A THEOREM ON NILPOTENCY IN NEAR-RINGS

by S. D. SCOTT

(Received 12th October 1976)

Throughout this paper a near-ring N will satisfy the distributive law $\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma$ for all α , β and γ in N. We shall also assume that $0\alpha = 0$ for all α in N. We prove the following theorem.

Theorem. Let N be a near-ring, M a right N-subgroup of N and R a right ideal of N. If M and R are nilpotent, then so is M + R.

Proof. We first show that there exists a finite sequence

$$N = T_0 \ge T_1 \ge T_2 \ge \cdots \ge T_k = \{0\}$$

of ideals of N, such that, $MT_i \subseteq T_{i+1}$ for i = 0, ..., k - 1.

Set $T_0 = N$. For i = 1, 2, ..., define $T_i = T(MT_{i-1})$, where $T(MT_{i-1})$ denotes the ideal of N generated by the subset MT_{i-1} of N. It follows from the definition of T_i that $MT_i \subseteq T_{i-1}$. Also $MT_i \subseteq T_i$, and thus $T_{i+1} = T(MT_i) \leq T_i$. It remains to prove that $T_k = \{0\}$ for some positive integer k. Take k to be the smallest integer such that $M^k = \{0\}$. If k = 1, then $MT_0 = \{0\} = T(MT_0) = T_1$ and the result follows. Assume $k \ge 2$ and let r be in $\{0, ..., k-1\}$. We shall show by induction on r that $M^{k-r}T_r = \{0\}$. Since $M^k N = \{0\}$, the statement is true for r = 0. If $M^{k-r+1}T_{r-1} = \{0\}$, then $M^{k-r}MT_{r-1} = \{0\}$ and $MT_{r-1} \subseteq (0: M^{k-r})$. But $(0: M^{k-r})$ is an ideal of N. Thus $T_r = T(MT^{r-1}) \le (0: M^{k-r})$ and $M^{k-r}T_r = \{0\}$. In particular we have $MT_{k-1} = \{0\}$ and $T(MT_{k-1}) = T_k = \{0\}$.

Now suppose that $N = A_0 \ge A_1 \ge \cdots \ge A_s = \{0\}$ is a finite sequence of ideals of N such that $MA_i \subseteq A_{i+1}$ for all *i* in $\{0, \ldots, s-1\}$. Assume further that *s* is minimal. We shall show by induction on *s* that M + R is nilpotent. If s = 1, then $MN \subseteq A_1 = \{0\}$. Hence

$$(M+R)(M+R) \subseteq (M+R)N \subseteq R.$$

If $R^k = \{0\}$ for some positive integer k, then

$$(M+R)^{2k} = [(M+R)^2]^k \subseteq R^k = \{0\}$$

and M + R is nilpotent. Suppose the theorem holds for s - 1. Now $(M + A_{s-1})/A_{s-1}$ and $(R + A_{s-1})/A_{s-1}$ are nilpotent in N/A_{s-1} . Also

$$(M + A_{s-1})/A_{s-1} \cdot A_i/A_{s-1} \subseteq (MA_i + A_{s-1})/A_{s-1} \subseteq (A_{i+1} + A_{s-1})/A_{s-1}$$

for $i = \{0, ..., s - 1\}$. Thus $(M + A_{s-1})/A_{s-1}$ has a finite sequence, as above, of length s - 1. Since

$$(M + R + A_{s-1})/A_{s-1} = (M + A_{s-1})/A_{s-1} + (R + A_{s-1})/A_{s-1},$$

87

S. D. SCOTT

we may assume that $(M + R + A_{s-1})/A_{s-1}$ is nilpotent in N/A_{s-1} . Thus there exists a positive integer p such that $(M + R)^p \subseteq A_{s-1}$. Now

$$(M+R)^{p+1} \subseteq (M+R)A_{s-1} \subseteq MA_{s-1} + R.$$

But $MA_{s-1} \subseteq A_s = \{0\}$ and thus $(M+R)^{p+1} \subseteq R$. Since $R^k = \{0\}$, it follows that $(M+R)^{(p+1)k} = \{0\}$. Hence M+R is nilpotent and the proof is complete.

Corollary. Let N be a near-ring. A finite sum of nilpotent right ideals of N is nilpotent.

For ideals the above corrollary is easily proved (see (1) or (2, Corollary 3.2)).

REFERENCES

(1) D. RAMAKOTAIAH, Theory of near-rings, (Ph.D. dissertation, Andhra University, 1968).

(2) D. RAMAKOTAIAH, Radicals for near-rings, Math. Z. 97 (1967), 45-56.

10 Beacon Ave., Campbells Bay, Auckland, New Zealand.