). Recently, Auscher et al. [2] studied the Hardy space H1

associated to the Hodge Laplacian on a Riemannian manifold. Meanwhile, Hofmann
and Mayboroda [14] investigated Hardy spaces associated to a second order divergence
form elliptic operator L on Rn with complex coefficients. The theory of the Hardy
spaces Hp

L (X), 1 ≤ p <∞, on a metric space X associated to a nonnegative self-adjoint
operator L satisfying Davies–Gaffney estimates was developed in [13]. In all of these
developments, the Hardy spaces Hp

L were introduced by means of the Lusin (area
integral) function associated to the semigroups e−tL or e−t

√
L .

In the case that L = −∆ + V is a Schrödinger operator with a locally integrable
nonnegative potential V , the Hp and BMO spaces associated to L were earlier
investigated by Dziubański et al. (see [7, 9, 10] and the references therein). In these
works, the spaces Hp

L (Rn) were introduced by means of the radial maximal function
associated to the semigroup e−tL , instead of using square functions. Note that the
operator L = −∆ + V satisfies the Davies–Gaffney estimates and it was proved in
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[13, 15] that for such a special operator L the Hardy spaces defined via square
functions are equivalent to those defined via maximal functions. Hence, the general
theory developed in [13] applies to this Schrödinger setting. However, the spaces
Hp

L (Rn) associated to L = −∆ + V enjoy some interesting properties which may not
be satisfied by Hardy spaces associated to general operators satisfying Davies–Gaffney
estimates. For instance, if the potential V satisfies certain additional assumptions (for
example, the reverse Hölder inequality), the space H1

L (Rn) associated to L = −∆ + V
is characterised by the (generalised) Riesz transform ∇(−∆ + V)−1/2 (see [8] for more
details).

In the present paper, we focus on maximal Hardy spaces associated to operators.
We shall introduce Hardy spaces associated to nonnegative self-adjoint operators in
terms of ‘grand’ maximal functions and show that such Hardy spaces are equivalently
characterised by the radial and nontangential maximal functions.

Now let us describe our result more precisely. We refer to Section 2 for all
unfamiliar notation and definitions. Let (X, d, µ) be a metric measure space satisfying
the doubling, reverse doubling and noncollapsing conditions. Let L be a nonnegative
self-adjoint operator on L2(X,dµ) whose heat kernel satisfies the Gaussian upper bound
and Hölder continuity. We introduce the radial, nontangential and grand maximal
functions associated to L as follows.

Definition 1.1. For f ∈ S′L (X), Φ ∈ S(R+), N ∈ N0 and x ∈ X, define

M0
L ,Φ f (x) := sup

t>0
|Φ(t2L ) f (x)|, ML ,Φ f (x) := sup

t>0
sup

d(y,x)<t
|Φ(t2L ) f (y)|

and
ML ,N f (x) := sup

Φ∈FN (R+)
ML ,Φ f (x).

Here, FN(R+) is defined in (2.11) and Φ(t2L ) f is defined in (2.15).

We now introduce Hardy spaces associated to L by means of grand maximal
functions.

Definition 1.2. For p ∈ (0, 1], we define the Hardy space Hp
L (X) associated to L as

Hp
L (X) := { f ∈ S′L (X) : ML ,Np f ∈ Lp(X, dµ)}

with the quasi-norm given by

‖ f ‖Hp
L (X) := ‖ML ,Np f ‖Lp(X,dµ),

where
Np := b2n/pc + b3n/2c + 4.

Here, the number n is the ‘dimension’ of the metric measure space X; see Section 2
below.
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The following theorem, which says that the spaces Hp
L (X) are equivalently

characterised by radial and nontangential maximal functions, is the main result of the
present paper.

Theorem 1.3. Suppose that Φ ∈ S(R+), Φ(0) , 0 and 0 < p ≤ 1. Then, for any
f ∈ S′L (X), the following conditions are equivalent:

(i) f ∈ Hp
L (X);

(ii) ML ,Φ f ∈ Lp(X, dµ);
(iii) M0

L ,Φ f ∈ Lp(X, dµ).

Moreover, the following (quasi-)norm equivalence is valid:

‖ML ,Np f ‖Lp(X,dµ) ∼ ‖ML ,Φ f ‖Lp(X,dµ) ∼ ‖M0
L ,Φ f ‖Lp(X,dµ).

The rest of this paper is organised as follows. In Section 2, we review the main
properties of doubling and reverse doubling metric measure spaces and the concepts
of Schwartz functions and distributions on them, and review some important estimates
derived from the Gaussian heat kernel bounds. In Section 3, we give the proof of
Theorem 1.3.

Throughout the paper, the symbol N0 will denote the set of nonnegative integers.
For any positive number σ, we denote by bσc the largest integer less than or equal
to σ. The letter C will denote a positive constant, which is independent of the main
parameters and not necessarily the same at each occurrence. By writing A . B, we
mean A ≤ CB. We also use A ∼ B to denote A . B . A. Constants with subscripts will
remain unchanged throughout.

Note. After this paper was submitted for publication, we learned that Dekel et al. in a
recent preprint [4] also treated maximal Hardy spaces associated to nonnegative self-
adjoint operators. Although they also give a proof of Theorem 1.3, their method is
totally different from ours.

2. Preliminaries

Let X be a locally compact metric space with a distance d and let µ be a positive,
locally finite, regular Borel measure on X. Throughout the paper, we assume that
µ(X) =∞.

Denote by B(x, r) the open ball with centre x ∈ X and radius r > 0 and by V(x, r) its
measure µ(B(x, r)). The metric measure space (X, d, µ) satisfies the doubling condition
if there exists a constant C∗ > 1 such that

V(x, 2r) ≤ C∗V(x, r)

for all x ∈ X and r ∈ (0,∞). Notice that the doubling condition implies that

V(x, λr) ≤ C∗λnV(x, r) (2.1)

for all x ∈ X, r ∈ (0,∞) and λ ∈ [1,∞), where n = log2 C∗ > 0 is a constant playing the
role of a dimension, but one should not confuse it with dimension. From (2.1), the

https://doi.org/10.1017/S0004972714001105 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972714001105


290 G. Hu [5]

local finiteness of µ and the infiniteness of µ(X), it follows that diam X = ∞. Also,
since B(x, r) ⊂ B(y, d(x, y) + r), (2.1) yields

V(x, r) ≤ C∗
(
1 +

d(x, y)
r

)n
V(y, r) (2.2)

for all x, y ∈ X and r ∈ (0,∞). The metric measure space (X, d, µ) is said to satisfy the
reverse doubling condition if there exists a constant C† > 1 such that

V(x, 2r) ≥ C†V(x, r)

for all x ∈ X and r ∈ (0,∞). A consequence of the reverse doubling condition is that

V(x, λr) ≥ C−1
† λ

ςV(x, r) (2.3)

for all x ∈ X, r ∈ (0,∞) and λ ∈ [1,∞), where ς = log2 C† > 0. We say that (X, d, µ)
satisfies the noncollapsing condition if there exists a constant C[ > 0 such that

inf
x∈X

V(x, 1) ≥ C[.

The noncollapsing condition along with the doubling condition yields that, for all
r ∈ (0, 1],

inf
x∈X

V(x, r) ≥ C−1
∗ C[rn. (2.4)

Throughout the paper, we assume that (X, d, µ) satisfies the doubling, reverse doubling
and noncollapsing conditions.

Consider a nonnegative self-adjoint operator L with domain D(L ) dense in
L2(X, dµ). Let E(λ) be the spectral resolution of L . For any bounded Borel
measurable function Φ : [0,∞) → C, by the spectral theorem we can define the
operator

Φ(L ) =

∫ ∞

0
Φ(λ) dE(λ).

It is well known that the operator Φ(L ) is bounded on L2(X, dµ). We assume that the
associated semigroup Pt = e−tL consists of integral operators with real-valued (heat)
kernel pt(x, y). We say that the heat kernel of L satisfies the Gaussian upper bound if
there exist two constants C], c] > 0 such that

|pt(x, y)| ≤ C]

exp
(
−

d(x,y)2

c]t

)
√

V(x,
√

t)V(y,
√

t)
(2.5)

for all t ∈ (0,∞) and x, y ∈ X. We say that the heat kernel of L satisfies Hölder
continuity if there exists a positive constant α such that

|pt(x, y) − pt(x, y′)| ≤ C]

(d(y, y′)
√

t

)α exp
(
−

d(x,y)2

c]t

)
√

V(x,
√

t)V(y,
√

t)
(2.6)
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for all t ∈ (0,∞) and x, y, y′ ∈ X satisfying d(y, y′) ≤
√

t. Throughout the paper, we
assume that the heat kernel of L satisfies the Gaussian upper bound and Hölder
continuity.

Examples of settings in which our theory applies include uniformly elliptic
divergence form operators, Riemannian manifolds with nonnegative Ricci curvature
and Lie groups of polynomial growth. For more examples which satisfy all the above
assumptions, we refer the reader to [3, 16].

We use the following notation borrowed from [16]: for t, σ > 0 and x, y ∈ X, set

Dt,σ(x, y) = [V(x, t)V(y, t)]−1/2
(
1 +

d(x, y)
t

)−σ
.

By [16, Lemma 2.1], for any σ > n there exists a positive constant C (depending on σ)
such that ∫

X

(
1 +

d(x, y)
t

)−σ
dµ(y) ≤ CV(x, t) (2.7)

for all t ∈ (0,∞) and x ∈ X. This together with (2.2) yields that for any σ > 3n/2,

‖Dt,σ(x, ·)‖L1(X,dµ) ≤ C (2.8)

uniformly for all t ∈ (0,∞) and x ∈ X.
The following estimate, proved by Kerkyacharian and Petrushev [16], is important

to us.

Lemma 2.1 [16, Theorem 3.4]. Suppose that m ∈ N0, m ≥ n + 1, r ≥ m + n + 1, Φ ∈

Cm(R+) and there exists a constant A > 0 such that

|Φ(ν)(λ)| ≤ A(1 + λ)−r

for all λ ∈ R+ and ν ∈ {0, 1, . . . ,m}. Suppose further that

Φ2ν+1(0) = 0

for all ν ∈ N0 such that 2ν + 1 ≤ m. Then, for any t > 0, Φ(t
√

L ) is an integral
operator with a kernel KΦ(t

√
L )(x, y); moreover, there exists a constant C > 0

(depending on m) such that

|KΦ(t
√

L )(x, y)| ≤ CADt,m(x, y) (2.9)

for all t ∈ (0,∞) and x, y ∈ X and such that

|KΦ(t
√

L )(x, y) − KΦ(t
√

L )(x, y′)| ≤ CA
(d(y, y′)

t

)α
Dt,m(x, y) (2.10)

for all t ∈ (0,∞) and x, y, y′ ∈ X satisfying d(y, y′) ≤ t.

Remark 2.2. In [16], the heat kernel of the operator is assumed to satisfy the ‘local’
Gaussian upper bound, namely, (2.5) and (2.6) hold only for t ∈ (0, 1], so the estimates
for the kernel KΦ(t

√
L)(x, y) in [16] are valid only for t ∈ (0, 1]. However, in the current

paper we assume that (2.5) and (2.6) hold for all t ∈ (0,∞), from which the estimates
(2.9) and (2.10) are valid for all t ∈ (0,∞).
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Now we recall from [16] the notions of Schwartz functions and tempered
distributions on X associated to L . The Schwartz class SL (X) is defined to be the
class of all functions φ ∈

⋂
k∈N0

D(L k) such that

Pk,m(φ) := ess sup
x∈X

(1 + ρ(x, x0))m|L kφ(x)| <∞

for all k,m ∈ N0, where x0 ∈ X is selected arbitrarily and fixed once and for all.
Clearly, the particular selection of x0 in the above definition is not important, since if
Pk,m(φ) <∞ for one x0 ∈ X, Pk,m(φ) <∞ for any other selection of x0 ∈ X. It is often
more convenient to have a directed family of seminorms, so we define, for k,m ∈ N0
and φ ∈ SL (X),

P∗k,m(φ) :=
∑
0≤ j≤k
0≤`≤m

P j,`(φ).

It was shown in [16] that SL (X) is a Fréchet space. The space S′L (X) of distributions
on X is defined as the set of all continuous linear functionals onSL (X). The evaluation
of f ∈ S′L (X) on φ ∈ SL (X) will be denoted by ( f , φ) := f (φ).

Let R+ := [0,∞) and define

S(R+) :=
{
Φ ∈ C∞(R+) : for all ν ∈ N0,Φ

(ν) decays rapidly at infinity

and lim
λ→0+

Φ(ν)(λ) exists
}
.

Then Borel’s theorem concerning the existence of smooth functions with arbitrary
Maclaurin series implies that S(R+) = S(R)|R+

. Throughout the paper, we use the
following notation: for any N ∈ N0 and any Φ ∈ S(R+), we put

‖Φ‖(N) := sup
λ∈R+, 0≤ν≤N

(1 + λ)N+n+1|Φ(ν)(λ)|,

where Φ(ν) is the νth-order derivative of Φ. Then we set

FN(R+) := {Φ ∈ S(R+) : ‖Φ‖(N) ≤ 1}. (2.11)

Observe that if Φ ∈ S(R+), then the function Ψ : R+ → C defined by Ψ(λ) := Φ(λ2)
also lies in S(R+) and, moreover, Ψ2ν+1(0) = 0 for all ν ∈ N0. Also note that for any
m ∈ N0, there exists a constant C > 0, which depends on m but is independent of Φ,
such that ‖Ψ‖(m) ≤ C‖Φ‖(m). By these facts, we can reformulate Lemma 2.1 as follows.

Lemma 2.3. For any Φ ∈ S(R+) and t > 0, Φ(t2L ) is an integral operator with a kernel
KΦ(t2L )(x, y); moreover, for any m ∈ N0 with m ≥ n + 1, there is a constant C > 0,
which depends on m but is independent of Φ, such that

|KΦ(t2L )(x, y)| ≤ C‖Φ‖(m)Dt,m(x, y) (2.12)

for all t ∈ (0,∞) and x, y ∈ X and such that

|KΦ(t2L )(x, y) − KΦ(t2L )(x, y′)| ≤ C‖Φ‖(m)

(d(y, y′)
t

)α
Dt,m(x, y) (2.13)

for all t ∈ (0,∞) and x, y, y′ ∈ X satisfying d(y, y′) ≤ t.
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A consequence of Lemma 2.3 is the following result.

Corollary 2.4. Suppose that Φ ∈ S(R+). Then, for any t > 0, the kernel KΦ(t2L )(x, y)
belongs to SL (X) as a function of x and as a function of y.

Proof. Fix t > 0. Let k,m ∈ N0 be such that m ≥ n + 1. From [16, (5.14)], we see that
for any fixed x ∈ X,

L k[KΦ(t2L )(x, ·)] = KL kΦ(t2L )(x, ·) = t−2kK(t2L )kΦ(t2L )(x, ·).

Hence, by (2.12), we have that for all y ∈ X,

|L k[KΦ(t2L )(x, ·)](y)| = t−2k|K(t2L )kΦ(t2L )(x, y)|
≤ Ct−2k‖λ 7→ λkΦ(λ)‖(m)Dt,m(x, y)
≤ Ct−2k‖Φ‖(k+m)Dt,m(x, y). (2.14)

This implies that KΦ(t2L )(x, ·) ∈ SL (X) with x fixed. Since KΦ(t2L )(·, y) = KΦ(t2L )(y, ·),
we also have KΦ(t2L )(·, y) ∈ SL (X) with y fixed. �

Thanks to Corollary 2.4, it is now natural to define, for any f ∈ S′L (X) and
Φ ∈ S(R+),

Φ(L ) f (x) := ( f ,KΦ(L )(x, ·)), x ∈ X. (2.15)

This extends the domain of Φ(L ) from L2(X, dµ) to S′L (X).

3. Proof of Theorem 1.3

For the proof of Theorem 1.3, we need a sequence of lemmas.

Lemma 3.1. Suppose that Φ ∈ S(R+) and Φ(0) = 1. Then, for any Ψ ∈ S(R+) and
N ∈ N0, there exist a family {Θ(s)}0≤s≤1 of functions in S(R+) and a constant C > 0
such that:

(i) Ψ(λ) =
∫ 1

0 Θ(s)(λ)Φ(s2λ) ds for all λ ∈ R+;

(ii)
∫

X(1 + (d(x, y))/t)N |KΘ(s)(t2L )(x, y)| dµ(y) ≤ CsN‖Ψ‖(2N+b3n/2c+3) for all t > 0 and
x ∈ X.

Proof. We follow [12, Theorem 4.9]. Fix N ∈ N0. Let {Ω(s)}0≤s≤1 be the unique family
of functions in S(R+) such that

∂N+1
s [Φ(s2λ)N+2] = Φ(s2λ)Ω(s)(λ) for all s ∈ [0, 1], for all λ ∈ R+. (3.1)

Notice that Ω(s) has the expression

Ω(s)(λ) =
∑

j1+···+ jN+1=N+1

C j1,..., jk∂
j1
s [Φ(s2λ)] · · · ∂ jk

s [Φ(s2λ)], (3.2)
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where each C j1,..., jk is a nonnegative integer. Choose Ξ ∈ C∞([0, 1]) such that

Ξ(s) = sN/N! for all s ∈ [0, 1/2],
0 ≤ Ξ(s) ≤ sN/N! for all s ∈ [1/2, 1],
∂

j
sΞ(1) = 0 for all j ∈ {0, 1, . . . ,N + 1}.

Then we set

Θ(s)(λ) = (−1)N+1Ξ(s)Ω(s)(λ)Ψ(λ) − [∂N+1
s Ξ(s)]Φ(s2λ)N+1Ψ(λ), λ ∈ R+. (3.3)

Clearly, Θ(s) ∈ S(R+) for every s ∈ [0, 1]. We claim that (i) and (ii) hold for this choice
of Θ(s).

First we verify (i). Consider the integral

I(λ) = (−1)N+1
∫ 1

0
Ξ(s){∂N+1

s [Φ(s2λ)N+2]}Ψ(λ) ds, λ ∈ R+. (3.4)

Integrating by parts N + 1 times and noting that the boundary terms in the first N
integrations by parts vanish,

I(λ) = −[∂N
s Ξ(s)]Φ(s2λ)N+2Ψ(λ)|1s=0 +

∫ 1

0
[∂N+1

s Ξ(s)]Φ(s2λ)N+2Ψ(λ) ds

= Ψ(λ) +

∫ 1

0
[∂N+1

s Ξ(s)]Φ(s2λ)N+2Ψ(λ) ds,

where we used Φ(0) = 1. Hence, by (3.4), (3.1) and (3.3),

Ψ(λ) = I(λ) −
∫ 1

0
[∂N+1

s Ξ(s)]Φ(s2λ)N+2Ψ(λ) ds =

∫ 1

0
Θ(s)(λ)Φ(s2λ) ds.

Next we verify (ii). Since Ξ(s) is constant for s ∈ [0, 1
2 ], we have |∂N+1

s Ξ(s)| ≤ CsN

for all s ∈ [0, 1]. From this fact, (3.2) and (3.3), it is not difficult to see that for every
m ∈ N0,

‖Θ(s)‖(m) ≤ CsN‖Ψ‖(m+N+1), (3.5)

where the constant C depends on Φ and m, but is independent of s ∈ [0, 1] and Ψ. Take
m = N + b3n/2c + 2 (≥ n + 1). Then it follows from (2.12), (3.5) and (2.8) that∫

X

(
1 +

d(x, y)
t

)N
|KΘ(s)(t2L )(x, y)| dµ(y) ≤ C‖Θ(s)‖(m)

∫
X

(
1 +

d(x, y)
t

)N
Dt,m(x, y) dµ(y)

= ‖Θ(s)‖(m)

∫
X

Dt,m−N(x, y) dµ(y)

≤ CsN‖Ψ‖(m+N+1) = CsN‖Ψ‖(2N+b3n/2c+3).

This verifies (ii) and completes the proof. �
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Lemma 3.2. Suppose that Φ ∈ S(R+) with Φ(0) = 1. Then, for any N ∈ N0, there exists
a constant C > 0 such that for all f ∈ S′L (X) and x ∈ X,

ML ,2N+b3n/2c+3 f (x) ≤ CT N
L ,Φ f (x), (3.6)

where

T N
L ,Φ f (x) = sup

y∈X,t>0
|Φ(t2L ) f (y)|

(
1 +

d(x, y)
t

)−N
. (3.7)

Proof. For any given Ψ ∈ S(R+), write Ψ(·) =
∫ 1

0 Θ(s)(·)Φ(s2·) ds as in Lemma 3.1.
Then, for all f ∈ S′L (X), t ∈ (0,∞) and y ∈ X,

Ψ(t2L ) f (y) =

∫ 1

0
Θ(s)(t2L )Φ(s2t2L ) f (y) ds

=

∫ 1

0

∫
X

Φ(s2t2L ) f (z)KΘ(s)(t2L )(y, z) dµ(z) ds.

It follows that

|Ψ(t2L ) f (y)| ≤
∫ 1

0

∫
X
|Φ(s2t2L ) f (z)||KΘ(s)(t2L )(y, z)| dµ(z) ds

≤ T N
L ,Φ f (x)

∫ 1

0

∫
X

(
1 +

d(x, z)
st

)N
|KΘ(s)(t2L )(y, z)| dµ(z) ds

≤ T N
L ,φ f (x)

∫ 1

0

∫
X

s−N
(
1 +

d(x, y) + d(y, z)
t

)N
|KΘ(s)(t2L )(y, z)| dµ(z) ds.

Note that if y ∈ B(x, t), then 1 + (d(x, y) + d(y, z))/t < 2(1 + (d(y, z))/t). Hence, by
Lemma 3.1(ii),

ML ,Ψ f (x) ≤ 2NT N
L ,Φ f (x)

∫ 1

0

∫
X

s−N
(
1 +

d(y, z)
t

)N
|KΘ(s)(t2L )(y, z)| dµ(z) ds

≤ C‖Ψ‖(2N+b3n/2c+3)T N
L ,Φ f (x),

which yields the desired inequality (3.6). �

Lemma 3.3. For any Φ ∈ S(R+), p ∈ (0, 1] and N ∈ N0 with N > n/p, there exists a
constant C > 1 such that for all f ∈ S′L (X),

C−1‖ML ,Φ f ‖Lp(X,dµ) ≤ ‖T N
L ,Φ f ‖Lp(X,dµ) ≤ C‖ML ,Φ f ‖Lp(X,dµ),

where T N
L ,Φ f is defined by (3.7).

Proof. Obviously, ML ,Φ f (x) ≤ 2NT N
L ,Φ f (x) for every x ∈ X, so the first inequality

holds as long as C > 2N . To see the second inequality, set q = n/N, so that q < p.
Observe that

|Φ(t2L ) f (y)| ≤ ML ,Φ f (z) whenever z ∈ B(y, t).
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From this and (2.1),

|Φ(t2L ) f (y)|q ≤
1

V(y, t)

∫
B(y,t)

[ML ,Φ f (z)]q dµ(z)

≤
V(x, t + d(x, y))

V(y, t)
1

V(x, t + d(x, y))

∫
B(x,t+d(x,y))

[ML ,Φ f (z)]q dµ(z)

.
(
1 +

d(x, y)
t

)n
MHL([ML ,Φ f (·)]q)(x),

whereMHL is the Hardy–Littlewood maximal operator. Since N = n/q, this says that
for all x ∈ X,

[T N
L ,Φ f (x)]q .MHL([ML ,Φ f (·)]q)(x).

Then, since p/q > 1, the Hardy–Littlewood maximal theorem yields∫
X

[T N
L ,Φ f (x)]p dµ(x) .

∫
X
{MHL([ML ,Φ f (·)]q)(x)}p/q dµ(x) .

∫
X

[ML ,Φ f (x)]p dµ(x).

This completes the proof. �

For our purpose we introduce two auxiliary maximal type functions: for f ∈ S′L (X),
Φ ∈ S(R+), K ∈ N0, N ∈ N0 and ε ∈ (0, 1], we set

MεK
L ,Φ f (x) = sup

0<t<1/ε
sup

y∈B(x,t)
|Φ(t2L ) f (y)|

( t
t + ε

)K
(1 + εd(y, x0))−K ,

T εNK
L ,Φ f (x) = sup

0<t<1/ε
sup
y∈X
|Φ(t2L ) f (y)|

(
1 +

d(x, y)
t

)−N( t
t + ε

)K
(1 + εd(y, x0))−K .

Lemma 3.4. For any Φ ∈ S(R+), p ∈ (0, 1] and N ∈ N0 with N > n/p, there exists C > 0
such that for all f ∈ S′L (X), ε ∈ (0, 1] and K ∈ N0,

‖T εNK
L ,Φ f ‖Lp(X,dµ) ≤ C‖MεK

L ,Φ f ‖Lp(X,dµ).

Proof. The proof is the same as that of Lemma 3.3 and is omitted. �

Lemma 3.5. For any Φ ∈ SL (X), p ∈ (0, 1] and f ∈ S′L (X), there exists K ∈ N0 such
that MεK

L ,Φ f ∈ Lp(X, dµ) ∩ L∞(X, dµ) for 0 < ε ≤ 1.

Proof. By the definition of S′L (X), there exist k0,m0 ∈ N0 such that

|Φ(t2L ) f (y)| = |( f ,KΦ(t2L )(y, ·))| ≤ CP∗k0,m0
(KΦ(t2L )(y, ·)). (3.8)

Let M ∈ N0 be such that M ≥ max{m0 + n/2, n + 1}. Then, by (2.14) and (2.2),
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P∗k0,m0
(KΦ(t2L )(y, ·)) =

∑
0≤k≤k0

0≤m≤m0

sup
z∈X

(1 + d(z, x0))m|L k[KΦ(t2L )(y, ·)](z)|

≤ C
∑

0≤k≤k0

sup
z∈X

(1 + d(z, x0))m0 t−2k‖Φ‖(k+M)Dt,M(y, z)

≤ C
∑

0≤k≤k0

sup
z∈X

t−2k(1 + d(z, x0))m0

V(z, t)

(
1 +

d(y, z)
t

)−M+n/2

≤ C
∑

0≤k≤k0

sup
z∈X

t−2k(1 + d(z, x0))m0

V(z, t)

(
1 +

d(y, z)
t

)−m0

.

(3.9)

Note that if t ∈ (0, 1], then by (2.4) and the triangle inequality for the distance d,∑
0≤k≤k0

sup
z∈X

t−2k(1 + d(z, x0))m0

V(z, t)

(
1 +

d(y, z)
t

)−m0

≤ C sup
z∈X

t−(2k0+n)
(
1 +

d(z, x0)
t

)m0(
1 +

d(y, z)
t

)−m0

≤ Ct−(2k0+n)
(
1 +

d(y, x0)
t

)m0

≤ Ct−(2k0+n+m0)(1 + d(y, x0))m0 . (3.10)

If t ∈ (1, 1/ε], then from (2.3) and the triangle inequality for the distance d, it follows
that ∑

0≤k≤k0

sup
z∈X

t−2k(1 + d(z, x0))m0

V(z, t)

(
1 +

d(y, z)
t

)−m0

≤ Ct−ς(1 + d(z, x0))m0

(
1 +

d(y, z)
t

)−m0

≤ Ctm0−ς
(
1 +

d(z, x0)
t

)m0(
1 +

d(y, z)
t

)−m0

≤ Ctm0−ς
(
1 +

d(y, x0)
t

)m0

≤ Ctm0−ς(1 + d(y, x0))m0 . (3.11)

Also note that if t ∈ (0, 1] and K ≥ 2k0 + n + m0, then( t
t + ε

)K
t−(2k0+n+m0) ≤

( 1
t + ε

)2k0+n+m0

≤ ε−(2k0+n+m0), (3.12)

while if t ∈ (1, 1/ε), then, for any K ∈ N0,( t
t + ε

)K
tm0−ς ≤ t|m0−ς| ≤ ε−|m0−ς|. (3.13)

We now choose K ∈ N0 such that K ≥max{2k0 + n + m0, m0 + n/p}. Then from (3.8) to
(3.13) it follows that for any fixed ε ∈ (0, 1] and for all t ∈ (0, 1/ε],
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|Φ(t2L ) f (y)|
( t
t + ε

)K
(1 + εd(y, x0))−K ≤ |Φ(t2L ) f (y)|

( t
t + ε

)K
ε−K(1 + d(y, x0))−K

≤ C(1 + d(y, x0))−K+m0 ,

where the constant C depends on ε. Hence,

MεK
Φ,L f (x) ≤ C sup

0<t<1/ε
sup

y∈B(x,t)
(1 + d(y, x0))−K+m0

≤ C sup
0<t<1/ε

sup
y∈B(x,t)

(1 + d(x, x0))−K+m0 (1 + d(x, y))K−m0

≤ C(1 + d(x, x0))−(K−m0),

where the constant C depends on ε. Since p(K − m0) > n, it follows by (2.7) that
MεK

L ,Φ f ∈ Lp(X, dµ) ∩ L∞(X, dµ). �

We also need the following auxiliary function: if f ∈ S′L (X), Φ ∈ S(R+), K ∈ N0,
N ∈ N0 and 0 < ε ≤ 1, we set

M̃εK
L ,Φ f (x) = sup

0<t<1/ε
sup

y∈B(x,t)

(
sup

z∈B(y,t)

tα|Φ(t2L ) f (z) − Φ(t2L ) f (y)|
d(z, y)α

)
×

( t
t + ε

)K
(1 + εd(y, x0))−K ,

where α > 0 is the same constant as in (2.6).

Lemma 3.6. Suppose that Φ ∈ S(R+) with Φ(0) = 1. Then, for any N ∈ N0 and K ∈ N0,
there exists C > 0 such that for all f ∈ S′L (X), ε ∈ (0, 1] and x ∈ X,

M̃εK
L ,Φ f (x) ≤ CT εNK

L ,Φ f (x).

Proof. Fix K,N ∈ N0. By Lemma 3.1 and its proof, we can write

Φ(·) =

∫ 1

0
Θ(s)(·)Φ(s2·) f ds, (3.14)

where {Θ(s)}0≤s≤1 is a family of functions in S(R+) with the following property: for
any m ∈ N0, there exists a constant C (depending on Φ,m,N and K) such that

‖Θ(s)‖(m) ≤ CsN+K for all s ∈ [0, 1]. (3.15)

From (3.14), it follows that for all f ∈ S′L (X) and t ∈ (0,∞),

Φ(t2L ) f =

∫ 1

0
Θ(s)(t2L )Φ(s2t2L ) f ds, (3.16)

which holds pointwise and also in the sense of distributions in S′L (X). We fix m ∈ N0
such that m ≥ (3/2)n + N + K + 1 and fix arbitrary x ∈ X. Let t ∈ (0, 1/ε), y ∈ B(x, t)
and z ∈ B(y, t). By (3.15) and (2.13),

|KΘ(s)(t2L )(z,w) − KΘ(s)(t2L )(y,w)| ≤ CsN+K
(d(z, y)

t

)α
Dt,m(y,w).
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By this kernel estimate, (3.16) and (2.8), we can estimate as follows:

tα|Φ(t2L ) f (z) − Φ(t2L ) f (y)|
d(z, y)α

=
tα

d(z, y)α

∣∣∣∣∣∫
X

Φ(s2t2L ) f (w)KΘ(s)(t2L )(z,w) dµ(w)

−

∫
X

Φ(s2t2L ) f (w)KΘ(s)(t2L )(y,w) dµ(w)
∣∣∣∣∣

≤

∫ 1

0

∫
X

tα
∣∣∣Φ(s2t2L ) f (w)

∣∣∣ ∣∣∣KΘ(s)(t2L )(z,w) − KΘ(s)(t2L )(y,w)
∣∣∣

d(z, y)α
dµ(w) ds

.

∫ 1

0

∫
X

∣∣∣Φ(s2t2L ) f (w)
∣∣∣ sN+K Dt,m(y,w) dµ(w) ds

. T εNK
L ,Φ f (x)

∫ 1

0

∫
X

sN+K
(
1 +

d(x,w)
st

)N( st
st + ε

)−K

× (1 + ε d(w, x0))K Dt,m(y,w) dµ(w) ds

. T εNK
L ,Φ f (x)

( t
t + ε

)−K ∫
X

(
1 +

d(x,w)
t

)N
(1 + ε d(w, x0))K Dt,m(y,w) dµ(w)

. T εNK
L ,Φ f (x)

( t
t + ε

)−K ∫
X

(
1 +

d(x, y)
t

)N(
1 +

d(y,w)
t

)N

× (1 + ε d(w, x0))K Dt,m(y,w) dµ(w)

. T εNK
L ,Φ f (x)

( t
t + ε

)−K ∫
X

(1 + ε d(y, x0))K(1 + ε d(y,w))K Dt,m−N(y,w) dµ(w)

. T εNK
L ,Φ f (x)

( t
t + ε

)−K
(1 + εd(y, x0))K

∫
X

Dt,m−N−K(y,w) dµ(w)

. T εNK
L ,Φ f (x)

( t
t + ε

)−K
(1 + ε d(y, x0))K ,

where for the last inequality we used (2.8) and m − N − K > 3n/2. From this, the
desired inequality follows immediately. �

Now we are ready to give the proof of the main theorem.

Proof of Theorem 1.3. Clearly, (i)⇒ (ii)⇒ (iii) and ‖M0
L ,Φ

f ‖Lp(X,dµ) ≤ ‖ML ,Φ f ‖Lp(X,dµ)

≤ ‖Φ‖(Np)‖ML ,Np f ‖Lp(X,dµ) for all f ∈ S′L (X). Combining Lemmas 3.2 and 3.3, we see
that (ii)⇒ (i) and ‖ML ,Np f ‖Lp(X,dµ) . ‖ML ,Φ f ‖Lp(X,dµ). Hence, it remains to show that
(iii)⇒ (ii) and ‖ML ,Φ f ‖Lp(X,dµ) . ‖M0

L ,Φ f ‖Lp(X,dµ).
Suppose now that f ∈ S′L (X) is such that M0

L ,Φ f ∈ Lp(X, dµ). By Lemma 3.5,
we can choose K so large that MεK

L ,Φ f ∈ Lp(X, dµ) ∩ L∞(X, dµ) for 0 < ε ≤ 1.
Then, by Lemmas 3.4 and 3.6, we have M̃εK

L ,Φ f ∈ Lp(X, dµ) and ‖M̃εK
L ,Φ f ‖Lp(X,dµ) ≤

C1‖MεK
L ,Φ f ‖Lp(X,dµ), where C1 is independent of ε ∈ (0, 1]. Given ε ∈ (0, 1], we set

Ωε = {x ∈ X : M̃εK
L ,Φ f (x) ≤ C2MεK

L ,Φ f (x)},
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where C2 = 21/pC1. Note that∫
X

[MεK
L ,Φ f (x)]p dµ(x) ≤ 2

∫
Ωε

[MεK
L ,Φ f (x)]p dµ(x).

Indeed, this follows from∫
Ωc
ε

[MεK
L ,Φ f (x)]p dµ(x) ≤C−p

2

∫
Ωc
ε

[M̃εK
L ,Φ f (x)]p dµ(x) ≤ (C1/C2)p

∫
X

[MεK
L ,Φ f (x)]p dµ(x)

and (C1/C2)p = 1
2 .

We claim that for 0 < r < p, there exists C3 > 0, independent of ε, such that

MεK
L ,Φ f (x) ≤ C3{MHL([M0

L ,Φ f (·)]r)(x)}1/r for all x ∈ Ωε.

Once this claim is established, the required inequality ‖ML ,Φ f ‖Lp(X,dµ). ‖M0
L ,Φ

f ‖Lp(X,dµ)

will follow from the Hardy–Littlewood maximal theorem and the monotone
convergence theorem (see, for instance, [17, Ch. 3] and [12, Ch. 4] for details).

Let us now prove the claim. Fix any x ∈ Ωε. By the definition of MεK
L ,Φ f (x), there

exist y ∈ X and t > 0 such that d(y, x) < t < 1/ε and

|Φ(t2L ) f (y)|
( t
t + ε

)K
(1 + εd(y, x0))−K ≥

1
2

MεK
L ,Φ f (x). (3.17)

We fix such y and t. Then, by the definitions of M̃εK
L ,Φ f and Ωε,

sup
z∈B(y,t)

tα|Φ(t2L ) f (z) − Φ(t2L ) f (y)|
d(z, y)α

≤

( t
t + ε

)−K
(1 + εd(y, x0))K M̃εK

L ,Φ f (x)

≤ C2

( t
t + ε

)−K
(1 + εd(y, x0))K MεK

L ,Φ f (x)

≤ C3|Φ(t2L ) f (y)|, (3.18)

where C3 = 2C2. Let C4 ≥ max(1, (2C3)1/α). Then we note that

|Φ(t2L ) f (z)| ≥ 1
2 |Φ(t2L ) f (y)| for all z ∈ B(y, t/C4). (3.19)

Indeed, since d(z, y) < t/C4 < t, it follows from (3.18) that

|Φ(t2L ) f (z) − Φ(t2L ) f (y)| ≤ C3
d(z, y)α

tα
|Φ(t2L ) f (y)| ≤ C3C−α4 |Φ(t2L ) f (y)|

≤ 1
2 |Φ(t2L ) f (y)|,

which yields (3.19). Now (3.19) together with (3.17) gives that

|Φ(t2L ) f (z)| ≥ 1
4 MεK

L ,Φ f (x) for all z ∈ B(y, t/C4).

Also, since C4 ≥ 1 and d(y, x) < t, we have B(y, t/C4) ⊂ B(x, 2t). Therefore,
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MHL

(
[M0

L ,Φ f (·)]r
)
(x) ≥

1
V(x, 2t)

∫
B(x,2t)

[M0
L ,Φ f (z)]r dµ(z)

≥
1

V(x, 2t)

∫
B(x,2t)

|Φ(t2L ) f (z)|r dµ(z)

≥
V(y, t/C4)
V(x, 2t)

1
V(y, t/C4)

∫
B(y,t/C4)

|Φ(t2L ) f (z)|r dµ(z)

& [MεK
L ,Φ f (x)]r.

This establishes the claim and finishes the proof of Theorem 1.3. �

Acknowledgements
I would like to express my gratitude to my advisor, Professor Hitoshi Arai, for his

guidance and encouragement. I am also grateful to Professor Gérard Kerkyacharian
for explaining many details of his paper [16].

References
[1] P. Auscher, X. T. Duong and A. McIntosh, ‘Boundedness of Banach space valued singular integral

operators and Hardy spaces’, unpublished manuscript, 2004.
[2] P. Auscher, A. McIntosh and E. Russ, ‘Hardy spaces of differential forms on Riemannian

manifolds’, J. Geom. Anal. 18 (2008), 192–248.
[3] T. Coulhon, G. Kerkyacharian and P. Petrushev, ‘Heat kernel generated frames in the setting of

Dirichlet spaces’, J. Fourier Anal. Appl. 18 (2012), 995–1066.
[4] S. Dekel, G. Kerkyacharian, G. Kyriazis and P. Petrushevl, ‘Hardy spaces associated with

nonnegative self-adjoint operators’, Preprint, arXiv:1409.0424.
[5] X. T. Duong and L. Yan, ‘Duality of Hardy and BMO spaces associated with operators with heat

kernel bounds’, J. Amer. Math. Soc. 18 (2005), 943–973.
[6] X. T. Duong and L. Yan, ‘New function spaces of BMO type, the John–Nirenberg inequality,

interpolation, and applications’, Comm. Pure Appl. Math. 58 (2005), 1375–1420.
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329–356.

[8] J. Dziubański and M. Preisner, ‘On Riesz transforms characterization of H1 spaces associated with
some Schrödinger operators’, Potential Anal. 35 (2011), 39–50.
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potential satisfying reverse Hölder inequality’, Rev. Mat. Iberoam. 15 (1999), 279–296.
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