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Abstract

Results of theoretical calculations and experimental measurements of the equation of state (EOS) at extreme conditions are
discussed and applied to aluminum. It is pointed out that the available high pressure and temperature information covers a
broad range of the phase diagram, but only irregularly and, as a rule, is not thermodynamically complete; its generalization
can be done only in the form of a thermodynamically complete EOS. A multi-phase EOS model is presented, accounting
for solid, liquid, gas, and plasma states, as well as two-phase regions of melting and evaporation. The thermodynamic
properties of aluminum and its phase diagram are calculated with the use of this model. Theoretical calculations of
thermodynamic properties of the solid, liquid, and plasma phases, and of the critical point, are compared with results
of static and dynamic experiments. The analysis deals with thermodynamic properties of solid aluminum at T ¼ 0 and
298 K from different band-structure theories, static compression experiments in diamond anvil cells, and the
information obtained in isentropic-compression and shock-wave experiments. Thermodynamic data in the liquid state,
resulting from traditional thermophysical measurements, “exploding wire” experiments, and evaluations of the critical
point are presented. Numerous shock-wave experiments for aluminum have been done to measure shock adiabats of
crystal and porous samples, release isentropes, and sound speed in shocked metal. These data are analyzed in a self-
consistent manner together with all other available data at high pressure.

The model’s results are shown for the principal shock adiabat, the high-pressure melting and evaporation regions and the
critical point of aluminum. New experimental and theoretical data helped to improve the description of the high-pressure,
high-temperature aluminum liquid. The present EOS describes with high accuracy and reliability the complete set of
available information.
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1. INTRODUCTION

Equation of state (EOS) describes fundamental thermophy-
sical properties of matter. This information can only be
obtained by using sophisticated theoretical models or from
experiments (Al’tshuler, 1965; Bushman & Fortov, 1983;
Eliezer et al., 1986; Ross, 1985; Chisolm et al., 2003). The
EOS is of considerable interest for basic research and has
numerous important applications (Bushman et al., 1992,
1993; Fortov & Yakubov, 1999; Hoffmann et al., 2002, 2005;
Tahir et al., 2005b, 2007; Temporal et al., 2005), among them
also inertial confinement fusion (Peng et al., 2005; Danson
et al., 2005; Eliezer et al., 2007). High intensity heavy ion
beams as well as high power lasers and pulsed power dis-
charges are developing into an important tool for EOS exper-
iments (Danson et al., 2005; Jungwirth, 2005; Hoffmann
et al., 2005; Ray et al., 2006; Sasaki et al., 2006; Desai

et al., 2007). States of matter characterized by high-energy-
density occupy a broad region of the phase diagram, for
example, hot compressed matter, strongly coupled plasmas,
hot expanded liquid and quasi-ideal plasmas. Our knowledge
of these states is limited, because theoretical modeling is
complicated and experiments are difficult to perform.

Aluminum remains one of the most important metals for
mankind, being of wide use in industry and science. Its ther-
modynamic properties have been investigated in numerous
static and dynamic experiments and explored with the use
of modern theories as well.

Nevertheless, the EOS for aluminum is still a “hot”
problem in the physics of high energy densities. This fact
is explained by a long–time intrigue of the structural phase
transition at ’ 200 GPa, inferred from the non-monotonic
behavior of the shock adiabat. Other reasons are that proper-
ties of liquid aluminum at high pressures and temperatures
are not well-known and multi-phase EOSs for aluminum
have been developed in 1980 (Holian, 1986; Kerley, 1987;
Bushman et al., 1993).
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Fortunately, recent progress achieved in both experimental
and theoretical areas, i.e., Z-machine, diamond anvils, and
quantum molecular dynamic calculations, significantly clari-
fied these old problems. These advances motivated the
present reassessment and refinement of the multi-phase
EOS for aluminum.

It this work, an advanced multi-phase EOS for aluminum
is presented. The thermodynamically complete, temperature
EOS for metals is defined by the potential of free energy
describing the elastic contribution at T ¼ 0 K and the
thermal contribution by atoms and electrons. The EOS pro-
vides for a correct description of phase boundaries,
melting, and evaporation, as well as the effects of the first
and second ionization. The atomic thermal contribution in
the model is different in the solid and liquid states, while
the electron thermal contribution is identical.

To construct the EOS, the following information was used
at high pressure and high temperature: measurements of
isothermal compressibility in diamond anvil cells, isen-
tropic–compression experiments, data on sound velocity
and liquid metal density at atmospheric pressure, isobaric–
expansion measurements, data on the shock compressibility
of solid and porous samples in incident and reflected shock
waves, impedance measurements of shock compressibility
obtained by an underground nuclear explosion, data on the
isentropic expansion of shocked metals, calculations by the
Thomas–Fermi model and by quantum molecular dynamics
methods, numerous evaluations of the critical point.

New experimental and theoretical data helped to improve
the description of the high-pressure, high-temperature alumi-
num liquid. The present EOS describes with high accuracy
and reliability the complete set of available information.

2. EOS PROBLEM

EOS is a fundamental property of matter defining its thermo-
dynamic characteristics in a functional form like f (x, y, z) ¼
0, where x, y, z can be, for example, volume V, pressure P,
temperature T, or in the form of graphs or tables.
Well-known functional for EOSs include, for instance, the
Mie–Grüneisen EOS Grüneisen (1912)

P(V , E) ¼ Pc(V)þ g(V)
V

(E � Ec(V)), (1)

where the index c indicates the component at T ¼ 0 K; the
Birch (1968) potential

P(V) ¼ 3
2

BT (s7=3 � s5=3) 1� 3
4

(4� BP)(s2=3 � 1)

� �
, (2)

in which s ¼ V0/V, V0—specific volume at normal
conditions (P ¼ 1 bar, T ¼ 298 K), BT ¼ 2(@ P/@ ln
V )T —isothermal bulk compression modulus, BP ¼ @BT/
@P—its pressure derivative; and the Carnahan–Starling’s

approximation for the free energy of a system of “hard”
spheres (Carnahan & Starling, 1969)

FHS(V , T)
NkT

¼ 4h� 3h2

(1� h)2 , (3)

where N–amount of particles, k–Boltzmann’s constant, and
h–packing density. One can find examples of EOSs in
graphic or tabular form in compendia of shock wave data
(van Thiel, 1977; Marsh, 1980; Zhernokletov et al., 1996;
Trunin et al., 2001); these are EOSs of shock adiabats.

The current state of the problem of a theoretical description
of thermodynamic properties of matter at high pressures and
high temperatures is given in a set of publications (Zeldovich
& Raizer, 1966; Eliezer et al., 1986; Fortov & Yakubov,
1999; Bushman et al., 1993; Bushman & Fortov, 1983;
Ross, 1985, and references therein). In spite of the significant
progress achieved in predicting EOS information accurately
in solid, liquid, and plasma states with the use of the most
sophisticated “ab initio” computational approaches (classic
and quantum methods of self-consisted field, diagram tech-
nique, Monte-Carlo, and molecular dynamics methods), the
disadvantage of these theories is their regional character
(Eliezer et al., 1986; Fortov & Yakubov, 1999; Bushman
et al., 1993; Bushman & Fortov, 1983; Ross, 1985). The
range of applicability of each method is local and, rigorously
speaking, no single one of them provides for a correct theo-
retical calculation of thermodynamic properties of matter
on the whole phase plane from the cold crystal to the
liquid and hot plasmas (Bushman & Fortov, 1983; Eliezer
et al., 1986; Fortov & Yakubov, 1999). The principal
problem here is the need to account correctly for the strong
collective interparticle interaction in disordered media,
which presents special difficulties in the region occupied
by dense, disordered, nonideal plasmas (Bushman &
Fortov, 1983; Ross, 1985; Eliezer et al., 1986; Fortov &
Yakubov, 1999; Bushman et al., 1993).

In this case, experimental data at high pressures and high
temperatures are of particular significance, because they
serve as reference points for theories and semi-empirical
models. Data obtained with the use of dynamic methods
(see Zeldovich & Raizer, 1966; Bushman et al., 1993;
Fortov & Yakubov, 1999; McQueen et al., 1970; Avrorin
et al., 1990; Al’tshuler 1965; Duvall & Graham, 1977, and
references therein) are of the importance from the practical
point of view. Shock-wave methods permit to study a
broad range of the phase diagram from the compressed hot
condensed states to dense strongly coupled plasma and
quasi-gas states. Detailed presentations of shock-wave
methods to investigate high dynamic pressures can be
found in the literature (Zeldovich & Raizer, 1966;
Bushman et al., 1993; Fortov & Yakubov, 1999; Avrorin
et al., 1990, and reviews, Al’tshuler, 1965; Duvall &
Graham, 1977).
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Available experimental data on the shock compression of
solid and porous metals, as well as isentropic expansion,
covers nine orders of magnitude in pressure and four in
density. The first published shock-wave data were obtained
for metals in the megabar (1 Mbar ¼ 100 GPa) (Walsh
et al., 1957) and multimegabar (Al’tshuler et al., 1958a,
1958b) pressure range using explosive drivers. Higher press-
ures of 10 Mbar have been accessed by spherical cumulative
systems (Kormer et al., 1962; Al’tshuler et al., 1981) and by
underground nuclear explosions (Al’tshuler et al., 1968;
Trunin et al., 1969). Maximum pressures of 400 TPa
(Vladimirov et al., 1984) were also reported for aluminum
through the use of nuclear explosion. Note that data obtained
by impedance-matching techniques require the knowledge
of the EOS for a standard material. Previously a monotonic
approximation of the shock adiabat of lead between the
traditional region of pressures �10 Mbar to Thomas–
Fermi calculations (Kalitkin & Kuzmina, 1975) was used
for the standard (Al’tshuler et al., 1968; Trunin et al.,
1969). It seems that iron, for which absolute Hugoniot
measurements have been reported to pressures of 100 Mbar
(Trunin et al., 1992, 1993), is now the best etalon material.
Figure 1 shows modern progress achieved in measurements
of absolute shock compressibility with the use of traditional
explosive techniques and investigations of impedance in
experiments with concentrated energy fluxes like lasers and
underground nuclear explosions.

The extension of the phase diagram data to greater rela-
tive volumes, in comparison with the principal Hugoniot, is
achieved with shock compression of porous samples
(Zeldovich & Raizer, 1966). Nevertheless, difficulties in
fabricating highly porous targets and non-uniform material
response of the porous sample to shock loading imposes a
practical limit to the minimum density of a specimen.
The method of isentropic expansion of shocked matter,

depending on the magnitude of the shock pressure and,
consequently, the entropy provided, produces in one exper-
iment transitions from a hot metallic liquid shocked state,
to a strongly coupled plasma, then to a two-phase liquid-
gas region, and to a Boltzmann’s weakly ionized plasma,
and finally to a nearly ideal gas (Zeldovich & Raizer,
1966; Bushman et al., 1993; Fortov & Yakubov, 1999).

The available experimental and theoretical information is
shown in Figure 2 on a three-dimensional (3D), relative
volume-temperature-pressure surface calculated by a semi-
empirical multi-phase EOS (Bushman et al., 1993). It is
well illustrated that besides the shock compressibility,
measurements of release isentropes of shocked materials
are of especial importance. Such results traverse states in
the intermediate region between the solid state and gas,
occupied by a hot dense metallic liquid and strongly
coupled plasma (Bushman et al., 1993; Fortov & Yakubov,
1999), which is a region poorly described by theory.
Experimentally studied release isentropes for copper have
as initial high energy states solid, and melted, and
compressed liquid metal. The range of thermodynamic
parameters covered in the adiabatic expansion process for
these states is extremely wide (Fig. 2), covering five orders
of magnitude in pressure and two orders of magnitude in
density. It extends from a highly compressed metallic
liquid, characterized by a disordered arrangement of ions,
and degenerate electrons, to a quasi-nonideal Boltzmann
plasma and a rarefied metallic vapor. Upon expansion of
the system, the degree of degeneracy of the electronic subsys-
tem is decreased and a marked rearrangement of the energy
spectrum of atoms and ions occurs. A partial recombination
of the dense plasma also takes place. In the disordered

Fig. 1. The investigated pressure scale for the elements. Shown are
maximum pressures achieved using traditional explosive (gray region),
lasers, diamond-anvil-cell static measurements (black), and underground
nuclear explosions (points).

Fig. 2. Generalized 3D volume-temperature-pressure surface for copper in
the investigated region of the phase diagram. M–melting region; H1 and
Hp–principal and porous Hugoniots; DAC–diamond-anvil-cells data;
IEX–isobaric expansion data; S–release isentropes; R–boundary of two-
phase liquid-gas region with the critical point CP. Phase states of the
metal are also shown.
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electron system, a “metal-insulator” transition takes place and
a nonideal (with respect to different forms of interparticle
interactions) plasma is formed in the vicinity of the liquid-
vapor equilibrium curve and the critical point. Where the
isentropes enter the two-phase liquid-vapor region evapor-
ation occurs; on the gas-side condensation occurs (Avrorin
et al., 1990; Bushman et al., 1993; Fortov & Yakubov,
1999).

Note that typical shock-wave measurements allow deter-
mination of only caloric properties of matter, viz. the depen-
dence of the relative internal energy on pressure and volume
as E ¼ E(P, V ). The potential E(P, V ) is not complete in the
thermodynamic sense and a knowledge of temperature T or
entropy S is required for completing the thermodynamic
equations and calculating first and second derivatives, such
as the heat capacity, the sound velocity and others (Fortov
& Yakubov, 1999).

Only a few temperature measurements in shocked metals
are available (Yoo et al., 1993), as well as analogous
measurements in release isentropic waves (Avrorin et al.,
1990). This information is of great importance in view of a
limitation of purely theoretical calculation methods. From
this point of view, thermodynamically complete measure-
ments obtained with the use of the isobaric expansion
(IEX) technique (Gathers, 1986) are of a special significance.
In this method, metal is rapidly heated by a powerful pulsed
current, then expands into an atmosphere of an inertial gas
maintained at constant pressure. This data range in density
form solid to the critical point and intersect, therefore, the
release isentrope data for metals (see Fig. 2).

The region between principal shock adiabat and isotherm
can be accessed with use of the isentropic compression tech-
nique. This method allows one to obtain simultaneously high
pressure and high densities in the material under study. In
practice, the sample is loaded by a magnetically driven
impactor or by a sequence of reverberating shock waves in
a multi-step compression process.

The final conclusion is that shock-wave techniques allow
one to investigate material properties in very wide region of
the phase diagram—from compressed solid to hot dense
liquid, plasma, liquid-vapor, and quasi-gas states. Though
the resulting high pressure, high and temperature information
covers a broad range of the phase diagram, it has a hetero-
geneous character and, as a rule, is not complete from the
thermodynamic point of view. Its generalization can be done
only in the form of a thermodynamically complete EOS.

3. EOS MODEL

Wide-range EOS models for aluminum have been developed
since the 1960s (see, for example, Kormer et al., 1962;
Holian, 1986; Kerley, 1987; Bushman et al., 1992, 1993;
Young & Corey, 1995). The model described below presents
a modification of an existing EOS of Bushman et al. (1993).
Changes are in the thermal electrons and the cold com-
pression curve, which are from Bushman et al. (1992).

The EOS model is given by a thermodynamically com-
plete potential of free energy F in the traditional form

F(V , T) ¼ Fc(V)þ Fa(V ,T)þ Fe(V ,T), (4)

describing the elastic contribution at T ¼ 0 K (Fc), and the
heat contribution by atoms (Fa) and electrons (Fe).

3.1. Elastic Curve

The elastic energy for the solid phase is given in the form of a
series expansion of rc

21 � sc
1/3 (Kormer et al., 1962;

Bushman et al., 1992, 1993)

F(s)
c (V) ¼ 3V0c

X
i¼1,5

ai

i
(si=3

c � 1), (5)

where sc ¼ V0c/V, V0c–specific volume at P ¼ 0. Note that
Eq. (5) automatically provides for the normalizing condition
Fc

(s)(V0c) ¼ 0.
The conditions at sc ¼ 1 for the cold pressure Pc(V ) ¼

2dFc(V )/dV, bulk compression modulus Bc(V ) ¼
2VdPc(V )/dV, and its pressure derivative Bp(V ) ¼ dBc/dPc

define the cold curve at moderate compressions, which
together with Eq. (5) leads to the formulas

X
i¼1,5

ai ¼ 0, (6)

X
i¼1,5

ai
i

3
¼ B0c, (7)

2þ 1
B0c

X
i¼1,5

ai
i

3

� �2

¼ B p0: (8)

Here B0c and Bp0, together with the thermal contribution,
provide for tabular values of the isentropic bulk compression
modulus and its pressure derivative at normal conditions. By
minimizing the mean-square deviation from the
Thomas-Fermi cold pressure Pc

TFC (Kalitkin & Kuzmina,
1975) over N points in the interval of sc from 25 to 500,
together with the bounding equations (6)–(8), one can
define the Lagrangian problem of determining the
minimum of the functional form depending on x ¼ ai, l,
m, n

Y(x) ¼
X

n¼1,N

gn 1� Pc(ai, sn)
PTFC

c (sn)

� �2

þ l
X
i¼1,5

ai þ m B0c �
X
i¼1,5

ai
i

3

 !

þ n B p0 � 2� 1
B0c

X
i¼1,5

ai
i

3

� �2
 !

:

(9)
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Taking derivatives of Eq. (9) on ai, l, m, n one can obtain the
algebraic system of eight linear equations for eight values,
whose solution defines the coefficients ai.

The cold energy for the liquid in the compression region
(sc � 1) is given by Eq. (5), while in the rarefaction region
(sc , 1) it is represented as

F(l)
c (V) ¼ V0c Ac

sm
c

m
þ Bc

sn
c

n
þ Cc

sl
c

l

� �
þ Esub: (10)

The normalizing condition Fc
(l )(sc ¼ 0) ¼ Esub, where Esub

is the tabular value of the cohesion energy, leads to the
formula

Ac

m
þ Bn

n
þ Cc

l
þ Esub

V0c
¼ 0: (11)

The system of Eqs. (6)–(8) for a cold energy in the form of
Eq. (10) at sc¼1 results in

Ac þ Bc þ Cc ¼ 0, (12)

mAc þ nBc þ lCc ¼ B0c, (13)

m2Ac þ n2Bc þ l2Cc

B0c
þ 2 ¼ B p0: (14)

Here parameter m is usually � 1 (i.e., van der Waals); l is a
fitting parameter, defined from the best description of the
density and sound velocity data in the liquid phase. Other
parameters are found from Eqs. (11)–(14).

3.2. Thermal Contribution of Atoms

The atomic thermal contribution to the free energy of the
solid phase is defined by the high-temperature Debye
approximation formula:

F(s)
a (V , T) ¼ 3RTln

u(s)
c (V)
T

, (15)

where R is the gas constant. The characteristic temperature
uc

(s) is given by the empirical relation

u(s)
c (V) ¼ us

0s
2=3 exp

(g0s � 2=3)(B2
s þ D2

s )
Bs

�

arctan
xBs

B2
s þ Ds(xþ Ds)

� ��
,

(16)

where x ¼ lns. Constants Bs and Ds are found from the com-
pression dependence of the Grüneisen gamma g(V ) ¼
dlnu(V )/dlns. This information is obtained from shock-
wave and isentropic–compression data in the solid state.
The value of g0s is the tabulated value of the Grüneisen par-
ameter at ambient conditions, and the normalizing condition

for entropy S(V0, T ¼ 293 K) ¼ 0 defines the value of u0s.
Note that at high compression Eq. (16) provides for the
correct ideal-gas asymptote uc

(s) � s2/3.
The atomic thermal contribution to the free energy of the

liquid phase is represented as

F(l)
a (V , T) ¼ Ft(V , T)þ Fm(V , T): (17)

The first term accounts for anharmonic effects and the second
provides for a properly behaved melting curve.

In the liquid phase, the phonon contribution has a form sim-
ilar to Eq. (16) but with a volume- and temperature-dependent
heat capacity ca and a characteristic temperature u(l ):

Ft(V , T) ¼ ca(V , T) ln
u(l)(V , T)

T
: (18)

The heat capacity in the liquid phase is given by the
expression

ca(V , T) ¼ 3R

2
1þ sTa

(sþ sa)(T þ Ta)

� �
, (19)

describing a smooth variation from the value 3R close to the
lattice heat capacity to that of an ideal atomic gas, 3R/2.
Coefficients sa and Ta define the characteristic density and
temperature of this transition.

The variation of the characteristic temperature defines
the vibrational spectrum and reflects the gradual change
of the Grüneisen coefficient of the liquid phase from
values g(l ) � g(s), corresponding to condensed states, to
the ideal-gas value of 2/3 in the limit of high temperatures
and very low densities. Under these assumptions, the
characteristic temperature is given by the approximating
formula

u(l)(V , T) ¼ s2=3Tsa
Tcau

(l)
c (V)þ T

Tca þ T
, (20)

where the characteristic temperature in the liquid phase is
given in a form analogous to Eq. (16)

u(l)
c (V) ¼ ul

0 exp
(g0l � 2=3)(B2

l þ D2
l )

Bl

�

� arctan
xBl

B2
l þ Dl(xþ Dl)

� ��
:

(21)

The parameters in Eq. (21), Bl and Dl, are found from shock-
wave experiments for solid and porous samples, while the
constant u0

l is determined by equation uc
(l )(0) ¼ Tca.

The potential term Fm(V, T ) provides for correct values of
the entropy changes DS ¼ DSm0 and volume changes DV ¼
DVm0 on melting at ambient pressure, and disappears in the
gas phase. The contribution of Fm should also decrease
upon compression due to decreasing differences between
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the properties of the solid and liquid phases. These require-
ments are satisfied by the relation

Fm(V , T) ¼ 3R
2s2

mTm0

1þ s3
m

Cm þ
3Am

5
(s5=3

m � 1)

� ��

þ(Bm � Cm)TÞ,
(22)

where sm ¼ s/sm0 is the relative density of the liquid phase
on the melting curve. The constants Am, Bm, and Cm are
uniquely determined by the equilibrium conditions along
the melting curve at T ¼ Tm.

3.3. Thermal Contribution of Electrons

The electronic thermal contribution has an identical form for
the solid and liquid phases. It is given by

Fe(V , T) ¼ �ce(V , T)T ln 1þ Be(T)T
2cei(V , T)

s�ge(V , T)

� �
: (23)

It includes the generalized analog of the coefficient of the
electronic heat capacity Be:

Be(T) ¼ 2
T2

ð ðT

0
b(t)dt

� �
dT , (24)

the coefficient of the electronic heat capacity b:

b(T) ¼ bi þ b0 � bi þ bm
T

Tb

� �
exp (�T=Tb), (25)

the heat capacity of the electron gas cei

cei(V , T) ¼ 3R

2
Z þ

szsT2
z (1� Z)

(sþ sz)(T2 þ T2
z )

exp (�ti=T)

� �
, (26)

ti ¼ Ti exp (�si=s), (27)

and the analog of the electronic Grüneisen coefficient ge:

ge(V , T) ¼ gei þ ge0 � gei þ gm
T

Tg

� �

� exp � T

Tg
� (s� se)2

ssd

� �
:

(28)

Approximating dependencies are written in this manner to
satisfy primarily the asymptotic relations for the electron
gas free energy, namely expressions for the degenerate
electron gas Fe(V, T ) ¼2b0T2s2g0/2 at moderate tempera-
tures (T� TFermi) and expressions for an ideal electron gas
Fe(V, T ) ¼ 3RZ ln(s2/3T )/2 as T!1. Here Z is the
atomic number and R is the gas constant. The specific
forms given for the separate terms of Eq. (23) were chosen
to satisfy these requirements.

Eqs. (23)–(28) are written in a form which correctly rep-
resents the primary ionization effects in the plasma region
and the behavior of the partially ionized metal. Eq. (27) for
ti describes a decrease of the ionization potential as the
plasma density increases, and the constants sz and Tz

define, respectively, the characteristic density of the
“metal-insulator” transition and the temperature dependence
of the transition from a singly ionized gas to a plasma with
the ion–charge mean value Z.

3.4. EOS Construction Procedure

The set of Eqs. (4)–(28) fully defines the thermodynamic
potential for metals over the entire phase diagram for the
region of practical interest. Some coefficients in the EOS,
included in the analytical expressions, are constants charac-
teristic for each metal (atomic weight and charge, density at
normal conditions and other) and are obtained from tabulated
data. The rest serve as fitting parameters and their values are
found from the optimum description of the available exper-
imental and theoretical data, while providing for correct
asymptotes to calculations based on the Debye–Hückel
and Thomas–Fermi theories (Kalitkin & Kuzmina, 1975).
It should be emphasized that, even though the number of
coefficients in Eqs. (4)–(28) is large, most of them are
rigidly defined constants whose values are assigned expli-
citly or implicitly from the fulfillment of various thermodyn-
amic conditions at specific points on the phase diagram.
A few coefficients (about 10) serve to characterize the
densities and temperatures of transition from one typical
phase-plane region to another and are found empirically.
The tables in the appendix lists the parameters of the EOS
model given by Eqs. (4)–(28) along with the values for
aluminum.

The numerous experimental and theoretical data character-
izing the thermodynamic properties of metals for a wide
range of parameters, was used in determining the numerical
values of coefficients in the EOS, This procedure was carried
out with the aid of a specially developed computer program
using Eqs. (4)–(28) for thermodynamic calculations. At the
preliminary stage of calculations, some thermodynamic con-
stants known for each substance (such as normal density,
changes in density and entropy at the melting point under
normal pressure, cohesion energy, and the like) were used
by the program automatically for finding a number of other
uniquely defined coefficients (parameters of the cold curve,
melting curve, and so on). This further enables one, by
way of calculating algebraic or integral relations valid for
self-similar hydrodynamic flows, to perform calculations of
the kinematic characteristics measured experimentally at
high and ultrahigh pressures, namely, the incident and
reflected wave velocities and velocities in adiabatic expan-
sion waves (release isentropes), as well as to allow for
melting and evaporation effects. The range of action of
each fitting parameter that remains free is very localized, as
a result of which its value may be selected independently
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from a comparison of the calculations with available exper-
imental data.

The EOS was constructed using the following high
pressure, high temperature information: measurements of iso-
thermal compressibility in diamond anvil cells, data on sound
velocity and density in liquid metals at atmospheric pressure,
IEX measurements, data on the shock compressibility of
solid and porous samples in incident and reflected shock
waves, impedance measurements of shock compressibility
using an underground nuclear explosion, data on isentropic
expansion of shocked metals, calculations by quantum mol-
ecular dynamics (QMD), Debye–Hückel, and Thomas–
Fermi models, and evaluations of the critical point.

All of the experimental and theoretical data have a given
history of accuracy and reliability. The major problem in
EOS construction is to provide for a self-consistent and non-
contradictory description of the many kinds of available data.

4. THERMODYNAMIC PROPERTIES
OF ALUMINUM

This section presents the calculation results of the thermo-
dynamic properties and the phase diagram of aluminum.
This is done with the use of Eqs. (4)–(28). The resulting
dependencies are compared with the experimental data and
theoretical calculations that are most significant at high press-
ures and temperatures.

All data are presenting in graphs. Earlier results of
Al’tshuler et al. (1958a, 1958b, 1960a; McQueen et al.,
1970; van Thiel, 1977) have been revised several times.
The effects of impactor heating and an attenuation of the
shock in the window and specimen have been analyzed
(Al’tshuler & Chekin, 1984), and the corrections have been
applied based on new precise shock adiabats of reference
materials (Marsh, 1980; Zhernokletov et al., 1996; Trunin
et al., 2001). The experimental shock wave data in the
graphs correspond to the most recent reported values, for
which accounting have been made for all of these experimen-
tal factors.

The present EOS accounts for the theoretical and exper-
imental data published up to the middle of 2007. The par-
ameters of the liquid state have been changed strongly, in
comparison with the predecessor aluminum EOS of Busman
et al. (1993), to satisfy new high pressure Hugoniot data, iso-
thermal (Akahama et al., 2006) and isentropic compression
measurements (Davis, 2006) and the results of quantum mol-
ecular dynamic calculations (Desjarlais, personal communi-
cation) in the critical point region.

4.1. Crystal

Aluminum has an face-centered cubic (fcc) structure at room
pressure and temperature. The structural fcc hexagonal close
packed (hcp) phase transition at T ¼ 0 K has been predicted
by different theories (Voropinov et al., 1970; McMahan &
Moriarty, 1983; Lam & Cohen, 1983; Wentzcovich &

Law, 1991; Boettger & Trickey, 1996) to occur at pressures
of 120–360 GPa. According to (Greene et al., 1994) it
remains a simple solid to a pressure of 220 GPa under iso-
thermal compression in a diamond anvil cell, but in analo-
gous experiment (Akahama et al., 2006) at 217 GPa
aluminum transforms to hcp phase with a volume reduction
of 1%. Novel high-pressure data on isentropic compression
of aluminum (Davis, 2006), as well as the results of the
diamond anvil cell (DAC) experiment of (Greene et al.,
1994; Akahama et al., 2006), which are in the solid state
region, do not demonstrate dramatic changes in the thermo-
dynamic parameters. So the present EOS provides for a
monotonic compression curve.

A comparison of the cold curve, found using Eqs. (5)–(9),
with the results of band–structure calculations is shown in
Figure 3. It is seen that the elastic curve agrees with different
variants of Thomas–Fermi theory (Kalitkin & Kuzmina,
1975; Perrot, 1979), the augmented–plane wave (APW)
(McMahan & Ross, 1979), the self–consistent cell model
(Liberman, 1979), and the Hartree–Fock–Slater method
(Nikiforov et al., 1989), as well in all ranges of densities to
100-fold compression.

The room temperature isotherm to 12 GPa (Syassen &
Holzaphel, 1978), 220 GPa (Greene et al., 1994) and
333 GPa (Akahama et al., 2006) is drawn in Figure 4,
along with isentropic compression data (Davis, 2006)
obtained to 300 GPa. Figure 5 also contains theoretical iso-
therms calculated with the use of the pseudopotential
approach (Nellis et al., 1988) and the full-potential linearized
augmented plane wave method (Wang et al., 2000). The
compression curve for this EOS, which is an isentrope,
is also shown. Note that the difference between the com-
pression isentrope and isotherms, with T ¼ 0 and 298 K, in
this range of pressures of up to 340 GPa is negligible. The
overall agreement between this semi-empirical compression

Fig. 3. Pressure in aluminum at T ¼ 0 K. Nomenclature: line–EOS; points–
theories, 1–Thomas–Fermi model with corrections Kalitkin & Kuzmina
(1975), 2–self-consistent cell model Liberman, (1979), 3–APW McMahan
& Ross, (1979), 4–Thomas–Fermi model with gradient correction Perrot
(1979), 5–modified Hartree–Fock–Slater model Nikiforov et al. (1989).
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curve and theory and experiment is good and within the error
bars of the experimental data.

4.2. Melting

At room pressure, aluminum melts at T ¼ 933 K. The exper-
imental data (Hultrgen et al., 1973) at 1 bar are compared with
EOS calculations in Figure 5. Less dense liquid states, charac-
terized by higher values of enthalpy, have been measured in
an IEX experiment at 0.3 GPa (Gathers, 1983). The calculated
P ¼ 0.3 GPa isobar is also shown in this figure. Note that
these EOS isobars are clearly different, while data at
0.3 GPa (Gathers, 1983) correspond to the linear approxi-
mation of 1 bar measurements (Hultrgen et al., 1973). The

analysis of Figure 4 demonstrates the reliability of the devel-
oped EOS in this region of the phase diagram.

The high-pressure melting curve is plotted in the pressure-
temperature diagram of Figure 6. The extrapolation of static
DAC measurements (Boehler & Ross, 1997; Hanstrom &
Lazor, 2000) is in good agreement with the results of a
dynamic experiment (McQueen et al., 1984), according to
which aluminum melts under shock at a pressure of
110 GPa. The calculated melting line and shock adiabat
show good agreement with available data.

4.3. Dense Aluminum at High Pressure

In this section, let us discuss the results of shock-wave
measurements. Aluminum has been extensively investigated
in the past 50 years. Its principal Hugoniot has been measured
with the use of traditional high-explosive drivers to pressures
of 200 GPa (Al’tshuler et al., 1960a; McQueen et al., 1970;
Al’tshuler et al., 1981; Marsh, 1980). Light-gas guns allowed
one to obtain precise data to pressures of 210 GPa (Isbell
et al., 1968; Mitchell & Nellis, 1981). Much higher pressures
of 400 GPa were accessed with the use multi-layer cumulat-
ive explosive systems (Glushak et al., 1989) and pressures
of 990 GPa with the use of powerful hemi-spherical cum-
ulative drivers (Skidmore & Morris, 1962; Kormer et al,
1962; Al’tshuler & Chekin, 1984; Trunin, 1986; Trunin
et al., 1995a, 1995b). High-precision data up to 480 GPa
were measured in Z–pinch experiments (Knudson et al.,
2003), in which aluminum flyer plates were magnetically
accelerated to high velocities.

Extreme pressures in aluminum were generated with the
use of underground nuclear explosions. Maximum pressures
of 400 TPa were realized (Vladimirov et al., 1984), along
with the shock limit of compression ratio. One should
specially note that at higher pressures, the contribution of

Fig. 6. Aluminum melting at high pressures. Nomenclature: lines–EOS
calculations, M–melting, H1–shock adiabat; points–experiment, 1–
Jayaraman et al. (1963), 2–Hanstrom & Lazor (2000), 3–Boehler & Ross
(1997).

Fig. 5. Aluminum melting at 1 bar and at 0.3 GPa. Nomenclature: line–
EOS; points–experiment, 1–at 1 bar Hultrgen et al. (1973), 2–at 0.3 GPa
Gathers (1983).

Fig. 4. Pressure in solid aluminum. Nomenclature: line–EOS; points–
experiment, 1–DAC Syassen & Holzaphel (1978), 2–DAC Greene et al.
(1994), 4–isentropic compression Davis (2006), 6,7–DAC fcc and hcp
Akahama et al. (2006), and theory, 3–Nellis et al. (1988), 5–Wang et al.
(2000).
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radiation to the pressure and energy will be more significant
than the thermal contributions. So we may conclude that the
EOS limit for the aluminum shock adiabat has been
achieved. Absolute measurements of aluminum shock com-
pressibility were done at 0.9–3.2 TPa (Simonenko et al.,
1985). All other measurements are referred to as nuclear
impedance measurements (NIM), which are limited in the
accuracy with which a reference material is known. In
these works, aluminum’s compressibility was studied with
respect to different standard materials: quartz to pressures
of 0.27–2 TPa (Al’tshuler et al., 1977), molybdenum at
2.2–2.9 TPa (Ragan, 1982, 1984), and iron at 4.3–
28.9 TPa (Avrorin et al., 1986), 1.7 TPa (Podurets et al.,
1994), and 0.25–1.27 TPa (revision Trunin et al., 2001) of
data in Avrorin et al., 1987).

Because the structural fcc–hcp phase transition seemed to
have confirmed in shock wave experiments (Al’tshuler &
Bakanova, 1968; see data points Al’tshuler et al., 1960a;
Al’tshuler & Checkin, 1984; Skidmore & Morris, 1962;
Isbell et al., 1968; Trunin, 1986; Fig. 7), for some times, inves-
tigators used the “soft” shock adiabat at pressures greater than
200 GPa, taking into account this transition effect (see absol-
ute point Trunin (1986) and NIM data Al’tshuler et al. (1977);
Trunin et al. (1995b)). More recent high-pressure experiments
(Glushak et al., 1989), the revision Trunin et al. (2001) of data
in Avrorin et al. (1987), and, especially, precise measurements
(Knudson et al., 2003) and QMD calculations (Desjarlais, per-
sonal communication), demonstrate a “stiffer” behavior of the
aluminum principal Hugoniot. The present EOS describes
reliable shock wave data. At high pressure it has an intermedi-
ate position between the semi-empirical EOS of Kerley (1987)
and novel QMD results (Desjarlais, personal communication).

The calculated shock adiabat is also compared against exper-
imental data and theoretical Hugoniots at extreme pressures in
Figure 8. This region corresponds to NIM measurements
obtained with a highly reliable iron standard to pressures of
10 TPa. These data served to fit the thermal contribution of
electrons to the EOS.1

Figure 9 illustrates the phase diagram of aluminum in a
pressure–density. States of lower density in comparison
with the principal Hugoniot have been investigated by shock
compression of porous aluminum samples in the megabar
range of pressures (Kormer et al., 1962; Bakanova et al.,
1974; van Thiel, 1977; Trunin et al., 2001). The presence of
these data allows an accurate fit of the thermal contribution
of atoms to the EOS. The analysis of Figure 9 demonstrates
the reliability of the present EOS in regions of the phase
diagram which are far from the principal Hugoniot. Note
that the sound speed in shocked metal is also described with
high accuracy, see Figure 9a. Analogous agreement has also
been obtained after comparison with megabar–pressure data
on double and triple compression of aluminum in reflected
shock waves (Al’tshuler & Petrunin, 1961; Neal, 1976;
Nellis et al., 1988, 2003).

4.4. Aluminum at Lower Densities

The value of shock pressure or, more strictly, of entropy in
shocked materials, influences how far a material expands
with passage of a release wave. EOS calculations show that

Fig. 7. Aluminum shock adiabat. Nomenclature: lines–EOS calculations,
1–this work, 2–EOS Kerley (1987), 3–QMD Desjarlais, (2006); points–
experiment, 4–Isbell et al. (1968), 5–Al’tshuler et al. (1960a); Al’tshuler
& Chekin (1984), 6–Al’tshuler et al. (1981), 7–Al’tshuler et al. (1977),
8–Mitchell & Nellis (1981), 9–Kormer et al. (1962), 10–Volkov et al.
(1981), 11–Simonenko et al. (1985), 12–Glushak et al. (1989),
13–Trunin (1986), 14–revision Trunin et al. (2001) of data Avrorin et al.
(1987), 15–Knudson et al. (2003), 16–Skidmore & Morris (1962).

Fig. 8. Aluminum shock adiabat at extreme pressures. Nomenclature: lines–
EOS calculations, 1–this work, 2–EOS Kerley (1987), 3–QMD Desjarlais
(2006); points–experiment, 4–Kormer et al. (1962), 5–Al’tshuler et al.
(1960a); Al’tshuler & Chekin (1984), 6–Al’tshuler et al. (1977),
7–Mitchell & Nellis (1981), 8–Ragan (1982), 9–Ragan (1984),
10–Volkov et al. (1981), 11–Simonenko et al. (1985), 12–Avrorin et al.
(1986), 13–Glushak et al. (1989), 14–Podurets et al. (1994), 15–Trunin
et al. (1995a), 16–Knudson et al. (2003).

1

Numerous data from the compendium (March, 1980) (ca. 250 points) are
not shown in Figures. 7 and 8, because in this region to 120 GPa the shock
adiabat is well determined.
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nothing special happens with aluminum in adiabatic–
expansion experiments done in the range of shock pressures
from 8–200 GPa (Bakonova et al., 1983; Zhernokletov
et al., 1995). These data are shown in Figure 10. Here
initial Hugoniot states correspond to solid or melted alumi-
num. Final states of the release isentropes have been
measured under the condition of expansion into air.

Figure 11 illustrates the expansion process in which, accord-
ing to the present EOS, shocked aluminum is liquid. Again,

EOS calculations are compared against experimental isen-
tropes (Glushak et al., 1989; Knudson et al., 2005). At
higher pressure one can see from Figures 10 and 11 that the
calculated isentropes s15–s21 deviate from the experimental
data for expansion into air (Bakanova et al., 1983; Glushak
et al., 1989) in a non–systematic way. In contrast, the agree-
ment with isentropes s22–s31 expanded into aerogel
(Knudson et al., 2005) is very good, see Figure 11. Like isen-
tropes s1–s16 from Figure 10, all the isentropes s17–s31 show a
monotonic dependence at all investigated pressures.

All the release isentropes for aluminum s1–s31 from
experiments (Bakanova et al., 1983; Zhernokletov et al.,
1995; Glushak et al., 1989; Knudson et al., 2005) are

Fig. 10. Release isentropes of solid and melted aluminum. Nomenclature:
lines–EOS calculations, H1–principal Hugoniot, si–release isentropes;
points–experiment, 1–Bakanova et al. (1983), 2–Zhernokletov et al.
(1995).

Fig. 11. Release isentropes of liquid aluminum. Nomenclature: lines–EOS
calculations, H1–principal Hugoniot, si–release isentropes; points–
experiment, 1–expansion into air Glushak et al. (1989), 2–expansion into
aerogel Kundson et al. (2005).

Fig. 12. Pressure–entropy diagram for aluminum. Nomenclature: lines–
EOS calculations, H1–principal Hugoniot, M–melting region, R–liquid–
gas region with the critical point CP, si–release isentropes (see Figs. 10,
11); points–experiment, 1–Zhernokletov et al. (1995), 2–Bakanova et al.
(1983), 3–Glushak et al. (1989), 4–Knudson et al. (2005).

Fig. 9. Phase diagram of aluminum at high pressures. Nomenclature: lines–
EOS calculations, T–isotherms, M–melting region, m–shock adiabats of
porous samples (m ¼ r0/r00–porosity); points–experimental data,
1–Al’tshuler et al. (1981), 2–Kormer et al. (1962), 3–van Thiel (1977);
4–Al’tshuler et al. (1960a); Al’tshuler & Chekin (1984), 5–Bakanova et al.
(1974), 6–Mitchell & Nellis (1981), 7–Simonenko et al. (1985), 8–revision
Trunin et al. (2001) of original data Avrorin et al. (1987), 9–Trunin (1986),
10–Glushak et al. (1989), 11–Trunin et al. (1995a), 12–Trunin et al.
(2001), 13–Knudson et al. (2003). a) Sound speed in shocked aluminum.
Line–EOS, points-experiment, 1–Neal (1975), 2–Al’tshuler et al. (1960b),
3–McQueen et al. (1984), arrows indicate the melting region.
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presented in Figure 12. It is interesting to note, the positions
of these release isentropes in the phase space. In the
experiments of Bakonova et al. (1983) and Zhernokletov
et al. (1995), isentropes s1–s7 and s10–s12 are in the
solid state, isentropes s8 and s13 originate in the solid
state and end in the melting region, while the isentrope
s14 starts in the solid and ends in the liquid. Isentropes
s15–s16 are mainly in the liquid state. Higher shock press-
ures, and consequently higher entropies, achieved in the
experiments of Glushak et al. (1989) and Knudson et al.
(2005) result in all isentropes s17–s31 occupying a region
of the liquid state. The analysis of the position of the
two-phase liquid-gas region with respect to the shock
adiabat of air, see line R and points in Figure 12, shows
that aluminum does not and will not evaporate upon adia-
batic expansion from shocked states into air.

Density measurements at P ¼ 1 bar are available for solid
(Toloukian et al., 1975) and liquid (Lang, 1995) aluminum at
lower densities. Thermophysical properties of the liquid alumi-
num have been studied at P ¼ 0.3 GPa in an isobaric expansion
experiment (Gathers, 1983). EOS calculations are compared
against these data and different evaluations of the critical
point in Figure 13. This figure demonstrates that the present
EOS describes the experimental points with outstanding accu-
racy. The EOS parameters of the critical point, Pc¼

0.197 GPa, Tc ¼ 6250 K, and Vc ¼ 1.423 cm3/g, agree with
QEOS parameters Pc¼ 0.168 GPa, Tc¼ 5520 K (Young &
Corey, 1995) and are also very closely in density with the
other evaluations. This position of the critical point in the
present EOS provides for an accurate description of IEX data
(Gathers, 1983), see the 0.3 GPa isobar in Figure 13. The calcu-
lated evaporation temperature at room pressure, TV¼ 2770 K,
coincides with the tabulated value (Hultrgen et al., 1973).

EOS isotherms are compared with QMD calculations
(Desjarlais, personal communication) in Figure 14. The
EOS critical isotherm at T ¼ 6250 K describes the QMD
results very well; the density of the critical point is also
very close to the QMD result. The isotherm at T ¼
12000 K also shows good agreement with the QMD
calculations.

Experimental isochors of heated aluminum (Renaudin
et al., 2003) occupy the super critical domain on the phase
diagram. EOS isochors and the isochore 0.1 g/cm3 from
Saha plasma model (Gryaznov et al., 1998) are drawn in
Figure 15, together with experimental points. The compari-
son with other advanced theoretical models is also available
in the original work (Renaudin et al., 2003).

Fig. 15. Pressure–energy diagram of isochorically heated aluminum.
Nomenclature: lines–EOS calculations, points with bars–EPI experiment
Renaudin et al. (2003), open stars–Saha model Gryaznov et al. (1998)
(numbers near stars indicate ionization ratio).

Fig. 14. Pressure–density diagram of aluminum’s critical region.
Nomenclature: lines–EOS calculations, R–liquid–gas region with the criti-
cal point CP, T–isotherms; open circles–QMD calculations Desjarlais
(2006).

Fig. 13. Phase diagram of aluminum at lower densities. Nomenclature:
lines–EOS calculations, M–melting region, R–liquid-gas region with the
critical point CP, P–isobars, and L–density of liquid metal at 1 bar Lang
(1994–1995); points–experiment, 1–Toloukian et al. (1975), 2–Gathers
(1983), and evaluations of the critical points, 3–Gates & Thodos (1960),
4–Morris (1964), 5–Young & Alder (1971), 6–Fortov & Yakubov
(1999), 7–Gathers (1986), 8–this work, 9–Likalter (2002).
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Finally, the summary of all mentioned above experimental
data is given in 3D pressure–volume–temperature surface in
Figure 16. It is worth to underline good potential capabilities
of intense heavy ion beams for inducing high-energy-density
states in expanded aluminum. In this region of practical inter-
est and importance, we have today limited amount of a data
for testing and calibrating modern theoretical models.

5. CONCLUSION

New advanced studies of aluminum properties at extreme
conditions include experiments and theoretical calculations.
Experimental investigations of isothermal, shock and isentro-
pic compression of aluminum at high pressures up to
500 GPa have demonstrated behavior that results in a more
“stiff” compression curve and shock adiabat for aluminum
than was previously figured. Adiabatic-expansion measure-
ments of shocked aluminum have brought new accurate
data for the hot expanded liquid. Theoretical “ab initio”
QMD calculations in the vicinity of the critical point have
established the reference domain of thermodynamic data.

These data serve as a fundamental basis for the new multi-
phase EOS for aluminum presented in this paper. It accounts
for the high pressure, high temperature experimental, and
theoretical data that was available up to the middle of
2007. The compression curve and the principal Hugoniot
in the resulting EOS are fit to new data, as well as the critical
point. According to the EOS model, shocked aluminum
melts at 113 GPa and the parameters of the critical point
are: Pc ¼ 0.197 GPa, Tc ¼ 6250 K, and Vc ¼ 1.423 cm3/g.

The developed EOS describes with high accuracy and
reliability a broad range of the phase diagram, from the
high-pressure shocked metal to more dense states in reflected
shock waves and to regions of the phase diagram with much
lower densities accessed in the process of the adiabatic
expansion of shocked metal. The high accuracy suits this
EOS to be applied in advanced numerical modeling for
solving numerous problems in the physics of high energy
densities. The developed EOS together with QMD data pro-
vides for self-consisted description of both thermodynamic
and transport properties of aluminum.
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APPENDIX EOS data

These tables present EOS coefficients2 as well as calculations of isotherms and the principal shock adiabat.3 For more details,
such as units, see also section Nomenclature.

Table 1. EOS coefficients

EOS parameter Numerical value EOS parameter Numerical value EOS parameter Numerical value

R 0.930 Tg 300
Z 13 Tb 8 Tsa 6
a1 326.35 ge0 0.7 Tca 25
a2 21035.44 gm 20.50 u0s 0.1
a3 858.51 gei 0.4 g0s 2.19
a4 2160.59 se 1.0 Bs 0.7
a5 11.17 sd 9.99Eþ9 Ds 0.7
V0 0.3690 b0 0.0500 u0l 157
V0c 0.3614 bi 0.0242 g0l 1.78
Esub 12.1 bm 0.0 Bl 1.05
Ac 212.91 si 0.3 sm0 0.923
Bc 40.96 Ti 50 Tm0 0.933
Cc 228.05 sZ 0.8 Am 2.24
m 8.0 TZ 200 Bm 25.64
n 4.99 sa 0.14 Cm 0.21
l 0.70 Ta 30

Table 2. T ¼0 K Isotherm

Pc, GPa Vc, cc/g Ec, kJ/g cc, km/s

4.292E205 3.620E201 0.000Eþ00 5.432Eþ00
1.723Eþ01 3.105E201 3.889E201 6.776Eþ00
4.722Eþ01 2.663E201 1.738Eþ00 8.157Eþ00
9.657Eþ01 2.284E201 4.365Eþ00 9.599Eþ00
1.748Eþ02 1.959E201 8.649Eþ00 1.112Eþ01
2.955Eþ02 1.680E201 1.504Eþ01 1.272Eþ01
4.780Eþ02 1.441E201 2.409Eþ01 1.442Eþ01
7.490Eþ02 1.236E201 3.642Eþ01 1.622Eþ01
1.146Eþ03 1.060E201 5.278Eþ01 1.814Eþ01
1.722Eþ03 9.093E202 7.405Eþ01 2.017Eþ01
2.548Eþ03 7.799E202 1.012Eþ02 2.233Eþ01
3.723Eþ03 6.689E202 1.355Eþ02 2.461Eþ01
5.380Eþ03 5.737E202 1.781Eþ02 2.703Eþ01
7.702Eþ03 4.921E202 2.308Eþ02 2.958Eþ01
1.093Eþ04 4.221E202 2.951Eþ02 3.228Eþ01
1.541Eþ04 3.620E202 3.732Eþ02 3.512Eþ01
2.156Eþ04 3.105E202 4.672Eþ02 3.811Eþ01
2.999Eþ04 2.663E202 5.796Eþ02 4.125Eþ01
4.148Eþ04 2.284E202 7.134Eþ02 4.453Eþ01
5.705Eþ04 1.959E202 8.716Eþ02 4.798Eþ01

2

units of coefficients in this table correspond to initial units in the EOS,
Eequals;1 kJ/g, V¼1 cm3/g, T¼1000 K, so that, for example b0¼E/
T2¼1023 J/(gK2) and so on.

3

here in tables record 1.234E+05 means 1.234�10+05
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7.806Eþ04 1.680E202 1.058Eþ03 5.157Eþ01
1.063Eþ05 1.441E202 1.276Eþ03 5.532Eþ01
1.442Eþ05 1.236E202 1.530Eþ03 5.924Eþ01
1.946Eþ05 1.060E202 1.824Eþ03 6.331Eþ01
2.618Eþ05 9.093E203 2.165Eþ03 6.757Eþ01
3.508Eþ05 7.799E203 2.557Eþ03 7.201Eþ01
4.685Eþ05 6.689E203 3.007Eþ03 7.667Eþ01
6.240Eþ05 5.737E203 3.522Eþ03 8.158Eþ01
8.292Eþ05 4.921E203 4.109Eþ03 8.679Eþ01
1.100Eþ06 4.221E203 4.778Eþ03 9.239Eþ01
1.459Eþ06 3.620E203 5.538Eþ03 9.849Eþ01

Table 3. T ¼293 K Isotherm

P, GPa V, cc/g E, kJ/g H, kJ/g cT, km/s cS, km/s

2.916Eþ03 7.380E202 1.121Eþ02 3.273Eþ02 2.310Eþ01 2.310Eþ01
2.592Eþ03 7.738E202 1.023Eþ02 3.028Eþ02 2.240Eþ01 2.241Eþ01
2.301Eþ03 8.113E202 9.315Eþ01 2.798Eþ02 2.172Eþ01 2.173Eþ01
2.040Eþ03 8.506E202 8.464Eþ01 2.581Eþ02 2.106Eþ01 2.106Eþ01
1.806Eþ03 8.918E202 7.674Eþ01 2.378Eþ02 2.040Eþ01 2.041Eþ01
1.597Eþ03 9.351E202 6.941Eþ01 2.187Eþ02 1.976Eþ01 1.977Eþ01
1.410Eþ03 9.804E202 6.261Eþ01 2.009Eþ02 1.913Eþ01 1.913Eþ01
1.243Eþ03 1.028E201 5.633Eþ01 1.841Eþ02 1.851Eþ01 1.851Eþ01
1.094Eþ03 1.078E201 5.053Eþ01 1.684Eþ02 1.790Eþ01 1.791Eþ01
9.611Eþ02 1.130E201 4.519Eþ01 1.538Eþ02 1.730Eþ01 1.731Eþ01
8.427Eþ02 1.185E201 4.027Eþ01 1.401Eþ02 1.671Eþ01 1.672Eþ01
7.374Eþ02 1.242E201 3.575Eþ01 1.274Eþ02 1.614Eþ01 1.615Eþ01
6.438Eþ02 1.302E201 3.161Eþ01 1.155Eþ02 1.557Eþ01 1.558Eþ01
5.608Eþ02 1.366E201 2.783Eþ01 1.044Eþ02 1.502Eþ01 1.503Eþ01
4.872Eþ02 1.432E201 2.439Eþ01 9.414Eþ01 1.447Eþ01 1.448Eþ01
4.220Eþ02 1.501E201 2.125Eþ01 8.461Eþ01 1.393Eþ01 1.395Eþ01
3.645Eþ02 1.574E201 1.841Eþ01 7.577Eþ01 1.341Eþ01 1.342Eþ01
3.137Eþ02 1.650E201 1.584Eþ01 6.760Eþ01 1.289Eþ01 1.291Eþ01
2.689Eþ02 1.730E201 1.353Eþ01 6.006Eþ01 1.238Eþ01 1.240Eþ01
2.295Eþ02 1.814E201 1.146Eþ01 5.310Eþ01 1.189Eþ01 1.190Eþ01
1.950Eþ02 1.902E201 9.619Eþ00 4.670Eþ01 1.140Eþ01 1.142Eþ01
1.647Eþ02 1.994E201 7.982Eþ00 4.083Eþ01 1.092Eþ01 1.094Eþ01
1.383Eþ02 2.091E201 6.539Eþ00 3.545Eþ01 1.044Eþ01 1.047Eþ01
1.152Eþ02 2.192E201 5.276Eþ00 3.053Eþ01 9.977Eþ00 1.000Eþ01
9.514Eþ01 2.299E201 4.180Eþ00 2.605Eþ01 9.520Eþ00 9.550Eþ00
7.776Eþ01 2.410E201 3.239Eþ00 2.198Eþ01 9.069Eþ00 9.103Eþ00
6.274Eþ01 2.527E201 2.441Eþ00 1.829Eþ01 8.625Eþ00 8.663Eþ00
4.980Eþ01 2.649E201 1.775Eþ00 1.497Eþ01 8.187Eþ00 8.231Eþ00
3.870Eþ01 2.778E201 1.231Eþ00 1.198Eþ01 7.755Eþ00 7.806Eþ00
2.923Eþ01 2.912E201 7.980E201 9.311Eþ00 7.329Eþ00 7.387Eþ00
2.118Eþ01 3.053E201 4.675E201 6.935Eþ00 6.908Eþ00 6.975Eþ00
1.438Eþ01 3.201E201 2.305E201 4.835Eþ00 6.491Eþ00 6.568Eþ00
8.674Eþ00 3.357E201 7.877E202 2.990Eþ00 6.077Eþ00 6.168Eþ00
3.921Eþ00 3.519E201 4.372E203 1.384Eþ00 5.666Eþ00 5.772Eþ00
1.007E204 3.690E201 21.105E208 3.716E205 5.246Eþ00 5.369Eþ00
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Table 4. Principal Hugoniot (here T is in 1000 K)

P, GPa T, 1000 k V, cc/g S, J/(gk) E, kJ/g US, km/s uP, km/s

1.000E204 2.930E201 3.690E201 3.576E207 1.158E207 0.000Eþ00 0.000Eþ00
2.500Eþ00 3.130E201 3.581E201 1.137E203 1.358E202 5.592Eþ00 1.650E201
3.000Eþ00 3.170E201 3.561E201 1.940E203 1.930E202 5.633Eþ00 1.965E201
4.000Eþ00 3.251E201 3.523E201 4.333E203 3.339E202 5.715Eþ00 2.583E201
5.000Eþ00 3.333E201 3.487E201 7.733E203 5.070E202 5.794Eþ00 3.185E201
6.000Eþ00 3.420E201 3.453E201 1.255E202 7.113E202 5.871Eþ00 3.771E201
8.000Eþ00 3.604E201 3.389E201 2.602E202 1.202E201 6.020Eþ00 4.903E201
1.000Eþ01 3.807E201 3.332E201 4.490E202 1.792E201 6.164Eþ00 5.987E201
1.500Eþ01 4.413E201 3.207E201 1.133E201 3.626E201 6.500Eþ00 8.515E201
2.000Eþ01 5.174E201 3.103E201 2.046E201 5.871E201 6.811Eþ00 1.084Eþ00
2.500Eþ01 6.096E201 3.015E201 3.097E201 8.441E201 7.100Eþ00 1.299Eþ00
3.000Eþ01 7.177E201 2.938E201 4.212E201 1.127Eþ00 7.372Eþ00 1.502Eþ00
4.000Eþ01 9.790E201 2.812E201 6.445E201 1.757Eþ00 7.875Eþ00 1.874Eþ00
5.000Eþ01 1.295Eþ00 2.710E201 8.540E201 2.451Eþ00 8.334Eþ00 2.214Eþ00
6.000Eþ01 1.660Eþ00 2.625E201 1.044Eþ00 3.195Eþ00 8.758Eþ00 2.528Eþ00
8.000Eþ01 2.511Eþ00 2.491E201 1.369Eþ00 4.798Eþ00 9.530Eþ00 3.098Eþ00
1.000Eþ02 3.496Eþ00 2.387E201 1.634Eþ00 6.516Eþ00 1.022Eþ01 3.610Eþ00
1.126Eþ02 4.174Eþ00 2.332E201 1.778Eþ00 7.646Eþ00 1.063Eþ01 3.910Eþ00
1.500Eþ02 4.691Eþ00 2.206E201 2.191Eþ00 1.113Eþ01 1.173Eþ01 4.719Eþ00
1.779Eþ02 5.015Eþ00 2.128E201 2.498Eþ00 1.390Eþ01 1.245Eþ01 5.272Eþ00
2.000Eþ02 6.112Eþ00 2.070E201 2.715Eþ00 1.620Eþ01 1.296Eþ01 5.693Eþ00
2.500Eþ02 8.769Eþ00 1.960E201 3.118Eþ00 2.163Eþ01 1.403Eþ01 6.577Eþ00
3.000Eþ02 1.167Eþ01 1.873E201 3.438Eþ00 2.726Eþ01 1.499Eþ01 7.384Eþ00
4.000Eþ02 1.819Eþ01 1.742E201 3.926Eþ00 3.896Eþ01 1.672Eþ01 8.827Eþ00
5.000Eþ02 2.561Eþ01 1.648E201 4.289Eþ00 5.106Eþ01 1.826Eþ01 1.011Eþ01
6.000Eþ02 3.370Eþ01 1.576E201 4.575Eþ00 6.343Eþ01 1.966Eþ01 1.126Eþ01
8.000Eþ02 5.061Eþ01 1.470E201 5.008Eþ00 8.882Eþ01 2.215Eþ01 1.333Eþ01
1.000Eþ03 6.706Eþ01 1.391E201 5.334Eþ00 1.150Eþ02 2.434Eþ01 1.516Eþ01
1.500Eþ03 1.036Eþ02 1.255E201 5.935Eþ00 1.827Eþ02 2.896Eþ01 1.911Eþ01
2.000Eþ03 1.349Eþ02 1.164E201 6.391Eþ00 2.526Eþ02 3.284Eþ01 2.248Eþ01
2.500Eþ03 1.632Eþ02 1.100E201 6.772Eþ00 3.238Eþ02 3.625Eþ01 2.545Eþ01
3.000Eþ03 1.895Eþ02 1.052E201 7.106Eþ00 3.957Eþ02 3.935Eþ01 2.813Eþ01
4.000Eþ03 2.390Eþ02 9.873E202 7.679Eþ00 5.406Eþ02 4.489Eþ01 3.288Eþ01
5.000Eþ03 2.862Eþ02 9.481E202 8.165Eþ00 6.855Eþ02 4.983Eþ01 3.703Eþ01
6.000Eþ03 3.327Eþ02 9.252E202 8.590Eþ00 8.295Eþ02 5.436Eþ01 4.073Eþ01
8.000Eþ03 4.249Eþ02 9.102E202 9.313Eþ00 1.112Eþ03 6.260Eþ01 4.716Eþ01
1.000Eþ04 5.158Eþ02 9.182E202 9.913Eþ00 1.386Eþ03 7.009Eþ01 5.265Eþ01
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