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Abstract

Conformal loop ensembles (CLEs) are random collections of loops in a simply connected domain,
whose laws are characterized by a natural conformal invariance property. The set of points not
surrounded by any loop is a canonical random connected fractal set — a random and conformally
invariant analog of the Sierpinski carpet or gasket.

In the present paper, we derive a direct relationship between the CLEs with simple loops (CLEκ
for κ ∈ (8/3, 4), whose loops are Schramm’s SLEκ -type curves) and the corresponding CLEs
with nonsimple loops (CLEκ ′ with κ ′ := 16/κ ∈ (4, 6), whose loops are SLEκ ′ -type curves). This
correspondence is the continuum analog of the Edwards–Sokal coupling between the q-state Potts
model and the associated FK random cluster model, and its generalization to noninteger q .

Like its discrete analog, our continuum correspondence has two directions. First, we show that
for each κ ∈ (8/3, 4), one can construct a variant of CLEκ as follows: start with an instance of
CLEκ ′ , then use a biased coin to independently color each CLEκ ′ loop in one of two colors, and
then consider the outer boundaries of the clusters of loops of a given color. Second, we show
how to interpret CLEκ ′ loops as interfaces of a continuum analog of critical Bernoulli percolation
within CLEκ carpets — this is the first construction of continuum percolation on a fractal planar
domain. It extends and generalizes the continuum percolation on open domains defined by SLE6

and CLE6.
These constructions allow us to prove several conjectures made by the second author and

provide new and perhaps surprising interpretations of the relationship between CLEs and the
Gaussian free field. Along the way, we obtain new results about generalized SLEκ(ρ) curves
for ρ < −2, such as their decomposition into collections of SLEκ -type ‘loops’ hanging off of
SLEκ ′ -type ‘trunks’, and vice versa (exchanging κ and κ ′). We also define a continuous family of
natural CLE variants called boundary conformal loop ensembles (BCLEs) that share some (but
not all) of the conformal symmetries that characterize CLEs, and that should be scaling limits of
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critical models with special boundary conditions. We extend the CLEκ /CLEκ ′ correspondence to a
BCLEκ /BCLEκ ′ correspondence that makes sense for the wider range κ ∈ (2, 4] and κ ′ ∈ [4, 8).
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1. Introduction

1.1. CLE background. Before describing the results and content of the
present paper, let us first recall some facts about the conformal loop ensembles
(CLEs), which will be our central object of study. CLEs are natural random
collections of planar loops that possess conformal invariance properties, and that
have been defined and studied in [55, 58]. The set of points not surrounded by
a CLE loop is a random closed connected fractal subset of the plane known as
either a CLE gasket or CLE carpet, depending on whether the loops intersect
each other. These sets are the natural random generalizations of deterministic
self-similar fractals, with simple built-in conformal symmetries. As we see, these
symmetries make it possible to perform analysis that is currently out of reach
for most deterministic fractals. CLEs arise in a number of settings (for instance
as conjectured or proven scaling limits of a number of lattice models, or as
level lines of random surfaces) and they are very closely and directly related
to Schramm’s SLE processes [49] and to the Gaussian free field (GFF).

One can view a CLE as a random collection of loops defined in the closed unit
disk (here, we consider loops modulo time reparameterization; note in particular
that a loop is not oriented). The law of this collection is invariant under any
Möbius transformation of the unit disk, which implies that CLE is well defined
in any simply connected domain D 6= C as the image of the CLE in the disk
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(a) (b)

Figure 1.1. (a) Simulation of a CLE4 carpet (due to David B. Wilson); the carpet,
in black, is a fractal set with zero Lebesgue measure. (b) Simulation of a non-
nested CLE6, the closure of the union of loops is the CLE6 gasket.

under any given conformal transformation from the unit disk into D. Each CLE
comes in two closely related versions: nested and non-nested. A non-nested CLE
is a random collection of loops in the (closed) unit disk with the property that
no loop surrounds another loop; once one has defined non-nested CLE, one may
construct an instance of nested CLE using an iteration procedure.

The family of CLEs is indexed by a parameter κ ∈ (8/3, 8); this notation
comes from the fact that the loops in a CLEκ are loop variants of SLEκ . Recall
that the Hausdorff dimension of an SLEκ curve is almost surely 1+(κ/8) [2, 47].
The Hausdorff dimension of the CLEκ carpets/gaskets is almost surely equal to
1 + (2/κ) + (3κ/32), as shown in [43, 45, 52]. Like SLEκ itself, CLEκ has
different properties depending on whether or not κ 6 4 (see Figure 1.1 for
two simulations – note that some of the simulations in this article are based
on discrete models which are only conjecturally related to CLE).

• When κ ∈ (8/3, 4], each loop in the CLEκ is a simple loop, and it does
not intersect either the boundary of the disk or any other loop in the CLE.
As mentioned above, if one removes the interiors of all the CLE loops, one
is left with a random closed and connected fractal carpet reminiscent of
the Sierpinski carpet. Note also that the knowledge of all of the loops of a
(non-nested) simple CLE encapsulates exactly the same information as the
knowledge of the carpet. These simple CLEs can be characterized by their
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conformal restriction axioms [58], which explains why they arise in many
different settings.

The present paper will not really directly deal with any discrete models, but
it is nevertheless useful to recall that simple CLEs are the conjectural scaling
limits of certain lattice models. The nested versions of the CLEκ conjecturally
correspond to the scaling limits of the so-called critical O(n) models, which
are natural models for random collections of loops within discrete lattices.
The three CLEκ’s for κ = 3, 10/3 and 4 have been respectively conjectured
to correspond to the scaling limits of critical Potts models for q = 2, 3 and 4.
The Potts model is a natural measure on colorings of the lattice using q colors;
to obtain loops, one considers the Potts models with monochromatic boundary
conditions and then looks at the loops that form the inner boundaries of the
outermost monochromatic cluster. It is worth emphasizing that except in the
special case q = 2 (which is the Ising model and corresponds also to the O(n)
model for n = 1) for which the scaling limit of single interfaces is now well
understood thanks the discrete analyticity features of the model (see [6] and
[8, 27, 60] or [61] for a survey), the Potts-CLE correspondence only describes
non-nested CLEκ . When q = 3, for example, the critical Potts model does not
describe a collection of loops that conjecturally correspond to nested CLEκ
(since in this case there are three colors of clusters, and the law of the set of
all cluster boundaries is expected to be more complicated). The present paper
will however provide insight into this.

In the critical case κ = 4, CLE4 is still a carpet but (roughly speaking) the
probability that two big holes get very close does not decay in a power-law
fashion anymore but much more slowly, which yields for instance the rather
frequent presence of ‘narrow bottlenecks’ between big holes. This explains
why, for the properties that we study in the present paper, CLE4 behaves
somewhat differently from the CLEκ with κ < 4.

• When κ ′ ∈ (4, 8), the loops are not simple anymore (see Figure 1.2), but
because each loop is not ‘self-crossing’ one can still define its interior and
its exterior. Also a loop can intersect the boundary of the disk and it can
intersect other loops (but they cannot cross). The complement of the union
of the interiors of all the loops is now a random gasket. It turns out that in this
case the information provided by the collection of outermost loops is richer
than that provided by the gasket (viewed simply as a closed set). This will
follow from the results of [40]. However, by a slight abuse of terminology, we
often use ‘CLE gasket’ also for the collection of outermost loops.

Each nonsimple CLE is conjectured to be the scaling limit of a critical
dependent percolation model called the critical FKq-random cluster model
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Figure 1.2. Sketch of the non-nested larger loops in a CLEκ ′ for κ ′ ∈ (4, 8).
Different loops have boundaries which are dashed/dotted/plain to differentiate
them from each other in the illustration.

for q = q(κ ′) ∈ (0, 4). In this setting, the loops of the nested CLEκ ′ will
alternatively correspond to inner or outer interfaces of FKq-clusters (that are
respectively the outer and inner interfaces of the dual clusters for the dual FKq-
model). This has been proved mathematically for κ ′ = 6 (this corresponds
to q = 1 which is ordinary critical percolation, see [4, 59, 61]) and for the
boundary-touching loops of CLE16/3 that corresponds to the special case q = 2
[26]. It has also been proved for FKq models on random planar maps for all
values of q ∈ (0, 4) in the so-called peanosphere topology [13, 57] for infinite
volume surfaces. See also [17, 19, 20, 35] for the corresponding results in the
finite volume setting and [18] for a strengthening of this topology.

It is natural in view of this FK framework to separate the loops of a nested
CLEκ ′ into the even and odd ones, depending on the parity of their nesting (all
outermost loops would be odd ones, the next level ones would be even, and
so on). If we work with ‘free boundary conditions’, the CLEκ ′ clusters will
correspond to the gasket that is squeezed inside an odd loop and outside of all
the even loops that it surrounds, and the ‘wired boundary conditions’ clusters
would be the complementary ones (the CLEκ ′ clusters correspond to the gasket
that is squeezed inside an even loop and outside of all the even loops that it
surrounds; the boundary of the domain would also count as an even loop here).

The limiting cases κ = 8/3 and κ = 8 respectively correspond to the empty
collection of loops and to the space-filling SLE8 loop (which has been shown to
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be the scaling limit of the Peano curve associated with the uniform spanning tree
[31], which can be viewed as the critical FKq-model for q = 0).

Let us mention that while CLEs do provide a description of the conjectural
full scaling limit of the discrete models that we have mentioned, which provides
one motivation to study them, other possible descriptions of these scaling limits
than via these interfaces do exist, via scaling limits of correlation functions or
other observables and conformal fields (see for instance in the case of the Ising
model [3, 5, 7, 12, 24] and the references therein).

1.2. Overview of our CLE duality results. The main purpose of the present
paper is to derive a direct coupling between CLEκ where κ ∈ (8/3, 4) and
CLEκ ′ where κ ′ = 16/κ ∈ (4, 6). We also sometimes refer to this coupling as
the CLEκ /CLEκ ′ duality. As we shall explain in the next section, the existence
of this coupling is not so surprising in view of the aforementioned facts that
for three values of κ , the CLEκ and CLEκ ′ are (conjectured) scaling limits of
critical discrete Potts models and FKq-models respectively (for q = 2, 3 and
4), and of the existence of a coupling (sometimes referred to as the Edwards–
Sokal coupling) between the q-Potts models and the FKq models in the discrete
setting (see [16] for more background on the random cluster model and this
coupling — see [14, 15] for the original papers on the coupling). In some sense,
we derive a continuous analog and generalizations of this coupling that works
for the continuum of values of κ . Several of our results had been conjectured in
the CLE paper [55].

1.2.1. From CLEκ ′ to CLEκ . Let us first describe how, starting from a CLEκ ′ ,
one can construct a CLEκ or variants of CLEκ .

The setup in this subsection is going to be the following. Fix any β ∈ [−1, 1],
and consider a nested CLEκ ′ for κ ′ ∈ (4, 8). For each CLEκ ′ cluster, one tosses an
independent coin to declare it to be colored in black or in white (with respective
probability (1− β)/2 and (1+ β)/2). Then, we will be interested in the clusters
of clusters that one obtains by agglomerating all CLEκ ′ clusters of the same color
that touch each other. Consider for instance all clusters of black CLEκ ′ clusters.
See Figure 1.3 for a sketch in the unit disk.

Let us describe here three type of results among those that we shall derive in
the present paper. All of them say in some ways that the outer boundaries of such
clusters of clusters form a variant of CLEκ .

• If we start with the exact setup described above, we can consider the ‘free
boundary’ definition of clusters and focus on those clusters of black clusters
that do touch the boundary. Then, the outer boundary of these clusters will be
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(a) (b)

Figure 1.3. From nested CLEκ ′ ((a) — only one second-layer loop and one third-
layer loop are drawn on top of the sketch of Figure 1.2) to a variant of CLEκ (b)
by considering percolation of loops (sketch).

formed of unions of interfaces with clusters of white clusters that also touch
the boundary. We see that for any choice of β, this collection of boundary-
touching interfaces will form a variant of CLEκ that we define and call a
boundary conformal loop ensemble (BCLEκ) (see Section 1.3.2 below and
Figure 1.4 — for each κ , there will be a one-parameter family of such BCLEκ
corresponding to the choice of β). Note that this BCLEκ cannot be exactly
a CLEκ because the clusters of clusters do touch the unit circle, while CLEκ
loops do not (and when κ ′ ∈ [6, 8) for which the previous statement is valid,
CLE16/κ ′ does not even exist). Note also that for this result, only the outermost
CLEκ ′ loops matter and that one could have started with a non-nested CLEκ ′ .
The precise statements are described in Section 7, after all the definitions of
these CLE variants have been properly laid out.

One very closely related result goes as follows. Consider a simple CLEκ ′ in
the upper half-plane, and toss an independent (not necessarily fair) coin for
each of the CLEκ ′ clusters just as before (and here again, it is actually in fact
enough to use a non-nested CLEκ ′). We then consider the union of all clusters
of black CLEκ ′ clusters that touch the positive half-line, and the union of all
clusters of white CLEκ ′ clusters that touch the negative half-line. It then turns
out that these two sets have a common boundary, which is a simple curve
from 0 to infinity in the closed half-plane. We describe precisely the law of
this interface as an SLEκ(ρ; κ − 6− ρ) curve for some value of ρ = ρ(κ ′, β),
which is a rather simple variant of the chordal SLEκ curve.
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(a) (b)

Figure 1.4. Percolation of CLE6 loops: (a) Critical bond percolation on a 1000×
1000 square grid, conformally mapped to D. Each cluster is colored according
to an independent and identically distributed label chosen uniformly in [0, 1].
(b) Cluster of clusters with label at most (respectively at least) 1/2 which is
connected to the boundary is colored in red (respectively blue). The interface
between the red and blue clusters is indicated in green and forms a BCLE.

• Let us now describe another result in the same direction, that can be viewed
as the exact scaling limit of the Edwards–Sokal correspondence. Here we start
with CLEκ ′ for κ ′ ∈ (4, 6) (we exclude this time the values κ ′ ∈ [6, 8)) and
it will be important to consider a nested version, and this time to look at
the wired way to define its clusters via the parity of the CLEκ ′ loops. With
this definition, the outermost cluster is a cluster that has the boundary of the
domain as its outside boundary and the first-level CLEκ ′ as its inside boundary.

We then color all these nested clusters in white or black with probability p or
1− p, except that we force the outside cluster to be white. We then look at the
law of the collection of all outermost black cluster boundaries. Theorem 7.10
will state that for each κ ′ ∈ (4, 6), there exists a value p(κ ′) ∈ (0, 1) such that
this collection is exactly a CLEκ for κ ∈ (8/3, 4). This is the exact continuous
analog of the construction of the q-state Potts model out of the corresponding
FKq model, where p plays here the role of 1/q .

Let us now list some consequences of these couplings: A first observation
is that it provides a new derivation of some basic properties of CLEκ carpets
(such as its Möbius invariance and the fact that the branching tree construction
of [55] does not depend of the chosen root of the tree) that does not rely on

https://doi.org/10.1017/fmp.2017.5 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2017.5


CLE percolations 9

the loop-soup construction of these CLEκ of [58] (up to now, this was the only
existing approach to these results).

A second feature is related to the scaling limit of discrete models. Given an
instance of the q-state Potts model, one can construct a two coloring by simply
dividing the q states into two parts and assigning each part one of the two colors.
The corresponding two-color model belongs to a more general family of models
(known as fuzzy Potts models in the literature, see for instance [21, 32]) that
can be constructed by starting with an instance of FKq percolation model and
then using independent and identically distributed biased coin tosses to assign
a color to each cluster. Clearly, it follows from our description of clusters of
CLEκ ′ clusters that (modulo some discrete considerations), if one has proved
that the scaling limit of a discrete FKq model is a CLEκ ′ , then one will be able
to deduce that the scaling limits of clusters of randomly colored FKq clusters
(the fuzzy Potts models) are given by the aforementioned variants of CLEκ for
κ = 16/κ ′ that we describe. This is for instance useful in the case of the Ising
model, as it is essentially known that the critical FKq=2 model (see [26] for
the boundary-touching loops) converges to CLE16/3 and the randomly colored
FKq=2 model for β = 0 is exactly the Ising model. Hence, this will make it
possible to deduce that the scaling limit of critical Ising model interfaces is
CLE3 from the fact that the scaling limit of the corresponding FKq=2 is CLE16/3

— see the upcoming paper [12]).
An interesting feature of our coupling is that the CLEκ variant that one

constructs by coloring CLEκ ′ clusters exhibits a certain special symmetry for
β = 0 (that is when one colors the clusters using a fair coin) that corresponds
to the fact that p(κ ′) = 1/2 only when κ ′ = 16/3. On the other hand, if the
scaling limit of the critical FKq=2 model is conformally invariant, it should
satisfy this special symmetry. Hence, one can conclude, based on our results
only and without reference to discrete observables, that the values κ ′ = 16/3
and κ = 3 are the only possible candidates for a conformally invariant scaling
limit for the critical FKq=2 and Ising models.

1.2.2. From CLEκ to CLEκ ′ . We now describe the converse coupling: Let us
first consider a simple CLEκ carpet for κ ∈ (8/3, 4), and let us try to list
properties that a ‘continuous conformally critical percolation interface within
the CLEκ carpet’ would have to satisfy. Intuitively, one can imagine that it traces
the outer boundary of what critical percolation clusters within the sparse CLEκ
carpet would be (see Section 2.3 for more details, Figure 1.5 for an illustration
and Figure 1.6 for a simulation). This would be a random curve within this carpet,
that would never be allowed to self-cross; it would bounce off its past trajectory
(just like nonsimple SLEs do) as well as each of the holes of the CLEκ carpet
(leaving always the holes on the left-hand side of the percolation curve, when
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(a) (b)

Figure 1.5. Sketch of CLEκ ′ percolation interfaces when β = −1 (a) and when
β = 0 (b).

(a) (b)

Figure 1.6. Percolation within CLE3: (a) Boundary-touching cluster of sites with
+ spin in an Ising model instance (black) — a.k.a. Ising carpet — on a 512×512
square grid with + boundary conditions together with Ising carpet holes (white)
conformally mapped to D. (b) Clusters of percolation performed on Ising carpet
incident to an arc of ∂D in yellow.

it is exploring the boundary of a cluster clockwise). Furthermore, it should be
local in the sense that it should feel the holes of the CLE only when it hits them.
Finally, we expect the joint law of the CLEκ and the percolation interface to be
conformally invariant.
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In general fractal deterministic carpets (for example, the Sierpinski carpet),
such continuous percolation interfaces (CPIs) should in principle exist, but
showing this seems out of reach of the current mathematical knowledge, as does
describing or even guessing the conjectural features (such as their dimension) of
these interfaces. However, the conformal invariance properties of CLE carpets
make things possible. We show that for each κ ∈ (8/3, 4), a random process
with the aforementioned properties does indeed exist in CLEκ and that its
distribution is unique. We describe it precisely in terms of SLEκ ′-type processes,
and more generally, we describe the corresponding collection of ‘all continuous
percolation clusters’ within a CLEκ carpet in terms of a CLEκ ′ . In this way, we
indeed interpret CLEκ ′’s in terms of ‘percolation clusters’ within the CLEκ as
is suggested by the corresponding relation between FKq-models and the Potts
models.

This construction can be generalized as follows. One first tosses an
independent coin for each CLEκ hole to decide whether it is closed or open
(with probability (1 + β)/2 and (1 − β)/2). This then changes of course the
connectivity rules within the CLEκ but it is then still possible to describe,
construct and characterize the corresponding ‘continuous percolation interface’
(this process would now leave the closed holes to its left and the open holes
on its right, when it is exploring the boundary of a cluster clockwise) in terms
of a variant of SLEκ that will depend on the parameter β. The case β = −1
is then exactly the previously described case, where all CLEκ holes are closed,
that is obstacles for the percolation within the CLE. Note that for general β,
one can choose the status of a CLEκ hole only once the percolation interfaces
does indeed hit it, which explains the relation to the so-called side-swapping
SLEκ(κ − 6) processes, that will be at the heart of our analysis.

In the subsequent paper [40], we shall prove that (when κ ∈ (8/3, 4)), these
percolation interfaces are indeed still random (when one conditions on the CLEκ)
for all choices of β ∈ [−1, 1]. This means that this percolation process captures
additional randomness that is located ‘inside’ the CLEκ carpet.

An important remark is that, just as in the discrete Edwards–Sokal
correspondence, if one constructs a CLEκ from a CLEκ ′ by looking at clusters
of CLEκ ′-clusters, and then looks at the conditional law of the CLEκ ′ clusters
given the obtained CLEκ carpet that one did construct, then one can interpret the
former as the critical percolation clusters in the latter. So both types of couplings
are in fact the same.

1.3. Other results and comments.

1.3.1. CLE4 percolation. In the special boundary case κ = 4, it turns out not
to be possible to define such CPIs within the CLE4 carpet, unless one uses the
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previous procedure with β = 0 (in other words, each hole will be closed or
open with probability 1/2). But when β = 0, there exists in fact a one-parameter
family of such CPIs. Another important difference is that these CPIs in the CLE4

turn out to be deterministic functions of the CLE4 carpet and of the status of
all its holes. One can interpret this as follows: When one colors the CLE4 loops
at random in black and white using fair coins, then there is a one-dimensional
family of rules to define clusters of black loops. The situation has therefore
similarities with the κ ′ > 4 case, where one agglomerates deterministically
CLEκ ′ loops of the same color that touch each other, but recall that the CLE4

loops are all disjoint so that the very existence of such a deterministic gluing
mechanism is quite surprising and intricate.

1.3.2. Boundary conformal loop ensembles. We define and study a natural
family of CLE variants that we call boundary conformal loop ensembles
(BCLEs) that share some (but not all) of the conformal symmetries that
characterize CLEs and that loosely speaking should describe the scaling
limit of critical models for a large class (actually a continuum) of boundary
conditions (there will be a one-parameter family of loop ensemble models called
BCLEκ(ρ)). These arise naturally when we study the CLE-variants that one
needs to properly describe the relation between variants of CLEκ and CLEκ ′ .
They are defined in a natural and elementary way via target-independent variants
of the SLEκ processes (that we denote by bSLEκ(ρ)), and they heuristically
correspond to the scaling limit of discrete models for a certain continuous family
of ‘constant’ boundary values. It is worthwhile noticing that while the definition
of CLEκ is restricted to κ ∈ (8/3, 8], these BCLEs make sense also (for some
values of ρ) in the range κ ∈ (2, 8/3].

1.3.3. SLEκ(ρ) processes with ρ < −2. The SLEκ(ρ) processes are an
important variant of SLE in which one keeps track of just one extra marked
point. These processes were first introduced in [30] and, just like SLE itself,
they appear naturally in many different contexts. Roughly, SLEκ(ρ) is defined
similarly to ordinary SLE except the driving process is described by a multiple
of a Bessel process (the unique continuous one-dimensional Markov processes
with the same scaling property as Brownian motion). These processes can be
defined in a natural and simple way for all values of ρ > −2 and the continuity
of the trace and couplings with the GFF in this case have been analyzed in [37].
However, it turns out that there are natural ways to generalize these SLEκ(ρ)
processes to some values of ρ 6−2, and that these generalized processes do play
an important role in many instances (such as in the present paper about CLE). In
the present article, we establish the continuity of the trace and couplings with the
GFF of certain generalized SLEκ(ρ), and we shed some light on the structure of
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these processes. When κ ∈ (0, 4] there are in fact two phases of process behavior
depending on whether ρ ∈ (−2− (κ/2), (κ/2)−4) or ρ ∈ ((κ/2)−4,−2). The
present work will focus on the former range, while the latter range will be the
focus of [36]. The two regimes differ in that in the former the process is ‘loop-
forming’ (and therefore related to loop ensembles) and the latter is where the
process can be constructed as a ‘light cone’ of angle-varying GFF flow lines.

The critical value ρ = (κ/2) − 4 is quite interesting because, as we show in
this paper, the law of its range is exactly equal to the law of the range of an
SLEκ ′(ρ ′) process with ρ ′ = (κ ′/2) − 4 but it visits the points of its range in a
different order.

The minimal value ρ = −2 − (κ/2) is also interesting because, as we show
later, these processes have exactly the same law as an SLEκ ′ process. More
precisely, it will follow from our results that as ε decreases to 0, the generalized
processes SLEκ(−2−(κ/2)+ε) do converge in a rather strong sense to an SLEκ ′ .
For instance, SLE8/3(−10/3) can be interpreted as an SLE6. (We remark that the
interpretation of SLE8/3(−10/3) as SLE6 was pointed out in [55, Section 4.5] by
considering a limit of SLEκ(κ − 6) as κ ↓ 8/3.)

Thus, for a fixed κ , as ρ increases from −2 − (κ/2) to (κ/2) − 4, we have a
family of random curves whose laws interpolate between that of an SLEκ ′ curve
and the law of a random curve which has the same range as an SLEκ ′-type curve
but visits the points of its range in a different order. The intermediate curves look
like SLEκ ′-type curves decorated with extra SLEκ-type loops. More details on
the definition of these processes will be given later in the paper. The generalized
SLEκ ′(ρ ′) processes with ρ ′ < −2 have a similarly interesting structure.

1.3.4. Further comments. A key role in the present paper will be played by
the coupling of some SLE processes with the GFF. Recall that as pointed out
in [34, 37], it is natural to couple some SLEκ processes with SLEκ ′ processes
by coupling each with the same instance of the GFF. This is also what we shall
be doing in the present work in the CLE context. The very rough idea of the
derivation of our CLEκ /CLEκ ′ duality results will go as follows: It is possible
to couple an SLEκ exploration tree started from a given point x ∈ ∂D with a
GFF in D with fairly simple boundary conditions but that depend on x . In this
coupling the branches of the SLEκ exploration tree then in turn define the CLEκ
collection of loops. (Mind that the dependence on the CLE with respect to the
choice of boundary point is quite delicate, except when κ = 4.) One can then
define, associated with the same choice of boundary point, the same GFF and the
same boundary data, an SLEκ ′ exploration tree that in turn will define a CLEκ ′ ,
and a careful analysis of the interaction and commutation relations between the
branches of these two trees will enable us to conclude. Here, as in the series of
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papers on imaginary geometry [34, 37–39], the concept of local sets of the GFF
as introduced in [51] (see also [48] for an earlier version of such ideas). Also, just
as in these imaginary geometry papers, while some of the commutation relations
that we use are very close to some cases established by Dubédat [9] for SLE
curves as long as they do not intersect, the GFF flow line framework will be
crucial to control the joint law and interaction between the coupled SLE curves
also when they touch each other.

In a sequel paper [42], we explain how to interpret the SLE fan defined in
[37] as the collection of all SLEκ(ρ) type curves from a point to another coupled
with a given GFF, in terms of this CLEκ ′ decomposition. This will give another
example (but still building on the present work) of how the FK/Potts coupling
is also intrinsically embedded in the GFF and directly related to imaginary
geometry concepts.

Let us stress that the duality type results between variants of CLEκ and CLEκ ′
that we derive here are of a rather different type from the duality results between
variants of SLEκ and variants of SLEκ ′ derived by [10, 34, 37, 64, 65], who were
viewing single SLEκ-type curves as outer boundaries of single SLEκ ′-type curves
(and did not mention any percolation of CLEκ or CLEκ ′ loops).

1.4. Outline of the paper. We conclude this introduction with a general
description of the structure of the paper: We start by recalling some background
and motivation, which leads to the definition of what we call ‘CPI’ in labeled
CLE carpets (this corresponds to the percolation in CLEκ for κ ∈ (8/3, 4]
question) in Section 2. We then spend some time in Section 3 discussing the
various definitions and generalizations of SLEκ(ρ) processes to some values
of ρ 6 −2. Then, mostly building on ideas related to conformal restriction
and CLE characterizations (in the spirit of [58]), we derive a description and
characterization of these CPI processes in Sections 4 and 5, but conditionally
on what looks like a rather technical but tricky assumption (roughly speaking,
the existence and continuity of the trace of certain SLEκ(ρ) processes) that
will be proved later in the paper. In the case κ = 4 which is the focus of
Section 5, one can prove everything though, building on existing results relating
the CLE4 to the GFF. We then turn our attention to the case of CLEκ ′ percolation:
After describing various aspects of the construction of CLEκ ′ , we again derive
a conditional result about CLEκ ′ percolation interfaces in Section 6, this time
conditionally on the existence and continuity of the trace of SLEκ ′(ρ)-type
processes (that will be proved later in the paper).

In Section 7, we define the BCLEs and derive some of their basic properties.
We are then ready to state precisely the general duality results (Theorems 7.2
and 7.4) between BCLEκ and BCLEκ ′ . These results prove all the assumptions
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that the conditional results of Sections 4, 5 and 6 were based on, turning them
into unconditional statements. They also imply the duality results that we have
described in the introduction and that are formally stated in Section 7.

The proofs of these two key theorems, based on the GFF imaginary geometry
couplings of various SLE curves, is then the goal of Sections 8 and 9: We
first recall some imaginary geometry background, and some of the results from
[34, 37–39] that are instrumental in the proof. In particular, we recall the
interaction rules between various flow and counterflow lines coupled with the
GFF (mostly derived in [37]), and the definition and basic features of the ‘space-
filling SLE’ that has been derived in [34]. We then use those to derive the
theorems in Section 9.

Finally, we conclude in Section 10 with some comments and outlook.

2. Heuristics and motivation from discrete models

In the following, we first provide some motivation, background, and a possible
natural interpretation for our subsequent study and results. We then define
axiomatically what we call ‘continuous percolation’ within CLE carpets.

2.1. Percolation in fractal carpets. It is possible (see [22, 28]) to study
models that can be viewed as percolation in deterministic self-similar fractals
such as the Sierpinski carpet, and to show the existence of a nontrivial phase
transition. Intuitively speaking, even though the fractal set has zero Lebesgue
measure (and a fractal dimension that is strictly smaller than 2), taking a
percolation parameter that on the discrete level is sufficiently close to one makes
it possible to create macroscopic connections within this sparse fractal domain.

One way to proceed is for instance to look at the infinite discrete connected
subgraph of the square lattice, where one has removed the larger and larger
squares at each scale (more precisely, consider the graph N × N, and remove
first all interiors of squares of the type SN , j,k = 3N ([3 j + 1, 3 j + 2] × [3k + 1,
3k + 2]) for non-negative integers j, k, N , and to see that with probability one,
percolation with parameter p on this graph has an infinite open cluster provided
p is chosen to be large enough. Furthermore, in this particular case, at the critical
value, one can show that there are macroscopic connections at each scale, but no
infinite cluster. This is like what classical Russo–Seymour–Welsh type results
yield for ordinary critical percolation in the plane: At whatever scale one looks at
the critical percolation picture, the existence of connections remains very much
random.

This suggests that there might exist a continuous object that could be
interpreted as the scaling limit of these critical percolation interfaces in the carpet.
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It would be the analog of SLE6 paths (the scaling limits of percolation interfaces
in the plane [4, 59]), but within this fractal set. It is also natural to conjecture
that it should satisfy a number of remarkable properties (target invariance, local
growth, some notion of scale invariance, or even conformal invariance).

In the case of SLE6, conformal invariance was the key property that enabled
Oded Schramm [49] to construct a candidate for this scaling limit directly in
the continuum via Loewner’s equation. In the present case, this feature seems
delicate to handle. Even though this exploration path would not ‘feel the holes in
the fractal set before hitting them,’ one has to keep track of their location in the
remaining-to-be-explored domain in order to describe its future evolution, and
this (conformally speaking) means to keep track of infinitely many parameters.
So, there does not seem to be a simple Loewner-growth way to describe it.

However, in the case where the fractal carpet is itself a random CLEκ for
κ ∈ (8/3, 4], the conditional distribution of the holes remaining to be discovered
by this exploration is easy to describe thanks to the CLE restriction property and
the locality property of the percolation path. As we shall see in the present paper,
this enables us to give a full understanding of the joint distribution of the CLEκ
with what can be interpreted as the percolation path in the CLEκ carpet.

Let us mention that these heuristic arguments are still valid for the following
variant of the model. Choose first an additional parameter p0 ∈ [0, 1], and decide
independently for each hole in the fractal carpet whether it is ‘completely open’
(with probability 1 − p0) or ‘completely closed’ (with probability p0). In the
discrete graph approach that we briefly described above, this would correspond
to open/close all the edges (or sites) that are located inside the squares SN , j,k . The
previously described case where all the holes are closed corresponds to p0 = 1,
whereas in some loose sense (this is best seen rigorously on some triangular site-
percolation analog) the case where all the holes are open, corresponds to a dual
version of the same problem. The value p0 = 1/2 is quite natural too in this
setting, as it induces a natural duality within the carpet between open and closed.
Hence, for each value of κ ∈ (8/3, 4] and p0 ∈ [0, 1], one could hope to obtain a
continuous critical percolation interface path in the CLEκ carpet, that leaves the
open holes it encounters to one of its sides (say to its left) and the closed ones to
its other side (that is its right).

2.2. FK clusters as critical percolation in Potts clusters. The standard
coupling between FK clusters for parameters (p, q) where q is a positive integer
and the corresponding q-state Potts model with parameter β = β(p, q) is usually
described as follows (and this is why Fortuin and Kasteleyn introduced the FK-
percolation model in the first place): First sample the FK-percolation model on
the edges of a given finite graph, then color independently each cluster with
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one of the q possible colors, and note that the obtained coloring of the sites of
the graph follows exactly the law of the Potts model. In other words, the Potts
clusters are obtained by randomly coloring clusters of the associated FK model.

This coupling has also a simple and classical reverse version: Sample first a
q-state Potts model coloring of the sites of a finite graph with parameter β. Then,
for each edge of the graph, if the two ends have different colors, declare the edge
closed, otherwise, toss a coin with probability p = p(β, q) to declare it open (or
closed). Then, the obtained configuration on edges follows exactly the (p, q)-FK
percolation distribution. In other words, one can view the FK-percolation clusters
as having been obtained by performing independent Bernoulli percolation in the
q-state Potts clusters (see, for example, [16] for background on FK-percolation
and the Potts model).

In the scaling limit, when q 6 4 and for a critical value pc = pc(q) (that
depends on the considered regular graph), the FK-percolation model should
behave randomly at every scale, and therefore the corresponding Potts model
should as well (when q = 2, 3, 4), and the FK clusters are strict subsets of the
Potts clusters. Furthermore, it is believed (and proved for many graphs in the
case q = 2) that the obtained pictures are conformally invariant in law. On top of
this, it is easy to note that these critical Potts-model clusters should be random
carpets that possess the properties that enable us to characterize axiomatically
CLE’s for κ ∈ (8/3, 4]. Loosely speaking, conditionally on its outside boundary,
the law of the inside holes of (the scaling limit) of a cluster of 1’s should be
distributed like a CLEκ in the domain delimited by this outer boundary.

Hence, this suggests that in the case where one considers a CLEκ for κ ∈
(8/3, 4] and p0 = 0, then the ‘continuous critical percolation interface’ in this
random carpet could describe the boundary of the scaling limit of a coupled FK-
percolation cluster, and therefore be related to the CLEκ ′ loop ensembles.

However, some care has to be given to the boundary conditions of the FK
models and the Potts models in order to make such statements more precise. For
instance, in the q-state Potts model, one would wish to take a Potts model with
monochromatic boundary conditions (say all boundary points have color 1) and
look at the carpet created by all 1-clusters that touch the boundary (the law of
the coloring inside holes would therefore be Potts models conditioned to have
‘only non-1’ colors on the boundary, and so forth.). This should correspond to a
CLEκ . The monochromatic boundary conditions for the FK model corresponds
to a wired boundary condition for the corresponding FK model, which does
not exactly correspond to a CLEκ ′ (the CLEκ ′ should rather correspond to the
contours of the dual FK clusters).

Figure 2.1 provides an illustration of the FK correspondence in the case of the
Ising model (that is, q = 2) and how it is then possible to explore successively
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(i) (ii)

Figure 2.1. Illustration of iterative discovery from the boundary of a critical
FKq=2 model with wired boundary conditions. (i) First exploring the outer
boundaries of the dual FK clusters that touch the boundary (or equivalently, all
interfaces that touch the boundary of the domain). (ii) Conditionally on this, the
boundary conditions in the remaining holes are wired and free depending on the
holes. In a hole with free boundary conditions, we discover the Ising clusters
of + (circles) that touch the boundary. In the remaining part inside this loop,
the boundary conditions are now given by − (squares), and correspond to wired
boundary conditions for FK.

portions of the FK pictures and of the associated Ising pictures. These should
give rise to variants of CLE3 and CLE16/3 in the scaling limit, with other types
of ‘boundary conditions’ — these will be the some of the ‘boundary CLEs’ that
we construct in the present paper.

Hence, this FK-Potts analogy heuristic suggests that a candidate for the critical
percolation paths within a CLEκ carpet for κ ∈ (8/3, 4] could be expressed in
terms of a CLEκ ′ coupled to it.

2.3. Continuous percolation interfaces within CLE carpets. The ideas
laid out in the previous subsections lead us to try to define directly in the
continuum and in abstract terms what a continuous conformally invariant
‘critical percolation interface’ within the CLEκ carpets for κ ∈ (8/3, 4] should
satisfy.

We first choose a parameter β ∈ [−1, 1] which we use as follows: When
β = −1 all the holes are closed, when β = 1, all the holes are open, and in
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general, we choose randomly and independently each hole to be open or closed
with respective probabilities p0 := (1 + β)/2 and 1 − p0 = (1 − β)/2. This
gives rise to a ‘labeled’ CLEκ that we call a CLEβκ . One way to represent the
open or closed status of a hole is to decide to respectively orient its boundary
counterclockwise or clockwise. A CLEβκ is then a random collection of oriented,
disjoint, and non-nested loops.

Suppose that Γ is such a CLEβκ in a simply connected planar domain D (with
D 6= C) and that it is coupled with a random continuous curve γ in D (in the
sense that D is the union of D with its prime ends) from one boundary point (or
prime end) x of D to another one y. We assume that almost surely:

(i) The curve γ is non-self-crossing (double points are nevertheless allowed).

(ii) The curve γ does not intersect the interior of any of the loops of Γ (but it
can touch the loops).

(iii) When γ intersects an counterclockwise (open) loop of Γ , it leaves it to its
right on its way from x to y. If the loop is clockwise (closed), it leaves it
to its left.

(iv) The joint law µ of the coupling (Γ, γ ) in D is invariant under any
conformal automorphism of D (which makes it possible to define it by
conformal invariance in any other simply connected proper subset of the
complex plane with two marked prime ends).

(v) Almost surely, for all t > 0, γ (0, t] ∩ D 6= ∅ (this loosely speaking means
that almost surely, γ does not start by sneaking along ∂D).

In the sequel, we call γ ∗t the set consisting of γ [0, t] together with all
the loops of Γ that it intersected, and let F ∗t be the σ -algebra generated by
((γ ∗s , γs) : s 6 t). We let D0

t the set obtained by removing from D the set γ ∗t
and all the interiors of the loops of Γ that have been discovered. One connected
component of D0

t that we denote by Dt has y on its boundary, and we define
x(t) to be the prime end in this domain corresponding to the point where γ is
currently growing; when at time t one discovers no CLE loop, then this is just
γ (t), and when at time t one discovers a CLE loop, then one has to choose x(t)
among the two prime ends corresponding to γt , depending on the label of this
loop. We also use the conformal map ϕt from this connected component Dt onto
D with x(t) mapped to x , y onto itself, and ϕt(z) ∼ z in the neighborhood of y.

DEFINITION 2.1. Suppose that, in addition to (i)–(v), we have for any (F ∗t )
stopping time τ that:
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(i) The conditional law of ϕτ (γ, Γ ) restricted to Dτ given F ∗τ is equal to the
joint law µ of the coupling (Γ, γ ).

(ii) The conditional law of Γ in the other connected components of D0
τ is

independently that of a labeled CLEβκ .

Then, we say that γ is a CPI in the labeled CLEβκ Γ .

As explained in the previous paragraphs, if a continuous path that could be
interpreted as the continuous analog of a critical percolation interface in a CLEβκ
exists at all, then one would expect it to be such a CPI. In the present paper, we
shall provide a characterization and description of CPIs in labeled CLEs. The
aforementioned relations between Potts and FK clusters (in particular that FK
clusters can be viewed as percolation clusters within Potts clusters) suggests that
when β = −1 or 1, the paths γ will turn out to be SLEκ ′-type curves that are
coupled to the CLEκ .

3. Classical and generalized SLEκ(ρ) processes

Let us now very briefly review some basic facts concerning the SLEκ(ρ)
processes that will be relevant to the present paper. These ideas have been
described in several previous papers and we therefore just give a brief overview.
We shall assume that the reader is familiar with Bessel processes (the standard
reference on this subject is [46, Ch. XI]).

3.1. Definition and characterization up to the swallowing time. The
SLEκ(ρ) processes were introduced in [30] as the natural generalization of SLE,
where one keeps track of an additional marked force point on the boundary of
the considered domain, which for simplicity we take to be H. Suppose first that
O0 < W0 on R, and that (K t , t < τ) is a Loewner chain in the upper half-plane,
started at W0 and stopped at its (possibly infinite) first swallowing time τ of O0

(that is, τ is the first time at which O0 ∈ Kτ ). We use here the parameterization
of Loewner chains by half-plane capacity (as is customary for chordal SLE)
and denote the driving function of the Loewner chain by Wt . With the usual
notation, we let (gt , t < τ) be the associated family of conformal maps and
define Ot = gt(O0).

For any time t < τ , we denote by Ft the conformal map from H \ K t

normalized so that Ft(O0) = 0, Ft(∞) = ∞, and where the tip of the Loewner
chain is mapped onto 1. In other words, Ft(z) = (gt(z)− Ot)/(Wt − Ot).

We say that the random Loewner chain satisfies the conformal Markov
property with the extra marked point O0 if for any stopping time σ < τ , the
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conditional distribution of the process (Fσ (Kσ+t), t < τ−σ) given its realization
up to time σ is always the same up to time reparameterization. It implies
immediately that in fact, the process (Z t := Wt − Ot , t < τ) is a multiple of
a Bessel process of some dimension δ up to its (possibly infinite if δ > 2) first
hitting time τ of 0. As we also know that necessarily, for all t < τ , ∂t Ot =−2/Z t ,
and therefore that

Wt = Z t − 2
∫ t

0

1
Zs

ds. (3.1)

This driving function fully characterizes these Loewner chains up to the first
swallowing time τ of the marked point. When Z is

√
κ times a Bessel process of

dimension δ, then one says that the chain is an SLEκ(ρ) where

δ = δ(κ, ρ) := 1+
2(ρ + 2)

κ
(3.2)

up to this stopping time τ . SLEκ(ρ) processes are therefore the only random
Loewner chain satisfying the conformal Markov property with one extra marked
point, at least up to the first swallowing time of this point.

When O0 > W0, then exactly the same analysis defines the SLEκ(ρ) processes
with marked point on the right. In this case, Z is simply −

√
κ times a Bessel

process of dimension δ.

3.2. Classical SLEκ(ρ) for ρ > −2. The next question is whether and how
one can define these Loewner chains after this swallowing time, that is, how one
can update the position of the marked point in an intrinsic way after the time
τ . An alternative and almost equivalent question is whether one can extend the
definition and characterization of SLEκ(ρ) when O0 = W0, and if so, how. This
turns out to be almost immediate when ρ > −2 that is when δ > 1. Indeed,
one can choose (Z t , t > 0) to be

√
κ times an instantaneously reflecting Bessel

process (recall that these reflected processes exist for all δ > 0), and to note
that for δ > 1, the integral

∫ t
0 ds/Zs is finite for all t (recall that this is not

true for δ 6 1), which in turn allows us to define the driving function W by
Wt := Z t − 2

∫ t
0 ds/Zs at all positive times as in (3.1).

Note that with this definition, the marked point always stays (conformally
speaking) to the left of the tip of the Loewner chain (that is, 0 6 Wt − Ot = Z t

at all times). It is then in particular possible to define SLEκ(ρ) from 0 to infinity
in H with marked point at 0−, and this process is scale-invariant.

We refer to such SLEκ(ρ) processes for ρ > −2 (defined for all positive times)
as the standard or classical SLEκ(ρ) processes, as opposed to the generalized
ones that we define next.
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It is also explained in [37] that the marked point then always corresponds to the
leftmost visited point by γ of the half-line to the left of O0. Also, each excursion
of the process Z away from 0 corresponds to an excursion of the SLEκ(ρ) path
away from the half-line to the left of O0. If δ > 2, equivalently ρ > κ/2 − 2,
then Z does not hit 0 and the SLEκ(ρ) does not hit this half-line.

Similarly, one can define also the classical SLEκ(ρ) from 0 to ∞ in H with
marked point at 0+ or at x ∈ (0,∞), which now lies on the right of the starting
point, by choosing Z to be −

√
κ times an instantaneously reflecting Bessel

process.
The continuity of the trace of ordinary SLE was proved by Rohde and

Schramm in [47]. By a Girsanov theorem [46] argument using absolute
continuity, it follows that the SLEκ(ρ) processes are continuous in the intervals
of time in which they are not hitting the boundary. In particular, they are
continuous for all ρ > κ/2 − 2. The continuity of all of the classical SLEκ(ρ)
processes was established using the GFF in [37].

We note that the coupling results of the SLEκ(ρ) processes with the GFF in
[37] only deal with classical SLEκ(ρ) processes. One of the outcomes of the
present paper will precisely be to shed some light on this coupling also in the
generalized cases that we describe next.

Let us summarize some of the special ranges of ρ values for classical SLEκ(ρ)
for ρ > −2. Here, ∂ will refer to the boundary half-line of ∂H between the
marked point and infinity that does not contain the origin:

• ρ ∈ (−2, κ/2−4]: The process fills ∂ . This phase is nonempty only for κ > 4.

• ρ ∈ (max(κ/2 − 4,−2), κ/2 − 2): The process hits ∂ , but it bounces off and
does not fill ∂ . This phase is nonempty for every positive value of κ .

• ρ > κ/2− 2: The process does not hit ∂ .

See Figure 3.1 for an illustration of the middle phase in the case κ > 4.

Figure 3.1. A sketch of SLEκ ′(ρ) for κ ′ > 4 and ρ ∈ (κ ′/2− 4, κ ′/2− 2).
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The processes SLEκ(κ−6) are special because this is the value of ρ for which
the law of the process does not depend on its target point (here which point is
chosen to correspond to infinity (see, for example, [9, 53]). We reexplain this in
the generalized setting.

3.3. Generalized SLEκ(ρ) processes. We now list the ways to generalize
these definitions in order to treat also the case where ρ 6 −2. As in the case of
classical SLEκ(ρ), the evolution of the chordal Loewner driving function W is
described by a pair (W, O). These processes, however, have a different character
than the classical SLEκ(ρ) processes in that the set {t : Wt = Ot} of collision
times of W and O does not coincide with the set of times in which the process
is swallowing a point on the domain boundary. The so-called trunk of such a
process is the set of points visited at a collision time. We show in this article that
for certain ranges of ρ values, the trunk of such processes can be understood as
a continuous curve. Moreover, the law of such a process can be sampled from by
first sampling a continuous SLE-type curve which corresponds to the trunk and
then sampling SLE-type loops which hang off the trunk. See Figure 3.2 for an
illustration of the general picture when κ 6 4.

In the next few paragraphs, we describe all the natural generalized SLEκ(ρ)
processes (with one marked boundary point) — which corresponds to the range
−2 > ρ > −2 − (κ/2). Note that ρ = −2 − (κ/2) corresponds to δ = 0. It
is however worth mentioning already that the results in the present paper will
provide insight into these processes only for ρ < (κ/2) − 4 (which means in
particular that κ > 2). As we shall see, this includes a number of important
cases, but there will still be a range of values of (κ, ρ) that is not treated here.

Figure 3.2. A sketch of the conjectural trunk and loops traced by SLE1
κ(ρ) (for

κ ∈ (0, 4) and ρ < −2). NB. It will follow from our results that the trunk looks
itself more like a (nonsimple) SLEκ ′ curve.
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This is the ‘light-cone regime’ (where max(−2 − (κ/2), (κ/2 − 4)) 6 ρ 6 −2
and κ ∈ (0, 4)) that will be studied in [36].

3.3.1. Symmetric side swapping. The first possible extension is to allow the
process to choose at random on which side the marked point is with respect to
the tip of the curve. In this case, Z takes on both positive and negative values
corresponding to when the marked point is to the left or to the right of the tip of
the curve.

The following side-swapping construction will work for all κ > 0 and ρ >
−(κ/2) − 2. One samples a multiple of a Bessel process of dimension δ as
in equation (3.2) and then modifies it to yield Z by tossing an independent fair
coin for each excursion of Z away from the origin in order to decide its sign.
Then, one makes sense of the integral of 1/Z up to a given time t (for instance,
by taking the limit when ε → 0 of the contribution to this integral of all Z -
excursions of length at least ε, and one sees that this converges thanks to the
cancelation induced by the random signs. The integral, in particular, converges
in the case that ρ 6−2 even though the integral of 1/|Z | blows up. As in the case
ρ > −2, one defines Wt := Z t − 2

∫ t
0 ds/Zs . We refer to the resulting Loewner

chain as a symmetric side-swapping SLEκ(ρ) process, or as the SLE0
κ(ρ) process.

This is a member of the family of side swapping SLEβκ (ρ) processes, β ∈ [−1, 1],
that we introduce in full generality just below.

Note that, as explained for instance in [63], the times at which the process Z
hits the origin does not necessarily correspond to times at which the Loewner
chain hits the real line (when κ ∈ (8/3, 4], one constructs exactly the CLEκ
loops in this way, and these loops do not touch the real line). Our construction of
SLEβκ (ρ) given later in this paper will shed further light on this.

3.3.2. Lévy compensation. There is another natural way to generalize SLEκ(ρ)
processes to values of ρ in (−κ/2 − 2,−2). Note that in this case, by (3.2), the
dimension δ of the corresponding Bessel process is in (0, 1). As opposed to
the construction explained in Section 3.3.1, this generalization does not work
for δ = 1, that is, for ρ = −2. It will also be the case that the marked point
always stays on the same side of the tip of the SLE, as in the case of the classical
SLEκ(ρ). The details of this construction are explained, for example, in [55, 63].
See also [46, Ch. XI] for a discussion of Bessel processes with δ ∈ (0, 1).

The starting point for the construction is a multiple of a non-negative Bessel
process Z of dimension δ as before, but one now overcomes the difficulty
that the integral

∫
ds/Zs can blow up (because δ 6 1) by adding add a

‘compensation/renormalization’ which serves to prevent the explosion of this
integral. The process Wt obtained in this way satisfies the SDE d Ot :=

d(Z t−Wt) = −2dt/Z t at all times where Z t 6= 0. We refer to the corresponding
process as the totally asymmetric generalized SLE1

κ(ρ) process.
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Similarly, if we take the symmetric image, that is starting with a negative
multiple of a non-negative Bessel process Z , we get what we call the totally
asymmetric generalized SLE−1

κ (ρ) process.
Note that when ρ > −2, no compensation is needed in these constructions

because in this case the 1/|Z | is integrable up to any fixed time. Consequently,
SLE−1

κ (ρ) and SLE1
κ(ρ) for ρ > −2 correspond to the classical SLEκ(ρ)

processes, with marked points on the right and on the left respectively.

3.3.3. Asymmetric side swapping. One can also interpolate between the
previous two constructions when ρ ∈ (−κ/2 − 2,−2), and allow the process
to choose at random on which side the marked point is with respect to the tip
of the curve, but with a biased coin. One chooses a parameter β ∈ [−1, 1],
and first modifies the multiple Z of a Bessel process by tossing an independent
coin for each excursion of Z away from 0 in order to decide its sign. The
sign of a given excursion is positive with probability (1 + β)/2 and negative
with probability (1 − β)/2. Then, one proceeds exactly as before (define Wt

using the same formula as above, and use a compensation in the case where
ρ < −2 to make sense of the integral of 1/Z ). The choice of the sign of the
excursion of Z decides whether the process tries to grow to the right of the
marked point or to its left when the tip and the marked point coincides. This
then defines a new Loewner chain: The SLEβκ (ρ) process. This definition indeed
interpolates between the previous symmetric (corresponding to β = 0) and
totally asymmetric cases (corresponding to β = ±1). For details about these
side-swapping SLEβκ (ρ) processes, we again refer to [55, 63].

3.3.4. The case ρ = −2. In the case where ρ = −2, the symmetric SLE0
κ(ρ)

definition works, but none of the asymmetric ones does. It is however possible
(and this extension is specific to this ρ = −2 case) to introduce an asymmetry
by introducing an additional drift in the driving process of the symmetric side-
swapping process, that is equal to µ times the local time at the origin of the
underlying Bessel process (which is in fact a Brownian motion because β = 0).
This gives rise to a process denoted by SLE0,µ

κ (−2). For details, we refer again
to [55, 63].

3.3.5. Characterization of SLEκ(ρ) processes. The following simple
conformal Markov characterization of the SLEβκ (ρ) processes will be useful
later on:

LEMMA 3.1. Suppose that we have a pair (W, O) of continuous processes with
W0 = O0 = 0 which together form a Markov process such that the following
conditions hold:
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• There exists ρ such that during the intervals in which W −O 6= 0, the process
|W − O| evolves as

√
κ times a Bessel process of dimension δ as in (3.2) and

d Ot = 2dt/(Ot −Wt).

• For each t > 0, if τ denotes the first time after t at which W − O hits 0, then
the conditional law of (Wτ+s − Wτ , Oτ+s − Oτ )s>0 given the information up
to the stopping time τ is equal to the (unconditional) law of (W, O).

• The process (W, O) satisfies Brownian scaling.

Then, if ρ 6= −2, there exists β ∈ [−1, 1] such that (W, O) generates an
SLEβκ (ρ) process, and if ρ = −2, there exists µ ∈ R such that (W, O) generates
an SLE0,µ

κ (−2).

Proof. When ρ 6= −2, the scale invariance of (W, O) implies that |W − O|/
√
κ

is a Bessel process of dimension δ that is instantaneously reflected at 0. The
strong Markov property at the stopping times τ implies readily that the signs of
the excursions that W − O makes away from 0 are independent and identically
distributed, so that W − O is distributed like the β-side-swapping process Z
described above. We then further define from this process Z = W − O the
continuous process Õt := 2

∫ t
0 ds/Zs defined in the previous generalized sense,

and we note that the first condition in the lemma implies that the continuous
process O− Õ is constant during the excursions of W −O away from 0, and the
last two properties imply readily that O = Õ at all times. The proof for ρ = −2
follows the same general lines.

3.4. Further discussion. In all these definitions of SLEκ(ρ) processes for
ρ >−2−(κ/2), it is possible to start with the marked point O0 equal to the origin.
Then, the trace of all these SLEκ(ρ) processes is scale-invariant in distribution
which makes it possible to define them in any other simply connected domain
by conformal invariance. These families of generalized SLEκ(ρ) processes
are important, as they form the only Loewner chains with continuous driving
functions that satisfy scale invariance and their Markovian property, see [55, 63]
and recall Lemma 3.1. This in turn makes it possible by conformal invariance to
define the corresponding SLEκ(ρ) targeting any given fixed point x on the real
line instead of infinity (as the image of the previous one by any given Möbius
transformation of the upper half-plane that fixes the origin and maps ∞ to x),
and more generally SLEκ(ρ) from one boundary point of a simply connected
domain to another.

One consequence of the characterization of the SLEκ(ρ) as the only processes
with the conformal Markov property with one additional marked point is that if
one considers an SLEκ from 0 to z ∈ R+ \{0}, and views it ‘parameterized’ from
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infinity, then it is in fact an SLEκ(ρ) from the origin to infinity, with marked
point at z (at least up to the time at which the SLE disconnects z from infinity)
for some ρ. A simple computation shows that this value is κ − 6 (see also [9,
53]; this can also be derived using the SLE/GFF coupling and the change of
coordinates rule [37]). This explains the following target-invariance property of
all the generalized SLEκ(κ − 6) processes that will play a very important role in
the present paper: When κ > 8/3 (so that κ − 6 > −2 − (κ/2)), the laws of a
given generalized SLEκ(κ − 6) targeting two different points z and z′ coincide
up to their first disconnection time of z from z′.

In the sequel, for κ ∈ (8/3, 8), we use the acronym bSLEβκ and bSLE0,µ
4 (for

‘branchable SLEκ’) for these generalized SLEκ(κ − 6) processes. Again, the
nature of these bSLE processes (and the corresponding bSLE tree that we now
discuss) will be quite different depending on whether κ > 4, κ = 4 and κ < 4
(because the SLEκ is then not a simple curve anymore when κ > 4, and also
because κ − 6 < −2 when κ < 4).

As explained in [55], the target-invariance property enables us to define for
each branching tree of these generalized bSLEκ processes a random collection
of loops as follows. When κ 6= 4 and β ∈ [−1, 1], choose a boundary point x
of D and from x launch a branching tree of bSLEβκ targeting any point in D.
Each point z of D will almost surely be surrounded by a loop corresponding to
an excursion of the Bessel process and created by the part of this branching tree
that targets z. Call γ (z) this first loop. We then consider the countably family of
loops surrounding say the points with rational coordinates.

It turns out that the law of this family depends only on κ , but neither the choice
of β (or of µ when one considers bSLE0,µ

4 instead of bSLEβκ ) nor of the choice
of x . This random collection of loops is called a CLEκ (it is sometimes referred
to as the branching tree definition of CLE).

To see that the law of the obtained loops does not depend on x is far from
trivial. In the case κ ′ ∈ (4, 8), this is stated in [55, Theorem 5.4] conditionally
on the reversibility and the continuity (that is the fact that it is generated by a
continuous curve) of bSLEκ , and these two facts have since then been derived
in [37–39]. In the case where κ ∈ (8/3, 4], prior to the present article, the only
existing proof builds on a different set of tools and techniques (in particular the
Brownian loop soup) for κ ∈ (8/3, 4] in [58]. As a consequence of our analysis
here, we obtain a new proof of this statement by reducing it to the reversibility
of SLE processes.

The fact that the law of the obtained collection of loops does not depend on
β (or µ) is explained in [63] in the case κ ∈ (8/3, 4], and we give some details
about the case κ > 4 in a few paragraphs. In fact, when κ 6= 4, a CLEκ loop
that is traced via the bSLEβκ branching tree is either traced counterclockwise or
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clockwise (loosely speaking, this corresponds to whether this loop corresponds
to a portion of the exploration where the marked point is on the left or
the right of the tip). For instance, all the loops traced by a bSLE1

κ will be
counterclockwise loops and all loops traced by a bSLE−1

κ will be clockwise loops.
The same argument shows that in fact, for this construction, the conditional law
of the orientations of these loops given the CLEκ is given by independent and
identically distributed (1 + β)/2 versus (1 − β)/2 coin tosses. This CLEκ with
independent and identically distributed orientations will be referred to as a CLEβκ
in this paper.

Another consequence of the characterization of SLEκ(ρ) processes as the only
chains with the conformal Markov property with one additional marked point
goes as follows:

Suppose that one considers an SLEκ(ρ) from one boundary point a to another
boundary point b with marked point at c (where a, b and c are different boundary
points of the simply connected domain D — we choose them here to be ordered
counterclockwise on ∂D, so this SLEκ(ρ) has its marked point on the left). Then,
up to the time at which the Loewner chain disconnects b from c, it satisfies
also the conformal Markov property with one additional marked point when one
swaps the role of b and c and views it as targeting c. It is therefore an SLEκ(ρ̃)
from a to c with marked point at b (therefore, on the right), and it is rather simple
to check that ρ̃ = κ − 6 − ρ (see for instance [9, 53]). Note that when ρ = 0,
then ρ̃ = κ − 6 which is no surprise given that in this case, this is the very same
question as the previous one. When one now introduces a fourth boundary point
d located in the arc from b to c in ∂D that does not contain a, one can also
view the SLEκ(ρ) from a to b with marked point at c from there. One way to
describe it is via the SLEκ(ρ1; ρ2) processes with two marked points — it is an
SLEκ(ρ; κ − 6 − ρ) process from a to d with marked points at b and c (here ρ
corresponds to the marked point on the left, which is c, and 6−κ−ρ corresponds
to the marked point on the right, which is b). Clearly, d plays no role in the law
of this chain: The SLEκ(ρ; κ−6−ρ) process is therefore target-invariant. These
processes will be important in our definition of BCLEs.

3.5. Further remarks on exploration trees and side-swapping. Let us now
make a few further remarks about the case in which ρ > −2 but where one is
using the β-side-swapping construction.

In this case, let us recall that the construction of SLEβκ (ρ) is very direct.
One starts with the multiple of a Bessel process with dimension δ > 1 and
one chooses at random and independently for each excursion away from the
origin, whether it is positive or negative, using a (1 + β)/2-coin. Then, as
the integrals

∫ t
0 ds/Zs are absolutely convergent, there is no problem to define

Wt = Z t − 2
∫ t

0 ds/Zs and the corresponding Loewner chain.
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Suppose now that for each positive ε, we have a way that is measurable with
respect to the filtration generated by the Poisson point process of excursions in
order to decide whether the excursion of Z is going to be forced to be positive
or whether one uses a coin toss (here we are allowed use information about this
excursion in order to decide this), then we can define another driving function
W ε in the very same way. A typical example is for instance to only toss a coin
for the excursions of Z of time length at least ε and to decide that all others are
positive. We also describe another useful cut-off procedure based on the diameter
of completed SLEκ loops later on. Then, as ε → 0, the process W ε converges
almost surely (provided the scheme is consistent as ε → 0) and uniformly on
any compact time interval to W .

This type of argument will for instance be useful in the case of bSLEβκ ′
processes for κ ′ > 4. It follows in particular readily that for such a process started
at the origin, for any given x < 0 < y, the probability that the ε-approximation
of the bSLEβκ ′ disconnects x from infinity before disconnecting y from infinity
does tend to the probability that the actual bSLEβκ ′ does disconnect x from infinity
before y.

The bSLEκ process has a very simple radial version: If we are given a point z
in H, we can first follow a bSLEκ (from 0 to∞) up to the first time at which it
disconnects z from∞, and at this point, instead of continuing in the connected
component of the complement that contains infinity, one continues using a
bSLEκ targeting a boundary point of the connected component that contains
z (here one can choose this boundary point a little before the disconnection
time, and use the target invariance), and so on. This is the radial bSLEκ process
from 0 to z. Again, when ρ > −2, there is no difficulty in defining the side-
swapping version of these radial processes (and in fact, also for all generalized
ones as well). The observation about cut-offs that we have just made in the
previous paragraph can be easily generalized to this radial case. This will play
an instrumental role in the proof of Proposition 6.1.

Notation warning. In the sequel, as in the introduction, we often have to treat
separately the cases κ 6 4 and κ > 4. When this is the case, we specify at the
beginning of the (sub)section the range of values under consideration and we
use the notation κ 6 4 and κ ′ = 16/κ > 4. However, we also occasionally (as
in this past section for instance) want to make statements that are valid in the
entire range (2, 8) or in the range (8/3, 8). In this case, we use the symbol κ and
emphasize that those statements are valid for some values of κ greater than 4.

4. Conformal percolation in CLEβ
κ carpets for κ < 4

In the present section and the next one, we restrict ourselves to the CLEκ
carpets. We first focus on the case where κ ∈ (8/3, 4), and we study the special
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(a) (b)

Figure 4.1. If the CPI in CLEβκ exists then it is a trunk of a bSLEβκ . (a) Sketch
for β = −1. (b) Sketch for β = 0.

case where κ = 4 in the next section. Some of the arguments that we give in the
present section will also be valid for κ = 4.

We mostly use here the definition of CLE carpets via the aforementioned
exploration tree [55] (see for example [63] for more aspects of the SLE tree
construction). Recall that because bSLEκ is an SLEκ(ρ) with ρ = κ−6 which is
smaller than−2, this process involves side-swapping and/or Lévy compensation.
It is known that the bSLEβκ is a random Loewner chain from 0 to infinity (if
one chooses the target point to be∞ in the upper half-plane) that traces simple
disjoint loops (that also do not touch the real line — the derivation of the fact that
these are proper loops follows from the loop-soup construction) on the way (and
these loops correspond to the excursions of the corresponding Bessel process
in the branching SLE construction). So, the intuitive structure is that one has
proper loops hanging off a ‘trunk’ (this trunk corresponds to the moments where
the Bessel process in the construction of the bSLEβκ is equal to 0; see Figure 4.1
for an illustration). However, at this point of the paper, we have not yet shown
that this trunk is almost surely a continuous path. The goal of the present section
is to derive the following result on CPIs in CLEβκ as defined in Section 2.3:

PROPOSITION 4.1. (i) There exists at most one CPI distribution in CLEβκ for
each given choice of β ∈ [−1, 1] and κ ∈ (8/3, 4). The CPI path has then
necessarily the same law as a bSLEβκ process viewed only at those times
at which it does not trace an SLEκ loop (and the traced loops are labeled
loops of the corresponding labeled CLEκ).
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(ii) Conversely, if bSLEβκ is almost surely a continuous path, then its trunk
(which is the subpath corresponding to the times at which it is not tracing a
CLEκ loop) is a CPI in the corresponding CLEβκ .

Note that this proposition does not yet state the existence of such CPIs for
κ ∈ (8/3, 4] (we only say ‘at most’) because we have not yet shown at this point
that the bSLEβκ traces are almost surely continuous paths. We, however, prove
this in Theorem 7.4 and we furthermore describe the law of the trunk of a bSLEβκ
in terms of SLEκ ′-type processes. Combined with this proposition, this will give
a rather detailed description of all of the CPIs in CLEβκ carpets for κ ∈ (8/3, 4).
We in particular also describe the conditional distribution of the CLEβκ given the
CPI (when one first samples the CPI as an SLEκ ′ type process, and then traces
the CLEκ loops that it encountered).

In the subsequent paper [40], we shall prove that when κ ∈ (8/3, 4), the
CPI are not deterministically determined from the labeled CLE, meaning that
it captures additional randomness that is not present in the labeled CLE. This
contrasts with the case κ = 4 that we discuss in the next section.

In order to prove this proposition, we use ideas in the spirit of the CLE
properties studied in [58]. Let Γ now denote a CLEβκ in the upper half-plane,
and let γ be a CPI in Γ from 0 to∞ (by conformal invariance, it is enough to
consider this case). We use the same notation as in Section 2.3. We parameterize
the continuous curve γ in some way (for instance by half-plane capacity, would
work here), and we can define the ordered family (L ti ) := (ϕ

−1
ti−(lti )), where the

discrete set (ti) denotes the times at which the CPI hits a CLE loop (that we then
call Li ) for the first time, and ϕt is defined as in Section 2.3. We also denote
the orientation (clockwise or counterclockwise) of Li by s(Li) and define also
s(ti) = s(Li).

LEMMA 4.2. The distribution of the ordered collection (L ti , s(ti)) is equal to
that of the ordered family associated with a Poisson point process with intensity
given by the SLEκ bubble measure and an independent sign which is chosen to
be counterclockwise with probability (1 + β)/2 and clockwise with probability
(1− β)/2.

Proof. This proof will be based on CLE exploration arguments developed in [58].
A first observation is that the CPI property implies that for all stopping times τ ,
the conditional distribution of the ordered collection of (L ti , s(ti)) corresponding
to ti > τ , given all the information provided by what one has discovered until τ
is always the same. In other words, this ordered collection of to be discovered
labeled bubbles is independent of those discovered so far. This implies that it
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is distributed like the ordered collection defined via a Poisson point process. It
therefore remains to identify the intensity measure of this Poisson point process.

Recall that the definition of a CPI implies that almost surely, for all ε > 0, the
curve γ up to its first hitting time τε of the circle of radius ε does intersect the
upper half-plane and has a positive half-plane capacity. This makes it possible
to adapt the arguments of [58] to prove that when ε → 0, the law of the labeled
CLE loop that surrounds a given point z, conditioned on the event that γ [0, τε]
intersects this loop, does converge to the SLEκ bubble measure restricted (and
then renormalized to make a probability measure) to surround z, defined in [58],
with an independent p0 versus 1− p0 labeling.

The idea is to proceed exactly as in the proof of [58, Proposition 4.1]. For small
ε, we are going to iterate the following experiment: Choose a boundary point in
the upper half-plane, launch a CPI from that point until it hits the circle of radius
ε around this starting point (and collect all CLE loops encountered). Consider the
connected component that contains z of the complement of the traced CPI and
the discovered loops, and map back this domain conformally onto the upper half-
plane leaving z fixed, and look at the image under this map of the collection of
CLE loops that remain to be discovered in this domain. The CPI property ensures
that on the event where the CLE loop that surrounds z has not been discovered
yet, the conditional law of the collection of loops obtained in this way is that of
a CLE, which makes it possible to iterate the same experiment again.

As explained in [58], by choosing iteratively the starting points of the
explorations in an appropriate way, one can approximate (taking ε small) the
deterministic exploration of all CLE loops discovered along some deterministic
slit from 0 to z, and this leads, exactly as in [58] to the fact that ‘at the iteration
step at which one discovers the loop that surrounds z’ and in the ε → 0 limit,
it is distributed as an ‘SLEκ bubble measure conditioned to surround z’ in the
remaining to be discovered domain (and the fact that its label is independently
chosen follows from our construction).

All this argument is nontrivial, but it is a very direct adaptation of the proof
of [58, Proposition 4.1] with no other ingredient (one just replaces each iteration
step by the discovery of a CPI with the loops that it intersects instead of the half-
disk and the loops that it intersects) so that we refer to that proof for details.

We can now turn to the actual proof of Proposition 4.1:

Proof of Proposition 4.1. Lemma 4.2 suggests that a CPI will necessarily be
distributed like the trunk of a bSLEβκ from x to y (if this trunk exists and if it
is a continuous curve) used to construct the CLEβκ .

We consider the path η obtained by gluing to the path γ the loops of the
CLEβκ that it discovered and decide to trace each of these loops following their
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orientation. The path γ passes to the left (respectively right) of this loop (on its
way from x to y) if the loop is traced counterclockwise (respectively clockwise).
This path η is then a continuous (because the CLE loops are locally finite) non-
self-crossing (because of this clockwise versus counterclockwise choice) path
from x to y, and the fact that γ ∗t is increasing implies in fact that η (when seen
from y) can be defined via a Loewner chain with a continuous driving function
(the Loewner chain is generated by the non-self-crossing η and the hull generated
by this curve is increasing, so the driving function is just the conformal image of
the tip of the curve). Our goal is to prove that η is necessarily a bSLEβκ process.

First, Lemma 4.2 implies that at those times when η is away from γ , it
evolves exactly like an SLEκ process targeting the last point of γ that it has
visited, because of the definition of the SLEκ bubble measure. Viewed as a
process targeting∞ (just via change of variables), it means that it evolves like an
SLEκ(κ − 6) when it is away from γ . Furthermore, when one discovers a loop,
one tosses a (1 + β)/2 versus (1 − β)/2 coin to decide its orientation (that is,
to choose the sign of the corresponding excursions of the multiple of the Bessel
process (Wt − Ot)).

Second, scale invariance and a zero-one argument (and the Markov property)
shows that either the set of capacity times for η during which it traces a CLE
loop is almost surely empty, or it is almost surely dense. It is not difficult to rule
out the former case (that is to rule out the possibility that γ does not intersect
Γ at all). For instance, if this would be the case, then by the conformal Markov
property, we could first sample the entire path γ , and then independent CLE’s
in the connected components of its complement, and the union of the obtained
collection of loops that one obtains would be exactly a CLE. If one considers a
given point a in the interior of D, one can get a contradiction by looking at the
law of the conformal radius of the loop that surrounds a in the CLE.

Let us now consider the process At defined to be the total Lebesgue measure of
the set of times in [0, t] at which η (parameterized by capacity seen from y) is on
its ‘trunk’ γ . Because of the conformal Markov property, this is necessarily the
inverse of a subordinator, and its jumps are those of a stable process (because of
the CLE property and the scaling property of the bubble measure). But conformal
invariance of the whole process implies that the stable subordinator has no drift
part (because a nonzero drift would not scale in the same way as the jumps of
the subordinator), so that the Lebesgue measure of the set of times at which η in
on γ is almost surely equal to zero.

We can therefore conclude that the path η is one of the bSLEβκ processes
because the process Wt − Ot has to be a sign-swapping Bessel process and the
fact that W can have no inverse local time type drift when the Bessel process hits
zero.
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Note that this CPI process would then also satisfy target invariance and other
properties that we would have also expected from such a CPI in CLE’s. Indeed,
these properties are known to hold for the generalized bSLEβκ processes.

5. Conformal percolation in the CLE0
4 carpet

In the present section, we study CPIs in the labeled CLE4 carpets, and will
make use of the relation of CLE0

4 with the GFF. This type of GFF-coupling-based
argument will be instrumental in the remainder of the present paper.

5.1. Background and preliminaries on SLE4, CLE4, local sets and the GFF.
Let us first briefly recall a few features about local sets. This notion, introduced
in [51], was instrumental in [34, 37–39] and will be important in the present
paper as well. When h0 is a harmonic function in a domain D, we say that h is
a GFF with boundary conditions given by h0 if h − h0 is a (usual) centered GFF
with covariance given by the Dirichlet Green’s function in D. We use the same
normalization as in [37] for the Green’s function (another choice would affect
some of the constants in what follows). The terminology ‘boundary conditions’
comes from the fact that a harmonic function is fully determined by its ‘trace on
the boundary,’ so that it is in fact enough to specify the latter to define the former.
For instance, when h0 is a harmonic function that extends continuously to the
set of the prime ends of D, then one can recover h0 from its boundary values
(and we just say that h is a GFF with boundary conditions given by the boundary
values of h0).

When U is a deterministic open subset of D, it is possible to decompose the
GFF h into the sum of two independent parts: The projection hU of h onto the
set of generalized functions that are harmonic in U (in other words, this is equal
to h in D \ U and to the harmonic extension of this generalized function in
U ) and a GFF with zero boundary conditions in U . This decomposition can be
understood as a generalization of the standard Markov property for Brownian
motion or Brownian bridge where the one-dimensional time set is here replaced
by the two-dimensional set D.

Local sets form an important and natural class of random sets in relation to the
GFF; they correspond to the random sets for which a ‘strong Markov property’
holds: A random closed set A is said to be local for the GFF h defined on D
if there exists a random distribution h A that has the property that h A is almost
surely continuous and harmonic in D \ A, and such that, conditionally on A
and h A, h − h A is a GFF with zero boundary conditions in D \ A (for more
information and surveys about this, we refer to [37, 51] or [62]). Let us now just
briefly review some features of this theory that we shall use here. We begin with
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a restatement of part of [51, Lemma 3.9], which will be especially important for
our later arguments.

PROPOSITION 5.1. Suppose that A is a random closed subset of D which is
coupled with a GFF h on D. If for each given U ⊆ D open, the event {A∩U 6= ∅}
is a measurable function of hU , then A is a local set of the GFF h.

A useful subclass of local sets are formed by sufficiently small local sets
(referred to as ‘thin’ local sets in [1, 54, 62]). Indeed, if we know for instance
that for some d < 2, the Minkowski dimension of the local set A is almost surely
smaller than d, then the random distribution h A is in fact equal to the harmonic
function h A times the indicator function on D \ A (in loose words, it carries no
mass on A).

The local sets that we consider in the present section are all closely related
to the level lines of the GFF. Recall that h is a distribution and does therefore
not take values at points, so that it does not have level lines in the literal sense.
But these have been made sense of in [50, 51] using two different approaches.
The first is to define the GFF lines to be the scaling limits of the level lines of
the discrete GFF and the second construction is done directly in the continuum
and builds on the idea that such a level line should be local for the GFF since
changing the field values away from a level line does not affect the level line
itself. The way that this construction proceeds is to first sample a random curve
η according to some well-chosen law and then construct a distribution on D by
sampling a GFF in the complement of D with given boundary conditions and
then show that this defines a GFF on all of D. It turns out that the boundary
conditions that one should use are −λ (respectively λ) on the left (respectively
right) side of the curve where λ = π/2. This discrepancy between the field
heights between the left and right sides of η was coined the ‘height gap’ by
Schramm and Sheffield in their original article [50].

More precisely, one can consider an SLE4 from −1 to 1 in the unit disk D
and define the harmonic function in the complement of the SLE4 that is equal to
+λ in the bottom connected component of the complement of the curve (the one
with the lower half of the circle ∂D on its boundary), and to −λ in the top one.
Then this is a local set for a GFF h with boundary values equal to+λ and−λ on
the bottom and top half-circles of ∂D. Conversely, and this is not a trivial fact, it
turns out that the SLE4 path can be deterministically recovered from h (and it is
therefore sometimes referred to as a zero level line of h), see [51].

A variant of the previous result that will be important for our purposes is the
following: Choose ρ ∈ (−2, 0) and define first an SLE4(ρ;−2 − ρ) from −1
to 1 in D. This is a simple continuous curve in the closed unit disk, that touches
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Figure 5.1. Sketch of the 0-level line from −1 to 1 in D with the corresponding
boundary conditions.

almost surely both the top and bottom half-circle of ∂D. Then, in each connected
component of the complement of the curve (we can either look at the entire curve,
or stop it at some stopping time), define the harmonic function with boundary
conditions given by: (i) on ∂D, the boundary condition is 0, (ii) on the ‘left-hand’
side of the curve, the boundary condition is −λ+ c, (iii) on the ‘right-hand’ side
of the curve, the boundary condition is λ+c, where c = λ(ρ+1) ∈ (−λ, λ) (see
Figure 5.1 for the case c = 0). Then this is a local set of GFF with zero boundary
conditions. Again, it can be proved that this local set can be deterministically
recovered from the GFF [51].

Another variant that we also use in a few paragraphs goes as follows. We
consider the bounded harmonic function h0 in H with boundary values equal to
0 on the negative half-line, to c + λ on (0, x) for some x ∈ (0,∞], and to c − λ
on (x,∞), where c ∈ (−λ, λ). If one now samples a well-chosen SLE4(ρ1; ρ2)

process from 0 to x with marked points at 0+ and∞ (so here, the force points
lie on different sides of the tip of the curve), then this process will trace a curve
from 0 to x , that will intersect the interval (0, x) but not the rest of the real line.
Furthermore, if one defines the ‘boundary conditions’ on the complement of the
curve to be: (i) as h0 on the real line, and (ii) equal to 0 and 2λ on the left-hand
and right-hand side of the curve respectively, one gets a local set in the upped
half-plane with boundary conditions given by h0 (see Figure 5.2).

Recall that CLE4 is a random collection of disjoint non-nested simple loops in
the unit disk. Each loop is an SLE4-type loop, and the complement of the inside
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Figure 5.2. A sketch of the SLE4(ρ1, ρ2) coupling.

of all loops in the unit disk is a set with zero Lebesgue measure and Hausdorff
dimension that is strictly smaller than 2 (it is actually 15/8, see [45, 52]) that is
called the CLE4 carpet. We then toss an independent and identically distributed
fair coin inside each loop of the CLE4 to choose between the constant values
+2λ or −2λ inside this loop. In this way, we have a random set A (the CLE
carpet) with labels that define a harmonic function h A in the complement of this
carpet. It turns out that this couple (A, h A) is also a thin local set (to define a GFF
in D, one just has to sample independent GFFs in the connected components of
the complement of the carpet, with boundary conditions h A). Again, the couple
(A, h A) can be deterministically recovered from the GFF it defines. These facts
are due to Miller and Sheffield [33], see also the self-contained presentation
in [1].

In the present section, we use features of the following type, that are very
closely related to the fact that the CLE0

4 is a deterministic function of the GFF:

LEMMA 5.2 [1]. Suppose that one can construct a local set A with Minkowski
dimension almost surely smaller than some d < 2, and with harmonic function
h A such that h A ∈ {−2λ, 2λ, 0} almost surely (that is, the harmonic function in
each of the connected components D j of the complement of A is constant and
equal to one of these three values). Then A can be coupled with a CLE0

4 carpet
and a GFF in such a way that both A and the CLE0

4 are local with respect to h.
The components D j with h A ∈ {−2λ, 2λ} are then also connected components
of this CLE0

4 carpet.

Indeed, one can first complete A by sampling a labeled CLE4 carpet in all of
the components of its complement with h A = 0. In this way, one gets a local set
with h A ∈ {−2λ, 2λ} and Minkowski dimension strictly smaller than 2, and it is
known (see [1]) that the labeled CLE0

4 is the only possible one. We shall use also
a slight variation of this result that we describe during the proof.
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5.2. CLE0
4 percolation. We are now going to derive the following

proposition that characterizes and describes all possible CPIs in labeled CLE4

carpets (see Figure 5.3):

PROPOSITION 5.3. (i) There are no CPIs in CLEβ4 for β 6= 0.

(ii) There is exactly a one-parameter family of CPIs in CLE0
4 parameterized

by c ∈ (−λ, λ) or equivalently by µ ∈ R. These CPIs have the following
properties:

• Each of these CPIs is a deterministic function of the labeled CLE0
4.

• In the coupling between the CLE0
4 and the GFF described above, a CPI

corresponds to the c-level line for some c ∈ (−λ, λ).

• The bSLE0,µ
4 Loewner chain is almost surely generated by a continuous

path, and its trunk (when one erases the CLE4 loops it creates when going
from its starting point to its target point) is an SLE4(ρ;−2− ρ) process
(these processes will also be called bSLE4(ρ) later in this paper) for some
ρ ∈ (−2, 0). This trunk is then a CPI of the CLE0

4.

Note that by symmetry, the relation between c and µ satisfies µ(−c) = −µ(c)
and µ(0) = 0. The arguments presented in the present paper will not provide a

(a) (b)

Figure 5.3. (a) A sketch of CLE4 (shaded loops have boundary values 2λ and
the others have boundary values −2λ for the GFF). (b) A sketch of the joint
realization of the CLE0

4 and the SLE4(−1;−1). Proposition 5.3 shows that the
latter is a CPI in the former, and that the law of the process obtained when tracing
the encountered loops along the way of the level line is a bSLE0,0

4 .
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formula for the relation between µ and c (or equivalently, between µ and ρ)
but the explicit formula should follow from our upcoming paper [41]. We see a
similar feature in our study of CLEκ percolations for other κ’s, and will comment
further on this after the statements of the main results (Theorems 7.2 and 7.4) at
the end of Section 7.

The first statements of this proposition have some similarities with the
previous κ ∈ (8/3, 4) case, but we note already that the description here is
complete in that this proposition contains both the existence of the CPIs and
the description of their distribution. In the course of the proof, we also describe
the conditional distribution of the CLE0

4 given the CPI.

Proof of Proposition 5.3. The arguments of the previous section can be repeated
almost word for word, in order to derive the first few statements in the
proposition, as well as the fact that for CLE0

4, there is at most a one-parameter
family of CPIs in CLE0

4 and that the process γ ∗t must have the same law as a
bSLE0,µ

4 process, viewed at those times at which it does not trace a CLE4 loop,
and that finally, if one knows that bSLE0,µ

4 is almost surely a continuous path,
then its trunk is a CPI in a corresponding CLE0

4. The only difference is that in
the last part of the argument, the subordinator can have a drift part (this is as in
[55, 63]).

We now show that each c-level line of the GFF h from x to y coupled to
the CLE0

4 as described above does indeed define a CPI from x to y in that GFF.
Combined with the above, it shows that each of these CLE0

4 level lines is the
trunk of the bSLE40,µ for some µ, and this bSLE0,µ

4 is a continuous curve.
We proceed as follows (in the remainder of this proof, we shall work with

processes in the unit disk D): For a given c ∈ (−λ, λ), we first consider the
height c level line started from −1 and targeting 1 of a GFF h, that we call ηc

(recall that this is a continuous simple curve in the closed unit disk that touches
almost surely both the bottom and the top half-circle, and that it is a deterministic
function of h). Note that this GFF h also deterministically defines a CLE0

4.
Sample first the path ηc|[0,τ ], where τ is some stopping time for ηc. We know

the conditional distribution of h given ηc|[0,τ ] in the complement of this slit (it
is a GFF with boundary conditions 0 on the unit circle and c − λ and c + λ on
the two sides of ηc). Each connected component of the complement of this slit
has three boundary arcs (one of which can be empty): an arc of the unit circle, a
portion of η seen from below, and a portion of η seen from above. Then, we draw
the −λ-level lines (that is boundary values on the two sides of such lines are 0
and −2λ) of this GFF in each of the components that sees a portion of ηc from
above, as indicated in Figure 5.4, and we also draw symmetrically the λ-level
lines below the curve. In all connected components except the one that has ηc(τ )
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(i) (ii)

Figure 5.4. The level line (i), and the first layer (ii).

on its boundary, one has drawn just one level line. Again, we know (from the
level-lines couplings) the form of the conditional distribution of the GFF in the
complement of the union of this first-level line with these new level line.

In particular, for those components that have part of ∂D on their boundary, the
boundary conditions are identically 0. In all other ones, the boundary consists of
a piece of the curve ηc (seen either from below or above) and a piece of the λ (or
−λ) level line, so the corresponding boundary conditions are λ + c and 2λ, or
−λ+ c and −2λ.

Iterating the procedure once in each of these connected component as
indicated in Figures 5.4 and 5.5, one obtains domains with constant ±2λ
boundary conditions, and domains where the boundary conditions are 0 and λ+c
or 0 and λ − c. We then iterate the procedure in the latter ones. This defines an
increasing sequence of local sets An . We then define A to be the closure of the
union of all An . Its complement is then just the union of all the interiors loops
discovered along the way and the value of the corresponding harmonic function
is almost surely equal to ±2λ or to 0 (and it is constant in each connected
component of the complement of the local set).

For each n, the Minkowski dimension of An is strictly smaller than 2 (this
is easy to check because it is just the union of SLE interfaces), so that (using
one of the main propositions in [1]) they are almost surely all contained in the
same stopped iterated CLE4 defined there (which is known to have Minkowski
dimension smaller than 2) and therefore the same holds for A, which in turn
implies that the Minkowski dimension of A is smaller than 2. We can then apply
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Figure 5.5. Iterating −2λ/0 layers in a pocket of the first layer and discovering
some CLE0

4 loops with height −2λ (such as the dashed loop in the third picture)
on the way.

Lemma 5.2 to deduce that the loops that have been discovered in this way are
all part of the CLE0

4, and that all other loops in the CLE0
4 do not touch ηc. In

other words, our procedure to define loops with 2λ boundary conditions via
the iteration of layers does define a subset of the CLE0

4 loops that are coupled
to the GFF (this is the same GFF that is coupled with the level line ηc). By
construction, all these loops do touch ηc, the positive ones touch the ‘right-hand
side’ of ηc while the negative one are on its ‘left-hand side’, and no other loop
of the CLE0

4 touches ηc|[0,τ ] (because they are sampled out of a GFF with zero
boundary conditions in the remaining connected components, and therefore do
not touch ∂A).

Summarizing things, we have constructed a coupling of the curve ηc, of the
CLE0

4 loops of the GFF h that do touch ηc and of the GFF, with the following
properties:

• The CLE0
4 loops that do touch the curve ηc are above or below ηc depending

on their label.

• The curve ηc does not enter in the inside of any of the loops.

• One can then define the curve η that is obtained by attaching in their order
of appearance along ηc from −i to i the loops of the labeled CLE0

4 that do
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intersect ηc. The local finiteness of CLE4 ensures that η is indeed a continuous
curve. If one chooses to trace the positive loops counterclockwise and the
negative loops clockwise, then the obtained curve η is non-self-crossing.

• Both η and the CLE0
4 are deterministic functions of the GFF, so that the path

η is also a deterministic function of the GFF.

It is now easy to show that ηc is a CPI in the CLE0
4. If τ is a stopping time

for the filtration generated by the curve ηc together with the collection of CLE0
4

loops in encounters, let us define F ∗τ to be the corresponding σ -algebra. The
previous description of ηc|[0,τ ] and of the loops it encounters shows that the
conditional distribution of h in Dτ (the connected component of the remaining
to be discovered domain that has 1 on its boundary) is then a GFF with zero
boundary conditions. In particular, as ηc is the c level line in h, the picture in
Dτ will be that of a 0-boundary GFF with its c-level line, which proves the
Markovian part of the definition of a CPI. In the other unexplored connected
components (that are not surrounded by an already discovered CLE0

4 loop), the
conditional distribution of h is that of a GFF with zero boundary conditions, and
the restriction of the CLE0

4 defined by h to this domain is then distributed like a
CLE0

4 in this connected component. We, therefore conclude that ηc is indeed a
CPI in the CLE0

4.
To conclude the proof, we need to check that the mapping c 7→ µ is a

monotone bijection from (−λ, λ) into R. We extend this map to be a map
from [−λ, λ] to R ∪ {±∞} by declaring that −λ (respectively λ) is sent to
−∞ (respectively +∞). Since the extended map is injective and sends −λ to
−∞ and λ to +∞, it suffices to show that c 7→ µ is continuous. Suppose
that (cn) is any sequence in [−λ, λ] which converges to c ∈ [−λ, λ]. For each
n, we let µn be the image of cn under the map and let µ be the image of c
under the map. By passing to a subsequence if necessary, we may assume that
µn → µ̃ ∈ R ∪ {±∞} as n → ∞. It suffices to show that µ = µ̃. It is easy to
see from the construction that the law of the driving process associated with cn

converges weakly as n→∞ to the law of the driving process associated with c
simply because the hulls of the corresponding processes converge. Similarly, the
law of the process associated with µn converges weakly to the law of the process
associated with µ̃ as n→∞. Indeed, this can be seen by inspecting the equation
satisfied by the driving process. Therefore, µ = µ̃, as desired.

6. CLEκ ′ percolation

6.1. Boundary-touching CLEκ ′ loops. Recall that the CLEκ ′ for κ ′ ∈ (4, 8)
correspond to gaskets (as opposed to carpets, as in the case that κ ∈ (8/3, 4])
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because different loops can touch each other and can touch the boundary. In
the case where κ ′ ∈ (4, 8), the existence and first properties of the CLEκ ′ follow
directly from the combination of the results in [55] and [34, 37–39]. In particular,
the existence and basic properties of CLEκ ′ were stated in [55] conditionally on
a continuity and reversibility assumption for bSLEκ ′ that was then proved in [37–
39]. The local finiteness of CLEκ ′ was proved in [34] by using the relationship
between space-filling SLEκ ′ and CLEκ ′ (we come back to this in Section 8). We
are now going to describe some consequences of this reversibility, in the spirit
of the arguments in [55].

Suppose that κ ′ ∈ (4, 8) and let us now recall from [55] how to concretely
define parts of the CLEκ ′ using the bSLEκ ′ . Let us first consider a time-indexed
Poisson point process of SLEκ ′ bubbles. The intensity measure of this process is
given by the Lebesgue measure on R+ times the so-called SLEκ ′ bubble measure
(which is the appropriately rescaled limit when ε → 0+ of the law of an SLEκ ′
from 0 to ε in the upper half-plane). This Poisson point process is therefore a
countable random collection of pairs (ui , eui ) where eui is a bubble and ui > 0
(and we think then of eui as ‘appearing’ at time ui ).

The previous bubbles eui are oriented clockwise (for the previous definition)
but we can note that the bubble measure is invariant under the operation of
taking the symmetry with respect to the imaginary axis of its counterclockwise
orientation (this follows from the reversibility of SLEκ ′).

For each bubble e, we define x(e) (respectively y(e)) to be the rightmost
(respectively leftmost) point of the bubble on the real axis and ϕe to be the
conformal transformation from the unbounded connected component of H \ e
onto H with ϕe(z) ∼ z as z→∞ and ϕe(x(e)) = 0. We also define e+ to be the
clockwise part of the bubble e from 0 to x(e), and e− the counterclockwise part
of the bubble between 0 and y(e) (see Figures 6.1 and 6.2).

If one iterates the maps ϕe in their order of appearance, one obtains a process
of conformal maps (Φu, u > 0). If one now concatenates the paths Φu−(e+u ) in
their order of appearance (see Figure 6.3), one gets exactly the ordinary bSLEκ ′
(that is an SLEκ ′(κ ′ − 6)) from the origin to infinity (recall that κ ′ > 4 so that
κ ′ − 6 > −2, hence there is no issue with the accumulation of small bubbles) —
one can also invoke here the target independence of these paths. The family of
loops Φu−(eu) form now a part of the CLEκ ′ .

In this way, starting from the Poisson point process of SLEκ ′ bubbles, one
constructs a collection of CLEκ ′ loops that intersect the positive half-line, but
one does not construct all the loops of this CLEκ ′ that do intersect the positive
half-line. Indeed, there are a number of additional loops that are squeezed ‘under’
the ones that one has constructed.
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Figure 6.1. An SLEκ ′ bubble e.

Figure 6.2. The corresponding e+ and e−.

Figure 6.3. A bSLEκ ′ and a corresponding collection of Ψu−(eu)’s.

It is however not difficult to construct them as well. Indeed, it suffices to iterate
the procedure inside each of the pockets that are located underneath all the loops
that one has constructed, and then to iterate the procedure inside the pockets that
are underneath all of the newly traced loops. Note (for instance in Figure 6.4),
that in this way, one creates pockets that are squeezed in between two loops that
touch the boundary, and that a point in the upper half-plane will be either on a
loop, or inside such a clockwise loop, or inside one pocket. We can also note that
one can view a pocket as being surrounded counterclockwise by a concatenation
of parts of CLEκ ′ loops that is of excursions away from the boundary of CLEκ ′
loops, that are concatenated at boundary points.

The local finiteness (that is for all positive ε, there are almost surely finitely
many loops of diameter greater than ε when one looks at the image under a given
conformal map from the upper half-plane onto the unit disk) [34] of the CLEκ ′
ensures that if one traces (in a clockwise manner) all the CLEκ ′ loops that touch
the positive half-line, in the order in which they ‘appear’ alongside the positive
half-line, one obtains in fact a continuous path, formed of the concatenation
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Figure 6.4. Adding the missing loops iteratively.

of all these loops (that is, there exists a parameterization that turns this into a
continuous path). One may note that the proof of the local finiteness of CLEκ ′
in [34] relies on the continuity of the space-filling SLE defined there, which is
directly related to this continuous path that we are drawing here, so that in a
way, the argument goes rather in the other direction that is the local finiteness of
CLEκ ′ follows from the continuity of a path that is related to the concatenation
of the loops.

Similarly, one could consider the process started from the boundary point at
infinity, that moves on the real line and traces on the way all loops that intersect
the real line (not just the positive half-line) in the order given by their leftmost
intersection points with the real line. By applying a conformal transformation,
one can then discover for a given domain D and a given boundary point
x , the process that traces all loops of a CLEκ ′ in D that touch ∂D, in the
counterclockwise order of appearance on ∂D (when one starts from x). In this
procedure, after a given time t , one has discovered a certain collection of whole
loops, and one is typically in the process of tracing one.

Finally, in order to define the whole CLEκ ′ one can to iterate this procedure,
and define a second layer of boundary-intersecting loops in the domains obtained
when removing the interiors of all the loops that intersect the real line and so on.

It is important at this point to observe that conversely, once one samples the
entire CLEκ ′ , then this boundary-intersecting loops tracing procedure (and the
decomposition into layers) is a deterministic function of the CLEκ ′ .

In the next paragraphs, we focus on two variations of this construction. The
first one will be to consider side-swapping bSLEβκ ′ (and its ‘full’ version) and to
define its trunk. The second one will be to replace the bSLEκ ′ by a bSLEκ ′(ρ)
variant, and this will define the BCLEs
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6.2. Side-swapping, CLEβ

κ ′ , bSLEβ

κ ′ , the full bSLEβ

κ ′ and its trunk. At each
end time of a macroscopic excursion eu in the previous construction we can
stop the process, and then, the conditional distribution of the not-yet discovered
loops of the CLEκ ′ is that of a collection of independent CLEκ ′ in each of the
connected components that remain to be discovered. This indicates that it is
actually possible to then change the starting point of the ‘discovery’ process in
the unbounded component at that time. One natural possibility is to start the
discovery at Φu(y(eu)) instead of Φu(x(eu)). This corresponds in fact to the
Loewner chain that one would have obtained when going along the loop eu in
the counterclockwise direction. This leads to the following construction:

• Independently, for each given β ∈ [−1, 1], toss an independent p0 = (1−β)/2
versus 1 − p0 coin to decide whether one defines ψβ

u to be equal to ϕeu or to
be equal to ϕeu shifted horizontally so that ψβ

u (y(eu)) = 0.

• Then, iterate the conformal maps ψβ
u in their order of arrival, that is, Ψ β

u is the
composition of all ψβ

v for v < u in chronological order.

Then again, the obtained loops Ψu−(eu) will be part of a labeled CLEκ ′ and the
appropriate concatenation of the clockwise/counterclockwise parts (when one
does not choose ϕeu in the coin tossing, then one takes the counterclockwise
part e− of e from 0 to y(e) instead of e+) of the half-loops Ψ β

u−(e±u ) will form a
side-swapping bSLEβκ ′ process.

One way to make sense of this is to first do the side-swapping (that is to
decide to toss a coin) only for the bubbles eu that give rise to CLEκ ′ loops of
diameter greater than ε, when the entire picture is mapped onto the unit disk;
the set of such swapping times is then discrete, the procedure therefore also
defines loops that are part of a CLEκ ′ and one can also see that the obtained path
is a deterministic function of the labeled CLEβκ ′ . It starts for instance like the
nonswapping exploration along the boundary, until the first discovered positive
loop with diameter at least ε and so on.

One natural way to couple all these cut-offs is to first sample the entire
labeled CLEβκ ′ , and then define all these deterministically defined ε-side-swapped
explorations. As explained at the end of the section on generalized SLEκ(ρ)
processes, the driving function of the obtained process does indeed converge in
distribution to that of bSLEβκ ′ as ε → 0, and the collections of traced loops as
well (for instance, if one picks n given points and looks at the loops surrounding
these points if they exist, that are traced by the ε-approximation, their distribution
converges to the corresponding one for the bSLEβκ ′ . In particular, we see that the
latter are still part of a CLEβκ ′ .

Another possibility is to first sample the Poisson point process of bubbles, and
then do the iteration procedure described above for all ε and the same Poisson
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point process of bubbles (Figure 6.5). In this case, the driving function will
converge almost surely as ε → 0, but the CLEκ ′ ensembles that are constructed
(both before and after the cut-off) then vary from one ε to another.

We now describe what we call the full bSLEβκ ′ process and its trunk (we first
define them both for the version from 0 to ∞ in the upper half-plane). We
first consider the side swapping bSLEβκ ′ as defined above when starting from
a Poisson point process of labeled bubbles. As we have explained, this process
only traces one part of each of the loops it encounters (as it has to branch off to
infinity instead of completing them). In order to define the more complete picture,
we now complete each of these loops. On the way back to its starting point, each
of these loops will bounce off some earlier traced loops of the opposite type,
thereby creating a countable family of pockets in between them. These pockets
are naturally ordered from 0 to∞, as indicated in Figure 6.6 (see also Figure 6.7
for a simulation), and each of them contains two marked points that we refer to
as their entrance and exit points.

This procedure therefore defines in the upper half-plane a collection of labeled
CLEκ ′ loops, ordered in their order of appearance along the side-swapping
bSLEβκ ′ from 0 to ∞, and an ordered collection of simply connected pockets

Figure 6.5. Changing the exploration direction of one loop and side-swapping.

Figure 6.6. Filling in the pockets in a side-swapping SLE iteratively to construct
a full bSLEβκ ′ . The interface between loops with different orientations is the trunk
of the full bSLEβκ ′ .
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(a) (b)

Figure 6.7. The CLEβ6 interface in the unit disk for β = 0: In the percolation
simulation of Figure 1.4, the boundary is divided into two arcs. (a) Cluster of
percolation clusters with label at most (respectively at least) 1/2 which touches
left (respectively right) arc is shown in blue. Their interface is shown in green.
In the scaling limit, the green path should be an SLE8/3(−5/3;−5/3). (b) Same
picture, but only the clusters with label at most (respectively at least) 1/2 which
do touch the green interface are colored red (respectively blue). In the scaling
limit, the path which follows the red and blue clusters in the order in which they
are visited by the green path should be an SLE0

6.

with entrance and exit points. All these collections are invariant in distribution
under multiplication by a positive constant, so that we can also define them in
other simply connected domains with two marked boundary points (or prime
ends). We can therefore iterate the procedure by defining inside each pocket, a
second layer of labeled CLEβκ ′ loops from the entrance point to the exit point of
each pocket. We can also then clearly order all the loops in each pocket, and
decide the loops in a given pocket gets discovered just after the completion of
the first-layer loop that creates that pocket. We then further iterate the procedure.
In this way, we define a countable and ordered collection of labeled CLEκ ′ loops
(we can note that in the particular case where β = ±1, this corresponds exactly
to the discovery of all the loops that touch the real half-line from 0 to infinity, in
their order of appearance along this half-line).

At this point, it is not yet clear whether the concatenation of all of these loops
in this order does indeed create a continuous path. However, if it does (and this
will be established in Theorem 7.2), we call it the full bSLEβκ ′ from 0 to infinity.
Then we can erase again all these loops and obtain in this way a continuous path
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from the origin to infinity, that we call the bSLEβκ ′ trunk from the origin to infinity.
That is, the bSLEβκ ′ trunk is the interface between the loops discovered by the full
bSLEβκ ′ with different orientations. It will follow from our analysis that the trunk
is indeed a continuous curve. However, at this point, even if we do not know
whether the full bSLEβκ ′ from 0 to ∞ is a continuous curve, we know that it is
a deterministic function of a CLEβκ ′ that traces some of the oriented loops of the
CLEβκ ′ .

6.3. Relation between trunk and CLEβ

κ ′ percolation. We now explain how
to relate this (conjecturally existing) trunk to percolation of labeled CLEβκ ′ loops.

When two CLEβκ ′ loops have the same sign and touch each other, we say that
they belong to the same cluster. We now consider the union C− of all negative
clusters that touch the negative half-axis (by this we mean that one of the loops
in the cluster touches the negative half-axis), and the union C+ of all positive
clusters that touch the positive half-axis. As it turns out, these clusters are closely
related to the previously described trunk:

PROPOSITION 6.1. If we assume that the full bSLEβκ ′ process from 0 to ∞ in
the upper half-plane is almost surely a continuous curve with zero Lebesgue
measure, and that its trunk η is a continuous simple curve from 0 to ∞ in H,
then almost surely, this trunk is equal to the intersection between the boundaries
of C+ and C−.

This result will become useful because we shall prove (see Theorem 7.2) that
the full bSLEβκ ′ is indeed continuous (and furthermore that its trunk is distributed
like an SLEκ(ρ; κ − 6− ρ) (we define them in the next section). This result will
also play an important role in [42].

Proof of Proposition 6.1. The proof will be based essentially on the two
following ingredients: First, using general properties of CLEκ ′ , we see that
C+ and C− can touch on their boundaries, but cannot overlap that is that C

+

and C
−

cannot respectively intersect open domains that are respectively to the
left-hand or to the right-hand side of η. Then, using the ε-approximation of the
bSLEβκ ′ , we see that the set of points squeezed between C

+

and C
−

has zero
Lebesgue measure.

We work in the upper half-plane. In order to use the notion of local finiteness,
we therefore use the h-diameter of a set, which is the diameter of its image under
a given conformal map from H onto the unit disk. Local finiteness of CLEκ ′ in
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the H then means that almost surely, for all ε > 0, only finitely many have an
h-diameter greater than ε.

Let us first make some general observations about the ‘graph’ of CLEκ ′ loops.
We can approximate C+ by the union C+ε of the collection of positive CLEβκ ′
loops of h-diameter greater than ε, that are connected to the positive half-line by
a finite chain of positive CLEβκ ′ loops of diameter at least ε. Clearly

⋃
ε C+ε = C+.

We call c+ε to be the ‘left boundary’ of R+ ∪ C+ε . The local finiteness of CLEκ ′
ensures that c+ε is a continuous curve from 0 to∞ in H (note that some CLEβκ ′
loops of both open and closed type will touch both the positive and the negative
half-line, which shows that c+ε will touch both the positive and the negative half-
line when ε small). We define also c−ε symmetrically (via chains of negative loops
attached to the negative half-line), and the open sets O+ε and O−ε corresponding
to the part of H lying to the right of c+ε and to the left of c−ε respectively. See
Figure 6.8 for an illustration. A point in O+ε is then a point that is disconnected
from the negative half-line by a chain of positive CLEβκ ′ loops of h-diameter
greater than ε. The maps ε 7→ O+ε and ε 7→ O−ε are nonincreasing, and we
define O+ :=

⋃
ε O+ε and O− :=

⋃
ε O−ε . The open set O+ is therefore exactly

the collection of points that are disconnected from the negative half-line by a
finite chain of positive CLEβκ ′ loops.

We can already list a few further easy consequences of the fact that almost
surely, CLEκ ′ is locally finite, that if a CLEκ ′ loop touches another loop or the
real line, then it does so at infinitely many other points, and that a CLEκ ′ loop
does not have any cut-points (that is, that its outer boundary is a simple loop).
It is indeed then easy to see that O+ε ∩ O−ε = ∅, and that a point z ∈ O+ε can
be linked to R+ by a continuous path that stays a positive distance from c+ε , and
therefore also of the closure of O− (as O− lies on ‘the other side’ of c+ε ).

We now are going to study the position of the trunk of the full bSLEβκ ′ trunk
from 0 to infinity with respect to the sets O+ and O−. Let us call T+ and T−

the two open sets that lie respectively to the right and to the left of the trunk T
(recall that we assume that the trunk is a simple curve in H, but we expect it

Figure 6.8. The clusters C+ε , C−ε and the paths c+ε and c−ε (in dotted) for two
different values of ε.
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to almost surely hit the positive and the negative half-line infinitely many times,
so that O+ will actually have infinitely many connected components as soon as
|β| 6= 1). Let us now argue why O+ ⊂ T+ almost surely, using the coupling
of all ε-cut-offs of the side-swapping procedure with a single CLEβκ ′ . We note
that almost surely, for all ε, the exploration path will almost surely go around
O+ε (it may trace the positive loops that are creating the chains of positive loops,
but will not do anything else on the right of c+ε ). It therefore follows readily that
in the limiting coupling of an CLEβκ ′ with the trunk T , O+ε ⊂ T+ almost surely.
Hence, we get indeed that O+ ⊂ T+, and (symmetrically) O− ⊂ T−. It follows
that the intersection of the closure of O+ with the closure of O− is necessarily
contained in T .

Next, we are going to argue that for every given z, the point z is almost surely
not in T+ \O+. As (under the assumptions of the proposition) the trunk has zero
Lebesgue measure, it then follows that O+∪O− has full Lebesgue measure, that
O+ is dense in T+, that O− is dense in T−, which is enough to deduce that T is
actually equal to the intersection between the boundary of O+ with the boundary
of O− and concludes the proof of the proposition.

As illustrated in Figures 6.9 and 6.10, one can observe that in order to decide
whether z ends up to the right or to the left of the trunk, it suffices to study a radial
bSLEβκ ′ that targets z, and that will exactly follow the iterated definitions within
the pockets. As mentioned before, the radial bSLEβκ ′ can be well approximated

(i) (ii)

Figure 6.9. (i) The radial and chordal bSLEβκ ′ coincide until the point labeled 4 is
reached. In bold we indicate the parts of the counterclockwise loops (to the right
of the trunk). When visiting the points 1 to 4, it is creating the pockets (a)–(d)
(but there are many more pockets, created just after the starting point, and after
visiting the points 1, 2 and 3). (ii) The radial exploration starts exploring within
the pocket (d) containing z and discovers on which side of the trunk z is.
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Figure 6.10. In the ε-approximation of the configuration of Figure 6.9, the point
z is in O+ε .

via a ‘side-swapping’ cut-off, where all bubbles of h-diameter smaller than ε
have a negative sign, and only the signs of the finitely many ones with h-diameter
greater than ε get tossed at random with the p0-coin. In particular, the probability
that z ends up to the right of the trunk of this approximated radial bSLEβκ ′
converges to P(z ∈ T+) as ε tends to 0.

But we also observed that for this ε-approximation, if a point z ends up to the
right of this (radial) trunk, it is in the O+ε of the CLEβκ ′ that can be coupled to it.
Hence, letting ε → 0, we see that indeed

P(z ∈ O+) = lim
ε→0+

P(z ∈ O+ε ) > P(z ∈ T+).

7. Boundary conformal loop ensembles and their duality

7.1. BCLE definition and first properties.

7.1.1. Heuristics. We are now going to define the BCLE with parameters κ
and ρ that we denote by BCLEκ(ρ). This object will be well defined for each
κ ∈ (2, 8) and each ρ in a certain κ-dependent range specified below. Let us
stress here already that some BCLEκ(ρ) exist for κ ∈ (2, 8/3] even if CLEκ
itself does not exist. We talk about BCLEκ ′(ρ ′) and BCLEκ(ρ) when we want
to differentiate between the cases κ ′ > 4 and κ 6 4. A BCLE will be a random
countable collection of loops defined in the closure of any simply connected
domain D with the property that each loop looks locally like an SLEκ(ρ) in
the inside of D and intersects the boundary of D on a fractal uncountable set.
As it will be a conformally invariant object, it suffices to define it in the upper
half-plane or in the unit disk.
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The intuition is that this class of loop ensembles should describe the scaling
limits of the family of boundary-intersecting loops for a class of discrete critical
models, with the idea that for a given κ , each value of ρ corresponds to a different
boundary condition that for instance can be viewed as a different way to weight
the boundary-touching loops compared to the interior loops. Our results will in
fact make this intuition more precise.

In Section 6, we have explained how to build the collection of CLEκ ′ loops that
touch the boundary of the upper half-plane for κ ′ ∈ (4, 8), starting from a Poisson
point process of SLEκ ′ excursions, or equivalently from a bSLEκ ′ branching tree.
The construction of the BCLEs will follow along the same lines, but where
one replaces the SLE bubbles (and henceforth the bSLE) by SLEκ(ρ) bubbles
(and henceforth a bSLEκ(ρ) generalization of bSLEκ). In particular, we already
emphasize that the construction of BCLEs will involve neither side-swapping nor
principal value compensation arguments, and will be based on SLEκ(ρ) ideas for
ρ > −2 solely.

Recall that the SLEκ bubble measure was the limit as ε → 0+ of the
appropriately rescaled distribution of an SLEκ from 0 to ε in H. This is an infinite
measure on loops from 0 to 0 in the upper half-plane that possess the following
scaling property. If A is a set of loops and λA denotes the set of loops γ such
that γ /λ ∈ A, then the mass of λA is equal to λ−b times the mass of A for
b = b(κ) = 8/κ − 1. Similarly, the mass of the image of A under a Möbius
transformation ψ of the upper half-plane that keeps the origin fixed is equal to
ψ ′(0)−b times the mass of A.

The fact that b(κ ′) ∈ (0, 1) when κ ′ ∈ (4, 8) can be viewed as the reason
that makes it possible to define SLEκ ′(κ ′ − 6) via a Poisson point process of
such bubbles in this way only for this range of κ ′. This construction (using
the conformal invariance property of the bubble measure) provides a direct
way to see that this process is target-invariant. The reversibility properties of
SLEκ ′(κ ′ − 6) then allows one to show that the loops defined by this branching
bSLEκ ′ tree does not depend on the choice of its root.

In Section 3, we have recalled the definition of SLEκ(ρ) from 0 to ∞ with
marked point at 0+ or at 0−, when ρ > −2. By applying a Möbius transformation
H → H, this yields the definition of an SLEκ(ρ) from x to y in H with
marked point at x− for any two distinct reals x and y. We can then easily
define the SLEκ(ρ) excursion/bubble measure as the properly renormalized limit
when ε → 0+ of the law of SLEκ(ρ) from 0 to ε with marked point at 0−.
Again, this measure satisfies a scaling property (as one can expect from its
definition) with some exponent b. When b ∈ (0, 1) (which imposes the constraint
−2 < ρ < κ − 4), the same procedure as for SLEκ ′(κ ′ − 6) then enables us
to start from a Poisson point process of such SLEκ(ρ) excursions to construct
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a target-invariant process that we denote by bSLEκ(ρ). This target-invariant
version can be equivalently described as an SLEκ(ρ; κ − 6− ρ) process.

7.1.2. BCLEκ(ρ) for κ ∈ (2, 4]. We now turn to the more formal definition of
these BCLEs. Let us first consider the case where κ ∈ (2, 4]. When κ is in this
range, we define BCLEκ(ρ) for each ρ such that

−2 < ρ < κ − 4. (7.1)

Note already that ρ is in this admissible interval if and only if κ − 6 − ρ is in
this admissible interval; in fact this admissible interval is the set of ρ’s for which
ρ > −2 and κ − 6 − ρ > −2. Hence SLEκ(ρ) or SLEκ(ρ; κ − 6 − ρ) will all
be classical processes with no side-swapping or compensation. Note also that ρ
has to be negative and in particular that the value ρ = 0 is not in this admissible
range.

The BCLEκ(ρ) is then defined to be the set of boundary-touching loops that
are traced by a branched bSLEκ(ρ). Let us consider the case where D is the unit
disk (in other simply connected domains, the definition will then be given via
conformal invariance). For every given boundary point x , one can then define a
branching tree of SLEκ(ρ; κ − 6 − ρ) processes starting from x and targeting
all other boundary points. The trace of this branching tree in the unit disk will
consist of the union of a countable family of disjoint ‘boundary-to-boundary’
arcs. Each of these arcs looks locally like an SLEκ-curve (when it is away from
∂D) and comes with an orientation (the tree being naturally oriented from x
towards the other boundary points). If one considers any fixed point z ∈ D,
the boundary of the connected component of the complement of this branching
tree that contains z will then consist almost surely of the concatenation of such
boundary-to-boundary arcs, that will form either a clockwise loop around z or a
counterclockwise loop around z.

The BCLEκ(ρ) is going to be the knowledge of all these oriented boundary-
to-boundary arcs. Clearly, this information can be either encapsulated by the
collection of all the clockwise loops that it defines and that we denote as
BCLE�κ (ρ), or equivalently by the collection of counterclockwise loops that it
defines. We often refer to the clockwise loops as the true loops of BCLE�κ (ρ)
and to the counterclockwise loops as the false loops of BCLE�κ (ρ).

Conformal invariance and target invariance show immediately that the law of
this BCLE�κ (ρ) is invariant under any conformal automorphism of D that keeps
x fixed (at this point, we have not yet argued that it does not depend on the
choice of the root x). Furthermore, the time-reversal symmetry also shows that
the SLEκ(ρ) bubble measure is invariant under the transformation that traces
the loop counterclockwise (instead of clockwise) and then takes its image under
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the symmetry x + iy 7→ −x + iy. Hence, it follows that if one reverses the
orientation of all the loops of a BCLE�κ (ρ) and then takes the image under any
given anti-conformal transformation, one gets again a BCLE�κ (ρ).

Let us now recall (see for instance [53]) that when one considers in D an
SLEκ(ρ) from x to y with marked point at y′, it is also an SLEκ(ρ̃) process from
x to y′ with marked point at y (until the first time it disconnects y from y′) with
ρ̃ = κ−6−ρ. Note also that any given point z in D is almost surely surrounded
either by a true loop or by a false loop of a BCLE�κ (ρ). The collection of false
loops traced by this BCLE�κ (ρ) is therefore also exactly created by the image of
a bSLEκ(κ − 6−ρ) branching tree under an anti-conformal automorphism of D
that keeps x fixed.

We can reformulate this by saying that the following two ways to construct
a family of counterclockwise loops (using the branching tree rooted at x) are
identical in law:

• Consider a BCLE�κ (ρ) and just reverse the orientation of all its loops.

• Consider a BCLE�κ (κ − 6 − ρ) and look at the collection of false loops it
defines.

We refer to the oriented loops obtained in this way as a BCLE	κ (ρ). The true
loops of BCLE	κ (ρ) will be this time these counterclockwise loops, and the false
loops of BCLE	κ (ρ) will be this time the corresponding clockwise loops.

Then, the reversibility property of the SLEκ(ρ) processes established in [37,
38] using the arguments of [55, Proposition 5.1] implies (just as for the case
of CLEκ ′) that the law of BCLEκ(ρ) does not depend on the choice of the root
x . The law of a BCLE is therefore invariant under the whole group of Möbius
transformations of D.

Let us finally note that in the boundary case ρ = −2, one can view and
define BCLE�κ (−2) as consisting of just of one single true loop which traces
the domain boundary clockwise (and there are no false loops), whereas the case
ρ = κ − 4 corresponds to the case where there is no true loop at all and a single
counterclockwise false loop along the domain boundary. In the sequel, we use
this as a definition of BCLE�κ (−2) and BCLE�κ (κ − 4). This therefore extends
the range of admissible ρ-values to the closed interval [κ − 4,−2].

7.1.3. BCLEκ ′(ρ ′) for κ ′ ∈ (4, 8). We now consider the case of BCLE�κ ′ (ρ
′)

and BCLE	κ ′ (ρ
′) for κ ′ ∈ (4, 8). The definition is basically identical, except that

the range of admissible ρ ′ is now

κ ′

2
− 4 < ρ ′ <

κ ′

2
− 2. (7.2)

https://doi.org/10.1017/fmp.2017.5 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2017.5


J. Miller, S. Sheffield and W. Werner 56

As before, this implies that ρ ′ > −2, so that we will be dealing with classical
SLEκ ′(ρ ′) processes. Note that again, the condition on ρ ′ remains the same when
one changes ρ ′ into κ ′ − 6 − ρ ′, but there are some little differences with the
previously described case of BCLEκ(ρ) for κ ∈ (2, 4):

• The obtained bSLEκ ′(ρ ′) branching tree defines a random countable collection
of nonsimple boundary-to-boundary arcs. The concatenation of these arcs
then defines a random collection BCLE�κ ′ (ρ

′) of (true) clockwise loops and
also a collection of false counterclockwise loops. The properties that we have
derived in the κ < 4 case hold as well for these BCLEκ ′(ρ ′) families but the
loops are not simple curves anymore, so that they cannot be directly viewed as
the outer boundaries of the connected components of the complement of the
branching tree.

• This time ρ ′ = 0 is in the allowed interval. The bSLEκ ′(0) is the usual
SLEκ ′(κ ′ − 6) process, and the set of true loops of a BCLE�κ ′ (0) is then just
the set of loops in a CLEκ ′ that intersect the boundary and that are traced
clockwise.

• This condition on ρ ′ and κ ′ is stronger than ρ ′ ∈ (−2, κ ′−4). This corresponds
to the fact that it is necessary to ensure that the bSLEκ ′(ρ ′) does not trace the
entire boundary of the domain, so that the boundary branching process really
does branch (see [34]) and is reversible (see the nonreversibility problems for
ρ < κ ′/2− 4 in [39]). One also requires that κ ′ < 8 for these processes to be
reversible (see the nonreversibility problems for κ ′ > 8 in [34]).

In the boundary case ρ ′ = κ ′/2 − 4, we can define BCLE�κ ′ (κ
′/2 − 4) as a

single clockwise loop which fills the whole domain boundary. However, in this
κ ′ ∈ (4, 8) regime, this single loop is not just the boundary itself (as the
limiting case κ ′ → 8− shows, where it becomes one single space-filling
loop). We similarly define its reverse-orientation BCLE	κ ′ (κ

′/2 − 4) as a
single counterclockwise loop which fills the boundary of the domain, and
BCLE	κ ′ (κ

′/2− 2) and BCLE�κ ′ (κ
′/2− 2) as the collection of false loops defined

by BCLE�κ ′ (κ
′/2−4) and BCLE	κ ′ (κ

′/2−4) respectively. Since the latter BCLEs
consist of one boundary-filling true loop, each of these false loops touch the
boundary at just one point).

7.1.4. Basic properties of BCLE. Let us sum up the basic properties of all these
BCLEs in the form of the following proposition.
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PROPOSITION 7.1. Let us consider a BCLE�κ (ρ) process Γ in the simply
connected domain D as defined above for all κ ∈ (2, 8) and ρ in the
corresponding admissible range. Then:

(i) The law of Γ is invariant under any given conformal automorphism of D.

(ii) The image of Γ under an anti-conformal automorphism of D is a
BCLE	κ (ρ), a sample of which can be produced by reversing the
orientations of the loops of a BCLE�κ (ρ).

(iii) The collection of false loops traced by Γ (that is, the counterclockwise loops
traced by the union of boundary-to-boundary arcs of Γ -loops around the
points that are inside no loop of Γ ) form a BCLE	κ (κ − 6− ρ).

The relation between the clockwise and counterclockwise BCLEs indicates
a special symmetry feature of the BCLEκ((κ − 6)/2). For a simple discrete
analog of this duality, one can consider critical Bernoulli percolation on the
faces of a hexagonal lattice in a simply connected domain. The collection
of outer boundaries of all white clusters that touch the boundary describes a
discrete analog of the boundary-touching loops of a CLE6. The collection of
outer boundaries of all black clusters that touch the boundary has of course the
same distribution (as that of the white clusters). The samples of the two discrete
loop ensembles differ from each other, but almost surely, each of them is made
of the union of all black–white interfaces that touch the boundary. In this setting,
both loop ensembles correspond, in the scaling limit, to the set of boundary-
intersecting loops of a CLE6, and this set has the law of BCLE6(0). Similarly,
one could for instance guess that the set of outer boundaries of Ising clusters that
touch the boundary of a domain (with free boundary conditions) should give rise
to a discrete approximation of the BCLE3(−3/2). This is indeed the case, as has
been shown in rigorous work on the Ising model on a grid [23] (see also [25]).
The κ = 4 case (that is BCLE4(−1)) corresponds to the zero level lines that
touch the boundary in a GFF with zero boundary conditions [51] that is also the
scaling limit of a white/black coloring of the hexagonal lattice that is symmetric
in distribution.

7.2. BCLE nesting and duality statements.

7.2.1. Main duality statements. Let us start with a BCLE�κ (ρ) as defined above
for some fixed κ ∈ (2, 4). Throughout this section, κ ′ and κ will always be related
by κκ ′ = 16. Denote byΛ the set of its true clockwise loops thus created. We are
now going to construct BCLEs within the true and the false loops of BCLE�κ (ρ):
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Figure 7.1. A sketch of a BCLEκ(ρ) and of a nested BCLEκ ′(ρ ′) in one of the
BCLE loops.

Inside of each clockwise true (respectively counterclockwise false) loop L of
Λ, we sample an independent BCLE	κ ′ (ρ

′

R) (respectively BCLE�κ ′ (ρ
′

L)) for some
admissible ρ ′R , ρ ′L (see Figure 7.1 as well as Figure 7.2). As we see later, it will
be useful that in this procedure, the nested BCLEs have the opposite orientation
of the true loop or false loop that contains them. The actual choice of the values
of ρ, ρ ′R and ρ ′L will be important, and we discuss this later.

We now choose a boundary point x , from which we start exploring loops ofΛ
by moving counterclockwise on ∂D. Assuming that Λ is locally finite, we can
define a (nonsimple) loop ηΛ from x to x as follows. To traverse ηΛ, we follow
∂D counterclockwise starting at x except that each time we encounter a loop
of Λ for the first time, we traverse the entire loop clockwise before continuing.
Thus ηΛ traces the loops of Λ in the order determined by their clockwise-most
intersection points with ∂D viewed from x . For any given boundary point y 6= x ,
if we parameterize this path according to its half-plane capacity seen from y
(thereby excising all the parts of ηΛ that are hidden from y), we obtain a chordal
bSLEκ(ρ) from x to y.

Assuming further that the entire collection Γ ′ consisting of all the loops of
all the different BCLEs that we defined inside each of the true and false loops
of Λ is also locally finite, we can then define another loop η′ from x to x as
follows. To trace this path, we follow ηΛ except that each time we first encounter
a point on a loop in Γ ′ we traverse that loop (clockwise or counterclockwise,
respectively, depending on whether the loop lies left or right of ηΛ, respectively)
before continuing. We note that ηΛ never encounters a clockwise and a
counterclockwise loop simultaneously, so that the path ηΛ is well defined.

https://doi.org/10.1017/fmp.2017.5 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2017.5


CLE percolations 59

Figure 7.2. Continuation of Figure 6.7. Shown are the red/blue clusters which
touch the green interfaces. In the context of Theorem 7.2, the green interfaces
correspond to the BCLEκ(ρ) and the red (respectively blue) clusters correspond
to the BCLEκ ′(ρ ′L) (respectively BCLEκ ′(ρ ′R)).

This follows because, given ηΛ, the clockwise and counterclockwise loops are
independent of each other, there are only a countable number of each, and the
probability that a given point on ηΛ is the starting point of such a loop is equal
to zero.

For each boundary point y, we can also define the path η′y from x to y by
moving along the bSLEκ(ρ) from x to y and traversing similarly the loops of Γ ′

that it encounters. This path can be constructed by excising certain intervals of
time from η′.

Deriving the following statement will be one of our two main goals for the rest
of the paper:

THEOREM 7.2. For each κ ∈ (2, 4) and β ∈ [−1, 1] there exists an admissible
ρ := ρ(β, κ ′) ∈ [−2, κ − 4] so that if one then defines

ρ ′R = −
κ ′

4
(ρ + 2) and ρ ′L =

κ ′

2
− 4− ρ ′R, (7.3)

the following properties hold: The collection of loops Λ and Γ ′ in this
construction are almost surely locally finite, so that the curve η′ is indeed
continuous, and for any boundary point y, the law of the path η′y is a full bSLEβκ ′
process as defined at the end of Section 6.2.
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In particular, this shows that a full bSLEβκ ′ is almost surely generated by a
continuous curve, and that its trunk is a bSLEκ(ρ) process for this ρ := ρ(β, κ ′).

We stress already that in the present paper we will not derive the general
explicit formula for this function ρ(β, κ ′), but that this will be one of the main
results of our subsequent paper [41], see the discussion in Section 7.4. In some
special cases though, it is however possible to work out already the value of ρ:

• We can note that by symmetry,

ρ(β, κ ′)+ ρ(−β, κ ′) = κ − 6.

In particular, when β = 0, one necessarily has ρ ′L = ρ
′

R = (κ
′/4)− 2 and

ρ(0, κ ′) =
κ − 6

2
. (7.4)

In other words:

COROLLARY 7.3. The trunk of a bSLE0
κ ′ is a bSLEκ((κ − 6)/2).

• When β = 1, the full bSLEβκ ′ process from x to y is nothing else than the
process that traces counterclockwise one after the other the CLEκ ′ loops that
touch the boundary of the domain between x and y in their order of appearance
on the clockwise arc from x to y. So in this special β = 1 case, this theorem
is rather trivial: the first BCLE just consists of the loop that traces along the
boundary loop clockwise, and inside this loop, one just samples the boundary-
touching loops of a CLEκ ′ with a counterclockwise orientation. The similar
symmetric case holds for β = −1. So, one has

ρ(1, κ ′) = −2 and ρ(−1, κ ′) = κ − 4.

• In fact, our proof will show that for all κ ′ ∈ (4, 8), the mapping β 7→ ρ(β, κ ′)

is an decreasing bijection from [−1, 1] onto [−2, κ − 4].

The second main goal will be to derive the corresponding statement when one
interchanges κ and κ ′ (see Figure 7.3). We now consider κ ′ ∈ (4, 6) (mind that
here, the values κ ′ ∈ [6, 8) are excluded), we let Λ′ be a BCLE�κ ′ (ρ

′) for an
admissible value ρ ′, and we then iterate by defining an independent BCLE�κ (ρL)

(respectively BCLE	κ (ρR)) in each false (respectively true) loop traced byΛ′. We
then fix a boundary point x and then define the two loops (from x to x) ηΛ′ and
η using the same procedure as before.
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(a) (b)

Figure 7.3. BCLE3 and BCLE16/3 nesting: (a) in yellow, the critical FKq=2

clusters in an Ising carpet with all+ boundary conditions that touch the boundary.
The remainder of the Ising carpet is shown in black. (b) The Ising carpet holes
that touch yellow are colored red, together forming a nested BCLE3.

For any other boundary point y 6= x , we can also consider the paths ηΛ′ and η
parameterized by their half-plane capacity seen from y. We note that the former
is then a bSLEκ ′(ρ ′) from x to y and call the latter ηy .

THEOREM 7.4. For each κ ′ ∈ (4, 6) and β ∈ [−1, 1] there exists ρ ′ := ρ ′(β, κ)
in the range [κ ′ − 6, 0] so that if one defines

ρR = −
κ

4
(ρ ′ + 2) and ρL =

κ

2
− 4− ρR (7.5)

and constructs η as just indicated then the following holds: η is almost surely a
continuous path and the law of the path ηy is a bSLEβκ process. In particular, we
get that a bSLEβκ process is almost surely generated by a continuous curve and
that its trunk is a bSLEκ ′(ρ ′) for this value ρ ′ = ρ ′(β, κ).

For a discussion of the general formula giving ρ ′ as a function of β and κ , see
again Section 7.4.

The same symmetry argument as for Theorem 7.2 shows that

ρ ′(β, κ)+ ρ ′(−β, κ) = κ ′ − 6.
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In particular:

COROLLARY 7.5. The trunk of a bSLE0
κ is a bSLEκ ′((κ ′ − 6)/2).

The special cases where β = 1 and β = −1 are more interesting than in
the previous κ ′-loops on κ-trunk case. Indeed, the loops traced by this SLE1

κ(ρ)

process will still be all on the right-hand side of the trunk, but this time the trunk
is nontrivial.

More precisely, the fact that loops are all on the right-hand side of the trunk
implies that the BCLE�κ (ρL) has in fact no true loops. In other words, the
bSLEκ(ρL) just goes along the boundary counterclockwise, which means that
ρL = κ − 4 and therefore ρR = −κ/2, and:

COROLLARY 7.6. The trunk of the totally asymmetric bSLE1
κ is a bSLEκ ′(0).

As we discuss below, this is not surprising in view of the discrete Edwards–
Sokal couplings. A similar statement holds for the case β = −1: The trunk of
the totally asymmetric bSLE−1

κ is a bSLEκ ′(κ ′ − 6).
More generally, the constraints on the ranges of ρR and ρL do show why in fact,

in Theorem 7.4, ρ ′(β, κ) will take its value only in [κ ′−6, 0] and does not cover
the entire range of admissible values [κ ′/2 − 4, κ ′/2 − 2] where BCLEκ ′(ρ ′)
processes exist. In fact, our proof will show that the map β 7→ ρ ′(β, κ) is a
increasing bijection from [−1, 1] onto [κ ′ − 6, 0].

The reader might be a little bit puzzled by the fact that the trunk of bSLE1
κ

tends to somehow be more to the right than the trunk of bSLE−1
κ for κ ∈ (8/3, 4),

whereas clearly, for κ ′ ∈ (4, 8), the definition shows that the larger β is, the more
to the left the trunk of bSLEβκ ′ is. More generally, it may seem counterintuitive
that β 7→ ρ ′(β, κ) turns out to be increasing when κ ∈ (8/3, 4) while β 7→
ρ(β, κ ′) from Theorem 7.2 must clearly be decreasing when κ ′ ∈ (4, 8). Here,
one should bear in mind that the principal value correction in the definition of
the driving function for bSLEβκ when κ < 4 creates a compensation to the β-
dependent ‘push’ that was due to the status of the loops, as opposed to the case
κ ′ > 4 where no such compensation is present.

7.3. Consequences for CLEκ : Edwards–Sokal couplings in the continuum.
We now go through some consequences of Theorems 7.2 and 7.4 for CLEs
themselves. First, we note that they exactly provide the missing items that turn
the conditional statements of Propositions 4.1 and 6.1 into plain statements and
provide a description of the CPIs in CLEβκ carpets for κ ∈ (8/3, 4) as bSLEκ ′(ρ ′)
processes, and of colored CLEβκ ′ interfaces as bSLEκ(ρ) processes. For the record
and future reference, let us state this formally:
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THEOREM 7.7. (i) For each κ ′ ∈ (4, 8) and each β ∈ (−1, 1), the colored
CLEβκ ′ percolation interface is the trunk of the full bSLEβκ ′ that can be used
to construct the CLEβκ ′ . It is a continuous curve and its marginal distribution
is that of a bSLEκ(ρ) for ρ = ρ(β, κ ′).

(ii) For any κ ∈ (8/3, 4) and β ∈ [−1, 1], there exists a unique (in distribution)
CPI in CLEβκ . The joint distribution of this CPI with the CLEβκ loops that it
intersects is that of the trunk and the loops drawn by a bSLEβκ . The marginal
(that is ‘annealed’ in the terminology used for random walks in random
environments) law of the CPI is that of a bSLEκ ′(ρ ′) for ρ ′ = ρ ′(β, κ).

Let us now explain how Theorem 7.4 makes it possible to construct an entire
CLEκ for κ ∈ (8/3, 4) using an iteration of BCLEs.

Let us first consider the case where β = 1. Suppose that κ ∈ (8/3, 4), and
start with the setup of Theorem 7.4 for β = 1 (which is that of Corollary 7.6):
Sample first a BCLE�κ ′ (0) (recall that this corresponds to the boundary-touching
loops of a CLEκ ′). Then, inside all the true loops of this BCLE�κ ′ (0), sample
independent BCLE	κ (−κ/2) processes. Theorem 7.4 states that the obtained
picture can be viewed as a bSLE1

κ branching tree starting from one boundary
point and targeting all other boundary points. This means that the collection of
all true SLEκ loops that have been traced can be viewed as being part of the
same CLEκ , and that in order to find the missing CLEκ loops, one would have to
continue exploring via the branching tree in the remaining unexplored regions.
Here, we note that there are two types of unexplored regions where one has not
launched the tree yet: Those that correspond to false loops of the BCLE�κ ′ (0), and
those that correspond to false loops of one of the BCLE	κ (−κ/2). However, in
both cases, the conditional joint law of the missing CLEκ loops in those regions is
just given by independent CLEκ collections in each of these regions (this is just
due to the branching bSLEκ construction of CLEκ). In particular, one can just
iterate the same construction inside each of these regions: Sample a BCLE�κ ′ (0)
and then an independent BCLE	κ (−κ/2) inside each of its true loops and so on.

For each given point z in D, the number of such iteration steps required
to find the CLEκ loop that surrounds it is almost surely finite (and follows a
geometric random variable because the probability of success at each iteration
step is independent of z by conformal invariance). It follows that:

THEOREM 7.8. This iterative BCLE�κ ′ (0) / BCLE	κ (−κ/2) procedure constructs
exactly an entire CLEκ .

We can furthermore note that in this construction, the drawn BCLE�κ ′ (0) loops
correspond to ‘critical percolation clusters’ drawn by a CPI in the CLE1

κ carpet,
as in (ii) of Theorem 7.7.
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Let us make the following comment before discussing the generalization to
other values of β: As we have already mentioned, prior to the present paper,
the only existence proof of CLEκ for κ ∈ (8/3, 4) was based on the loop-soup
construction in [58]. More precisely, this was the only existing proof of the fact
that bSLEβκ exploration trees starting from different points would all construct the
same law of locally finite collections of simple loops — one can for instance keep
in mind that the coupling of the CLEκ with the GFF is more complicated for κ 6=
4 than in the case κ = 4 and depends for instance on the choice of the starting
point of the chosen tree. However, this new construction of CLEκ provides an
alternative derivation of the fact that this collection of loops is defined in a root-
invariant way. Indeed, we use here only the fact that the BCLEs are root-invariant
(as one constructs the CLEs via iteration of two BCLEs) and this fact follows
from the reversibility of the SLEκ(ρ) processes for ρ > −2 derived via the GFF
couplings in [38, 39].

We now turn to the generalization of Theorem 7.8 to other values of β, which
will also follow from Theorem 7.4. It will provide for each value of β ∈ [−1, 1]
a similar yet different BCLE-based construction of CLEκ , or more precisely, a
joint construction of CLEβκ and of ‘critical percolation clusters’ in the CLEβκ
(where the CLEβκ -loops are considered to be open or closed depending on their
label). Let us describe this first in the symmetric case where β = 0. Suppose
that κ ∈ (8/3, 4), and start again with the setup of Theorem 7.4, but for β = 0:
Sample first a BCLE�κ ′ ((κ

′
− 6)/2) processΛ′. Then, inside all the false loops of

Λ′ and all the true loops ofΛ′, sample independent BCLEκ((κ/4)−2) processes.
However, depending on whether one is in a true or false loop of Λ′, one will
sample a BCLE	κ (κ/4− 2) or a BCLE�κ (κ/4− 2).

This time, Theorem 7.4 states that the obtained picture can be viewed as a
bSLE0

κ branching tree starting from one boundary point and targeting all other
boundary points. Exactly the same procedure as before then shows that one can
just iterate the same construction inside each of the false loops of each of these
BCLEκ((κ/4)−2)’s, and eventually, one constructs the whole symmetric bSLE0

κ

branching tree. Hence:

THEOREM 7.9. This iterative BCLE�κ ′ ((κ
′
− 6)/2)/(BCLE�κ (κ/4 − 2) or

BCLE	κ (κ/4− 2)) procedure constructs exactly an entire CLE0
κ .

For the case of general β ∈ (−1, 1), the similar procedure works and
constructs a CLEβκ , except that one has to sample at each step a BCLE�κ (ρL)

or a BCLE	κ (ρR) depending on whether one is a true loop or a false loop of the
BCLE�κ ′ (ρ

′).

https://doi.org/10.1017/fmp.2017.5 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2017.5


CLE percolations 65

Finally, let us properly state and prove the actual Edwards–Sokal coupling
based on coloring the clusters of a nested CLEκ ′ . Here, we consider a nested
CLEκ ′ Λ′ for κ ′ ∈ (4, 6). As explained in Section 1, in view of the FK framework,
in the setting of wired boundary conditions it is natural to use Λ′ to construct
clusters as follows. Each loop of Λ′ is assigned an even or odd parity depending
on its level of nesting inΛ′, because the loops correspond in an alternate fashion
to outside and inside boundaries of ‘clusters’. We take the boundary of the
domain to have even parity (and the outermost loops of Λ′ have odd parity).
If L is an even parity loop (or the boundary of the domain), then we associate
with it a cluster C by taking C to be the set of points surrounded by L minus
all of the points surrounded by a loop of odd parity surrounded by L. We set the
color of the outermost cluster to be white and for a given p ∈ (0, 1), we assign
the colors to the other clusters independently, with probability p to be white and
with probability 1− p to be black. We then consider clusters of black clusters.

THEOREM 7.10. For each value of κ ′ ∈ (4, 6) there exists p(κ ′) ∈ (0, 1) such
that in this construction, the collection of all outermost outer boundaries of
clusters of black CLEκ ′ clusters has the law of a CLEκ .

This probability p(κ) is expressed in terms of the function ρ(β, κ ′) of
Theorem 7.4 via

ρ(1− 2p, κ ′) = −κ/2.

In the special case where κ ′ = 16/3, we have p(κ ′) = 1/2.

Let us mention already (see the discussion in Section 7.4) that it will be a
consequence of [41] that for all κ ∈ (8/3, 4), p(κ) = 1/(4 cos2(πκ/4)), which
will solve [55, Problem 8.10].

As we now see, the proof will use both Theorems 7.4 (via Theorem 7.8) and
7.2, and it will make use of the fact that in the latter, when ρ ′ = κ ′−6 then ρL =

−κ/2 while conversely, in the former, when ρ = −κ/2, then ρ ′L = κ
′
− 6. This

relation between these coefficients can somehow be interpreted as the continuous
counterpart of the fact that Potts and FK models with free boundary conditions
correspond to each other, that Potts and FK models with uniform color/wired
boundary conditions correspond to each other too, and that the dual of the critical
FK model with wired boundary conditions is exactly the critical FK model with
free boundary conditions.

Proof of Theorem 7.10. We are going to construct the nested CLEκ ′ iteratively,
and we call it Λ′. We start with the same setup as in Theorem 7.8:

Suppose that we first sample a BCLE�κ ′ (0), which will be the boundary-
touching loops of our nested CLEκ ′ Λ′. Recall that this can be interpreted as
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the continuous analog of the boundary-touching loops of an FK model with free
boundary conditions and that the corresponding false loops would correspond to
the boundary-touching loops of the model with wired boundary conditions.

In order to construct the rest of the nested CLEκ ′ Λ′, one then has to iterate
this procedure in each of the remaining connected components, but theΛ′-parity
of the drawn loops at the next iterative step will depend on whether one is inside
a true or a false loop of this BCLE�κ ′ (0): In the false loops, the situation is as at
the beginning, and the first loops that one will draw will be odd loops of Λ′. We
leave the exploration of what happens in these false loops aside for the moment.
In the true loops, however, the first loops that one will draw will be even loops
of Λ′, and we are going to continue the exploration.

Now, in each of these true loops of the BCLE�κ ′ (0), instead of simply only
drawing another BCLE�κ ′ (0) whose loops correspond to even loops of the nested
CLEκ ′ , we want in fact to explore a CLEβκ ′ in order to also be able to discover the
colors of the corresponding clusters. For this, it will be handy to use Theorem 7.2
in order to draw also the BCLE that corresponds to the interfaces between the
colored CLEβκ ′ clusters.

We start therefore to sample in each of the connected components inside
the true loops of the BCLE�κ ′ (0), an independent BCLE�κ (−κ/2). Note that
from Theorem 7.8, these BCLE�κ (−κ/2) loops form part of a CLEκ in the
original domain (this is due to the fact that ρR = −κ/2 when ρ ′ = 0 in
Theorem 7.4); recall also from Proposition 7.1 that, modulo orientation, the loops
of a BCLE�κ (−κ/2) are equal in distribution to those of a BCLE	κ (−κ/2)).

But by Theorem 7.2, if we then sample independently a BCLE�κ ′ (κ
′
− 6)

(respectively a BCLE	κ ′ (2 − κ
′/2)) inside each of the false (respectively true)

loops of these BCLE�κ (−κ/2) loops, then we have drawn (part of) the loops in
a nested CLEκ ′ — we consider them as being part of Λ′. Furthermore, if one
assigns a color to these loops according to their orientation, that is, to whether
they lie in false or true loops of these BCLE�κ (−κ/2), then these colored CLEκ ′
loops correspond to a randomly colored CLEκ ′ where loops are independently
chosen to be black or white according to a (1 + β)/2 versus (1 − β)/2 coin,
where β is chosen so that

ρ(β, κ ′) = −κ/2.

The BCLE�κ (−κ/2) loops are then exactly interfaces between clusters of black
loops and clusters of white loops. We note that these colored CLEκ ′ loops are
all even loops, that is, outer loops of a cluster of Λ′, so that the color of that
cluster can be simply defined to be the color of that loop if p = (1 − β)/2.
Then, we get readily that the BCLE�κ (−κ/2) loops correspond exactly to the
outer boundary of a cluster of black clusters inΛ′, and that it also corresponds to
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an inner boundary of the cluster of white clusters inΛ′ that touches the boundary
of the domain.

To the inside of the BCLE�κ (−κ/2)’s, we do not need to explore anymore,
since we are inside the outer boundary of a cluster of black clusters. However,
we need to continue to explore in both the components that are surrounded by
false loops of the BCLE�κ ′ (κ

′
−6)’s and in the components that are surrounded by

the true loops of the BCLE�κ ′ (κ
′
− 6). In both cases, the conditional distribution

of the loops ofΛ′ will be simply that of a nested CLEκ ′ in these components, but
the parity rule for the loops are different. Inside the true loops, the parity rule is
like at the beginning (the first encountered loops will be odd loops for Λ′), and
we leave the exploration of the inside of these true loops aside for the moment.

In the components which are surrounded by false loops of the BCLE�κ ′ (κ
′
−6),

we are in the situation where the first encountered loops will be even loops for
Λ′. So we start the same procedure again by launching first a BCLE�κ (−κ/2)
and then a BCLE�κ ′ (κ

′
− 6) in its false loops, and so on.

Summing up, we see that in fact we have a mechanism where (using the fact
that true loops for a BCLEκ ′(κ ′ − 6) are the false loops for a BCLEκ ′(0) and
vice versa), we iteratively perform the following steps (here we simply omit the
orientation of the BCLEs as they play no role in these statements):

Step 1: Launch a BCLEκ ′(0), and leave the false loops aside.

Step 2: In the true loops defined by Step 1, we launch a BCLEκ(−κ/2). These
true loops are outermost outer boundaries of clusters of black clusters of
Λ′.

Step 3: Inside the false loops defined at Step 2, we go back to Step 1.

We see that this is exactly the procedure described in Theorem 7.8 that constructs
a CLEκ , except that here we stopped exploring in the false loops of the
BCLEκ ′(0). However, as we have noted, inside of all these loops, the conditional
law ofΛ′ and of the parity of the loops is (modulo conformal invariance) exactly
the same as the one we started with, so we can launch the same procedure at Step
1 inside each of them and iterate.

If we iterate this indefinitely, then we, on the one hand, discover the entire
family of outer boundaries of outermost black clusters of Λ′, and on the other
hand, by Theorem 7.8, we know that they form exactly a CLEκ . This proves the
main statement in the theorem.

To conclude, we note that p is equal to 1/2 when β = 0, which happens for
ρ = (κ − 6)/2 by (7.4). This quantity is equal to −κ/2 only for κ = 3.

Let us stress that the fact that in Theorem 7.10 one has that p(κ ′) = 1/2 for
κ ′ = 16/3, or the fact that in Theorem 7.2 one has ρ ′R = ρ

′

L = κ
′
− 6 only when
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κ ′ = 16/3 provide evidence, based on these CLE considerations only, that the
only possible conformally invariant scaling limit of the critical FKq=2 model and
of the Ising model have respectively to be CLE16/3 and CLE3.

Finally, let us remark that Theorem 7.2 shows that for any β, if one starts with
a CLEβκ ′ , then the boundary-touching interfaces between the clusters of black
clusters and the clusters of white clusters, will have the law of a BCLEκ(ρ) for a
corresponding value of ρ (note that this is just a feature about non-nested CLEκ ′).
One can then couple together these laws when letting β varying in [−1, 1] for
each given CLEκ ′ by associating to each cluster a uniform random variable in
[0, 1]. We show in [42] that if one fixes two boundary points and considers the
collection of such interfaces between two fixed boundary points then one gets a
family of paths which have the same law as the fan of GFF flow lines considered
in [37] with certain GFF boundary conditions.

7.4. On the relationship between β and ρ. As we have already mentioned
several times, this paper does not present a derivation of a general formula
relating β and ρ with κ ′ or κ in Theorems 7.2 and 7.4. Similarly, except in the
case that κ = 3 and κ ′ = 16/3, we have not identified in this paper the value of
p(κ) in Theorem 7.10.

However, in our upcoming [41], we plan to show, building on the results and
ideas of present paper and combining them with quantum gravity ideas and
techniques from [13], that:

• When κ ′ ∈ (4, 8), the relation between β, κ ′ = 16/κ and ρ in Theorem 7.2
(so that the trunk of a bSLEβκ ′ is a bSLEκ(ρ)) is given by

1− β
2
=

sin(πρ/2)
sin(πρ/2)− sin(π(κ − ρ)/2)

. (7.6)

• When κ ∈ (8/3, 4), the relation between β, κ ′ = 16/κ and ρ ′ in Theorem 7.4
(so that bSLEκ ′(ρ ′) is the trunk of a bSLEβκ ) is given by

1− β
2
=

sin(πρ ′/2)
sin(πρ ′/2)− sin(π(κ ′ − ρ ′)/2)

. (7.7)

Note that the formulas look identical but the range of admissible values for which
the formulas apply are different. In particular, for κ ′ fixed, when β varies from
−1 to 1 then ρ spans indeed all the admissible interval [−2, κ − 4] in the first
formula, but in the second formula, when κ ∈ (8/3, 4) is fixed and β varies
from −1 to 1, then the range of obtained values is only [κ ′ − 6, 0] (which is not
surprising in view of Theorem 7.4).

https://doi.org/10.1017/fmp.2017.5 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2017.5


CLE percolations 69

Furthermore, this formula for ρ = −κ/2 will show that p(κ ′) in Theorem 7.10
is equal to

p(κ ′) =
1

4− 4 sin2(πκ/4)
=

1
4 cos2(πκ/4)

=
1

4 cos2(4π/κ ′)
. (7.8)

This is of course of interest because in the discrete Edwards–Sokal coupling for
q-Potts models and FKq-models, the corresponding probability is equal to 1/q.
It for instance explains why κ ′ = 4 and κ ′ = 24/5 would respectively correspond
to the 4 and 3-state FK–Potts-models respectively, because they give rise to the
values p = 1/4 and p = 1/3. It gives more generally a justification for the
relation

q = 4 cos2(4π/κ ′) (7.9)

between the value of q for a critical FKq-model and its conjectured CLEκ ′
scaling limit. See also [44] for another approach to this formula via crossing
probabilities. Note that the existence of the scaling limit remains conjectural for
most FK models on lattices, but that it is established (with the identification of
the limit where the same relation (7.9) appears) for FK models on random planar
maps with respect to the so-called peanosphere topology in [13, 57]. See also
[17–20, 35].

7.5. Revisiting CLE0
4 percolation. Before turning our attention to the proof

of these results, let us briefly revisit our study of CLE0
4 percolation in this BCLE

framework. What follows are a few comments on how to reformulate the ideas of
the CLE0

4 percolation proof that we presented in terms of BCLE, that will serve
as a warm-up for the proofs of the two theorems that we have just stated.

Let us first give a BCLE on BCLE version (Figure 7.4), that is, a loop version,
of our construction of one SLE4(ρ;−2 − ρ) path and of the CLE0

4 loops that
it intersects: Let h be a GFF on D with zero boundary conditions and fix
ρ ∈ (−2, 0) (recall that (−2, 0) is the range of ρ values such that a classical
SLE4(ρ) bounces off the boundary — more precisely of one side of the boundary
between its starting and end points). We can naturally define deterministically a
BCLE�4 (ρ) (that we denote by Λ) from h as the collection of loops which are
formed by the boundary branching bSLE4(ρ) tree of level lines with boundary
conditions given by λρ on their left and by λ(2+ρ) on their right. In other words,
when L is a true loop (respectively a false loop) of Λ then the boundary data for
the conditional law of h inside of L given the branching tree is equal to λ(2+ρ)
(respectively λρ).

We now define the nested BCLE�4 (ρL)’s and BCLE	4 (ρR)’s inside the false
and true loops of Λ respectively, and for reasons that will become immediately
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Figure 7.4. A sketch of a BCLE4(ρ) and of a nested BCLE4 in two of the BCLE
loops. The nested (yellow and blue) loops are part of a CLE0

4, yellow on gray
are + loops, blue on white are − loops. Not all CLE4 are discovered by this
two-level nesting, examples of seven missing loops are drawn in dotted lines.

clear, we choose to define them as level lines of −h rather than h (this type of
feature is reminiscent and closely related to the fact that when one couples an
SLEκ from a to b with an SLEκ ′-type process from b to a via the GFF the former
is coupled with h and the latter is coupled with −h). With this coupling, we get
that the boundary data of h in the true loops of the different BCLE	4 (ρR)’s is
λ(4 + ρ + ρR), while it is λ(ρ − ρL − 2) inside the true loops of the different
BCLE�4 (ρL)’s. If we choose ρL = ρ =−2−ρR ∈ (−2, 0), then the heights inside
of the true loops of the BCLE	4 (ρR)’s and the true loops of the BCLE�4 (ρL)’s
are respectively given by 2λ and −2λ. That is, they correspond to the same
values that one sees inside the loops of the CLE4 in the CLE4/GFF coupling.
We also note that the heights inside of the false loops of the BCLE	4 (ρR)’s and
inside of the false loops of the BCLE�4 (ρL)’s are both equal to 0. Modulo
checking the Minkowski dimension statement, we can therefore directly
apply Lemma 5.2, and conclude that the collection of the true loops of the
BCLE	4 (ρR) and of the BCLE�4 (ρL) are exactly the CLE0

4 loops that intersect the
BCLE4(ρ) process.

Let Γ be the collection of BCLE�4 (ρL) and BCLE	4 (ρR) loops coupled with h
as described just above. Assuming that Λ is locally finite, one can define a
path ηΛ which follows along the true (clockwise) loops of Λ, in the order in
which they are discovered along the counterclockwise arc of ∂D starting from x .
Assuming further that the entire collection Γ is locally finite, we can then
define another exploration path ηΓ which follows along the loops of Γ ordered
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according to when and starting from where they are first visited by ηΛ. As all
of the loops of Λ and Γ are almost surely determined by h (since they were
generated from level lines in the usual sense) it follows that ηΛ and ηΓ are almost
surely determined by h. One can then adapt in this loop case the arguments of
the CLE0

4 percolation section, to see that ηΓ , when stopped at a stopping time, is
a local set of the GFF with an explicitly defined harmonic function, and that this
property implies that it is a ‘full bSLEβκ ′ loop’ and that ηΛ is its ‘trunk.’

In the general κ ∈ (8/3, 4) and κ ′ ∈ (4, 6) case, the strategy will be quite
similar. We start by defining ηΛ and ηΓ in a similar way, then we study its
coupling with the GFF, and in particular see that when one traces ηΓ up to some
stopping time, one constructs a local set with fully described harmonic functions,
that in turn will enable us to identify ηΓ in terms of SLEβκ ′ paths and ηΛ as its
trunk. Also, in the general κ, κ ′ setting, we derive the continuity of bSLEβκ and
bSLEβκ ′ from the continuity of space-filling SLEκ ′ established in [34] (note that
this fact was instrumental to establish the local finiteness of CLEκ ′ in [34]).

8. Imaginary geometry background and some first consequences

We begin with a review of imaginary geometry ideas and results. We then
use some of these results to prove the continuity of the process which traces the
loops of a BCLEκ(ρ) or BCLEκ ′(ρ ′) process and then of the process that traces
the nested BCLEs. In the present section, η and η′ will stand for curves which
are different from earlier.

8.1. SLE/GFF couplings. We turn to give a brief overview of the so-called
imaginary geometry of the GFF [34, 37–39]. This terminology refers to the
theory of the flow lines of the formal vector field eih/χ where h is an instance
of the GFF and χ > 0. These are paths η which formally solve the ODE
dη(t)/dt = exp(ih(η(t))/χ). As in the case of GFF level lines described in
Section 5.1, this description is nonrigorous because h takes values in the space
of distributions and does not have values at points, but there is a way make sense
of this which is analogous to the construction of GFF level lines and loosely goes
as follows. The general idea is that, if h were a smooth function and η its flow
line as described by the previous ODE, then η determines the values of h along
the trajectory of h since the condition that η is a flow line of h gives the direction
of the arrows of the vector field exp(ih/χ) along η. Moreover, one can change
the values of h off the range of η without affecting that η solves the equation.
This suggests the following strategy to make sense of solutions to the flow line
ODE in the case that h is a GFF:
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First sample the random curve η according to a well-chosen distribution (that
turns out to be an SLEκ(ρ)-type path, depending on the boundary conditions
for h) and view it as a local set of a certain GFF with corresponding boundary
conditions. That is, we associate deterministically with η a harmonic function
in the complement of η, define a GFF in the complement of η with these
boundary conditions, and then check that, viewed as a distribution on the entire
domain, this procedure yields a GFF h with certain boundary conditions. We
then check that in this coupling between h and η, the curve η is in fact a
deterministic function of h. This strategy has been implemented and made
precise in [11, 34, 37, 51, 56]. The version of the statements of this type that
we need (and briefly recall now) are given in [37, Theorem 1.2].

Note that if h is a smooth function and ψ : D̃ → D is a conformal
transformation, then by the chain rule ψ−1

◦ η is a flow line of h ◦ ψ − χ argψ ′.
With this in mind, we define an imaginary surface to be an equivalence class of
pairs (D, h) under the equivalence relation:

(D, h)→ (ψ−1(D), h ◦ ψ − χ argψ ′) = (D̃, h̃). (8.1)

We frequently use this equivalence relation when we describe the GFF and its
boundary data in various domains. In particular, a GFF h with boundary data h0

in D will be considered to be equivalent (via the mapping ψ) to a GFF h̃ with
boundary data h̃0 in D̃. Note in particular that h0 is harmonic if and only if h̃0

is harmonic. Note also that if D̃ = H and D is a domain with smooth boundary
so that ψ ′ is defined everywhere on the boundary, the function argψ ′ is equal
to the harmonic extension of the winding of the boundary to the interior of the
domain. For general domains with fractal boundary on which ψ ′ is not defined
on the boundary, we have that ψ ′ is defined in the interior and argψ ′ still has the
interpretation of corresponding to the harmonic extension of the winding of the
domain boundary.

8.1.1. Boundary data. Let us now explain in detail how to couple an SLEκ(ρ)
type curve with several force points with a GFF with a given well-chosen
boundary condition h0 on D. This coupling will be invariant under the
equivalence rule (8.1) for a well-chosen χ = χ(κ), so it is enough to describe it
in one particular domain with given starting and end points. As is customary in
the SLE framework, we describe this now in H for an SLE going from 0 to∞.
In the remainder of this paper, for κ ∈ (0, 4) and κ ′ = 16/κ , we let

λ =
π
√
κ
, λ′ =

π
√
κ ′
, and χ =

2
√
κ
−

√
κ

2
. (8.2)
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Note that 2(λ − λ′) = πχ . We could also define χ ′ = −χ , but we prefer to
keep χ , as this will be easier when we consider simultaneously SLEκ and SLEκ ′
processes coupled with the same instance of the GFF.

Let us now consider an SLEκ(ρ) process η from 0 to∞ in H for

ρ = (ρL
; ρR) = ((ρk,L, ρk−1,L, . . . , ρ1,L), (ρ1,R, . . . , ρ`,R))

with force points located at x = (xk,L < · · · < x1,L < 0 < x1,R < · · · < x`,R). As
explained in [37, Section 2], there is no problem to define such a process as long
as for all j 6 k and i 6 `, ρ j,L := ρ1,L + · · · + ρ j,L > −2 and ρ i,R := ρ1,R +

· · · + ρi,R > −2 and it is a direct generalization of the SLEκ(ρ) processes that
we have discussed before. It is shown in [37] that it is generated by a continuous
curve η in H. In fact, if ρ i,q 6 −2 for some i, q , there is no difficulty in making
sense of the process and it also follows from [37] that it is continuous, but only
up to the first time that the driving function collides with one of the force points
with ρ i,q 6 −2. This time is called the continuation threshold in [37].

We now define the boundary conditions of the GFF with which we want to
couple with this curve. We let h0 denote the bounded harmonic function in H
with boundary conditions

−λ(1+ ρ j,L) for x ∈ (x j+1,L, x j,L] and 0 6 j 6 k
λ(1+ ρ i,R) for x ∈ (xi,R, xi+1,R] and 0 6 i 6 `,

(8.3)

with ρ0,L = ρ0,R = 0, x0,L = x0,R = 0, and xk+1,L = −∞, x`+1,R = ∞.
For any t > 0, we define the harmonic function ht in the complement of the

curve η[0, t] with boundary data that can be informally defined as follows: On
the left side of the curve η[0, t] at η(s), it is equal to −λ′ + χ · winding, where
the winding is the winding of η between η(0) and the considered point η(s). On
the right side of the curve, the boundary data is λ′+χ ·winding, and on ∂H, one
uses the same boundary data as h0. More explicitly, ht = h0 ◦ ft−χ arg f ′t where
ft = gt−Wt and gt is the unique conformal map from the unbounded component
of H\η([0, t]) to H with gt(z)−z→ 0 as z→∞. Note that this definition easily
extends to the bounded connected components of the complement of η[0, t], if
there are any.

It then turns out that for any stopping time τ , the curve η up to τ and the
harmonic function hτ define a local set of a GFF h in H with boundary conditions
h0 (this result is stated [37, Theorem 1.1], though [37] is not the first place where
this result is proved; see [11, 51, 56]).

In our figures, we often indicate the boundary data along curves and boundary
segments using the notation x

:
. This notation is explained in detail in [37,

Figure 1.10] (see also [37, Figure 1.9]). This is illustrated in the case that
k = ` = 1 in Figure 8.1.
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(a) (b)

Figure 8.1. (a) Boundary data and the corresponding SLEκ(ρ1,L; ρ1,R) flow line.
(b) Boundary data and the corresponding SLEκ ′(ρ ′1,L; ρ

′

1,R) counterflow line.

Again, as shown in [37] the curve η can then be deterministically recovered
from the GFF. For the reasons mentioned above, it is referred to as the flow line
starting at 0 and targeted at ∞ of the GFF h with the boundary conditions h0.
This flow line is targeting∞, but it coincides with the flow line targeting another
point of the same GFF (defined modulo the imaginary geometry equivalence)
until the first time at which η disconnects it from∞. This point will be important
when we discuss the couplings of BCLE with the GFF.

In view of the imaginary geometry, it is natural to define the flow line with
angle θ associated with a GFF (with certain boundary conditions) h, to be the
flow line of h + c, where c(θ) := θχ . This terminology is motivated by the
interpretation of the path as a flow line of the vector field eih/χ . In particular,
adding c(θ) to the field has the interpretation of rotating all of the vectors by the
angle θ .

The same story works for an SLEκ ′(ρ ′) process starting from 0. However, we
change signs in order to accommodate for the χ = −χ ′ change. The boundary
conditions in this case are given by:

λ′(1+ ρ ′j,L) for x ∈ (x j+1,L, x j,L] and 0 6 j 6 k
−λ′(1+ ρ ′i,R) for x ∈ (xi,R, xi+1,R] and 0 6 i 6 `

(8.4)

with otherwise the same conventions as indicated above. This notation along
with the boundary data for the coupling is illustrated in the case that k = ` = 1 in
Figure 8.1. We refer to η′ as the counterflow line of h starting from 0. The reason
for the differences in signs and terminology is that it enables us to couple flow
and counterflow lines with the same field, in such a way that the latter naturally
grows in the opposite direction of the former.
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Table 1. Boundary data for coupling SLEκ(ρ1; ρ2) and SLEκ ′(ρ ′1; ρ
′

2) from 0 to∞ with
force points at 0− and 0+ with a GFF on H. Also shown is the boundary data for coupling
clockwise and counterclockwise BCLEκ(ρ) and BCLEκ ′(ρ ′) with a GFF h on H using a
branching flow or counterflow line starting from 0.

R− R+
SLEκ(ρ1; ρ2) −λ(1+ ρ1) λ(1+ ρ2)

SLEκ ′(ρ ′1; ρ
′

2) λ′(1+ ρ ′1) −λ′(1+ ρ ′2)
BCLE�κ (ρ) −λ(1+ ρ) −λ(1+ ρ)− 2πχ
BCLE	κ (ρ) λ(1+ ρ)+ 2πχ λ(1+ ρ)
BCLE�κ ′ (ρ

′) λ′(1+ ρ ′) λ′(1+ ρ ′)− 2πχ
BCLE	κ ′ (ρ

′) −λ′(1+ ρ ′)+ 2πχ −λ′(1+ ρ ′)

These couplings, and their embedded possible change of targets make it
possible to couple entire BCLE processes with a GFF, once the starting point
of the BCLE tree is chosen. Table 1 lists the various boundary conditions for
SLE with force points located at 0− and 0+.

8.1.2. Interaction rules. The description of how the flow and counterflow lines
starting from different boundary points and with different angles interact with
each other is provided in [37] (paths starting from boundary points) and [34]
(paths starting from interior points). We now recall the elements of this that will
be important for this article.

Suppose that h is a GFF on H with piecewise constant boundary data as before.
For x1 < x2 and θ1, θ2 ∈ R, let ηxi

θi
be the flow line of h with angle θi starting

from xi . In [37, Theorem 1.5], it is described how ηx1
θ1

and ηx2
θ2

interact (that is, the
conditional law of the latter given the former, the relative position of the latter
with respect to the former, and so forth.). In this article, we need one particular
version of this. Namely, in the case that the boundary data of h is given by a
(respectively b) on R− (respectively R+) and x1 = x2 = 0 (so both paths start
from the origin) and θ1 < θ2. In this case, η1 = η

0
θ1

almost surely lies to the right
of η2 = η

0
θ2

. Moreover, ηi is marginally an SLEκ(ρ i
1; ρ

i
2) process with

ρ i
1 = −

a + θiχ

λ
− 1 and ρ i

2 =
b + θiχ

λ
− 1.

The conditional law of η1 given η2 is that of an SLEκ((θ2 − θ1)χ/λ − 2
(b + θ1χ)/λ − 1) independently in each of the components of H \ η2 which
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(a) (b) (c)

Figure 8.2. (a) Two flow lines ηθ1, ηθ2 starting from the origin with angles θ1 < θ2

of a common GFF h on H with the indicated boundary data. (b) The image of ηθ2

(given ηθ1 ) via the conformal transformation ψ from the component which is to
the left of ηθ1 (to H) is then a flow line of the image GFF with new boundary
data. (c) We can couple flow and counterflow lines into the same imaginary
geometry. When θ = π/2 (respectively θ = −π/2), the flow line is equal to
the left (respectively right) side of the counterflow line. Note that for θ = π/2
(respectively θ = −π/2) the boundary data on the left (respectively right) side
of the flow line is the same as the boundary data on the corresponding side of the
counterflow line.

are to the right of η2 and the conditional law of η2 given η1 is that of an
SLEκ(−(a + θ2χ)/λ − 1; (θ2 − θ1)χ/λ − 2) independently in each of the
components of H \ η1 which are to the left of η1. See Figure 8.2 (see also
[37, Figure 1.20]).

The SLE/GFF coupling will also play an important role in this article because
it provides a natural coupling between various SLE processes. We now describe
one particular example which will be useful in this article.

Shown on the right side of Figure 8.2 is a GFF on the strip S = R × [0, 1]
with the boundary data indicated. The flow line ηθ starting from x with angle
θ is marginally an SLEκ(ρ) process and the counterflow line η′ starting from y
is marginally an SLEκ ′(ρ ′) process for some ρ and ρ ′. If θ > π/2 (respectively
θ < −π/2), then ηθ will lie to the left (respectively right) of η′. If θ = π/2
(respectively θ = −π/2) then ηθ is equal to the left (respectively right) side of
η′. Finally, if θ ∈ (−π/2, π/2) then ηθ is contained in η′. Suppose for simplicity
that θ > π/2 so that ηθ is to the left of η′. Then the results of [37] imply that we
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can draw ηθ and η′ in either order. In particular, if we first draw all of η′, then ηθ
is given by the flow line with angle θ of the restriction of h to the component of
S \ η′ which is to the left of η′ Conversely, if we first draw all of ηθ , then η′ is
given by the counterflow line of the restriction of h to the component of S \ ηθ
which is to the right of ηθ . This follows because:

• In general, the flow and counterflow lines of GFFs are almost surely
determined by the GFF [37, Theorem 1.2] (the version of this for paths
which start at interior points is given in [34, Theorems 1.2, 1.4, 1.6].)

• The flow/counterflow lines coupled with a GFF are characterized by the
boundary data of the conditional law of the field given the path. This, in
particular, implies that there can be at most one flow line coupled with a GFF
with each given angle [37, Theorems 1.1, 2.4].

In our setting, local set theory tells us that the boundary data for the conditional
law of h given all of η′ and a segment of ηθ takes the form of the flow line of
the GFF given by h conditional on η′ along ηθ . Therefore, by the points above,
ηθ is the flow line of this GFF with angle θ . Conversely, the boundary data for
the conditional law of h given all of ηθ and a segment of η′ takes the form of
a counterflow line of the GFF given by h conditional on ηθ along η′. Thus, as
before, η′ is the counterflow line of this GFF. In summary, one can draw ηθ and
η′ in any order without affecting the final path configuration. This type of idea
will be of course very useful in order to derive our BCLE duality relations.

8.1.3. BCLE and the GFF. As mentioned earlier, the target invariance which
is built into the SLE/GFF coupling makes it possible to couple the BCLE’s with
the GFF in a natural way. Namely, a BCLEκ(ρ) is constructed as a boundary
branching flow line targeted at every boundary point and a BCLEκ ′(ρ ′) is coupled
as a boundary branching counterflow line targeted at every boundary point. The
reason that this construction works is that, by [37, Theorem 1.2] we have that
the paths targeted at different points almost surely agree until the two points are
first separated. That is, the bSLEκ(ρ) processes naturally fit into the SLE/GFF
coupling framework.

The boundary data one uses to couple the different BCLEs (depending on κ , κ ′,
and the orientation) is the same as for the SLE-type processes and is summarized
in Table 1.

Since it will be important for our later arguments, we now explain how
one reads off the conditional law of the field inside of each BCLE loop. We
explain this in detail in the case of a BCLE�κ (ρ); the other possibilities are
analogous. (See Figure 8.3 for an illustration.) Suppose that h is a GFF on H
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(a) (b)

Figure 8.3. (a) A BCLE�κ (ρ) generated using a boundary branching flow line of a
GFF on H with boundary conditions given by−λ(1+ρ) (respectively−λ(1+ρ)
− 2πχ ) on R− (respectively R+). (b) The boundary data for the field h ◦ ϕ−1

−

χ arg(ϕ−1)′ where ϕ is a conformal transformation from a counterclockwise (top)
and clockwise (bottom) loop of the BCLE�κ (ρ).

with boundary conditions given by−λ(1+ρ) (respectively−λ(1+ρ)−2πχ ) on
R− (respectively R+). These are the boundary conditions to couple a bSLEκ(ρ)
hence BCLE�κ (ρ) starting from 0 with the GFF. Let Λ be the collection of
loops and false loops thus formed and let L ∈ Λ be a clockwise loop. Let
γ : [0, 1] → H be a parameterization of L which starts from the first point x
on L ∩ ∂H which is visited by the path which traverses ∂H counterclockwise
starting from 0. Then for each ε > 0 there exists z such that the right side of
γ ([0, 1 − ε]) is contained in the right side of the flow line of h starting from
0 and targeted at z. By [37, Proposition 3.8], we thus have that the boundary
data for the conditional law of h given Λ in the region U inside of L along
the right side of γ ([0, 1 − ε]) agrees with the boundary data for the conditional
law of h given the aforementioned flow line along the same boundary segment.
Since ε > 0 was arbitrary, this allows us to determine the boundary data for the
conditional law of h given Λ in L and it is the same as if L was equal to the
right side of a flow line starting from and terminating at z. Consequently, if ϕ is
a conformal transformation U → H which takes x to 0 and any other point to∞,
then h ◦ ϕ−1

− χ arg(ϕ−1)′ has the law of a GFF on H with boundary conditions
given by λ (respectively λ− 2πχ ) on R− (respectively R+).

One can similarly read off the boundary conditions for h given Λ along the
boundary of a region U which is surrounded by a counterclockwise loop in
Λ. Namely, if x is the point on ∂H as described above and ϕ is a conformal
transformation as described above, then h ◦ ϕ−1

− χ arg(ϕ−1)′ has the law of a
GFF on H with boundary conditions given by −λ + 2πχ (respectively −λ) on
R− (respectively R+).
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Table 2. Boundary data for the conditional law of a GFF h inside of the clockwise and
counterclockwise loops of a BCLE after applying a conformal change of coordinates
from the region surrounded by the loop to H which sends the marked point of the loop to
0 and any other point to∞. The boundary data for the conditional law does not depend
on whether we use BCLE� or BCLE	. Note that the heights on R− and R+ always differ
by 2πχ ; this is due to the change of coordinates formula (8.1).

R− R+
CW loop of BCLEκ(ρ) λ λ− 2πχ

CCW loop of BCLEκ(ρ) −λ+ 2πχ −λ

CW loop of BCLEκ ′(ρ ′) −λ′ −λ′ − 2πχ
CCW loop of BCLEκ ′(ρ ′) λ′ + 2πχ λ′

We note that the boundary data inside of the clockwise false loops and
counterclockwise loops of a BCLE	κ (ρ) takes exactly the same form.

The boundary data for the conditional law after conformally mapping to H in
all cases is summarized in Table 2.

8.2. Space-filling SLE and local finiteness. We turn to remind the reader of
the construction and continuity of space-filling SLEκ ′ . We then describe how it
is possible to extract the local finiteness of BCLEs from the continuity of space-
filling SLEκ ′ .

8.2.1. Space-filling SLEκ ′ . We begin by describing the construction of space-
filling SLEκ ′ in the context of CLEκ ′ and then subsequently describe its
construction in the framework of imaginary geometry. This latter framework is
the setting in which many of the properties of space-filling SLEκ ′ , including
continuity, are actually proved in [34], and this is the setting in which we use it
to prove the local finiteness of BCLE.

Suppose that D ⊆ C is a bounded Jordan domain and that Γ ′ is a nested CLEκ ′
in D. Fix x ∈ ∂D and consider the path which is defined as follows. Let η′0 be
the path which parameterizes ∂D in clockwise order, starting from and ending
at x . Let Γ ′1 be the collection of loops in Γ ′ which have nonempty intersection
with ∂D and let η′1 be the path which traces each of the loops of Γ ′1 starting
from and in the order in which they are first hit by the time-reversal of η′0, with
a clockwise direction. Assuming the local finiteness of CLEκ ′ (that is, for each
ε > 0 the number of loops of Γ ′ with diameter at least ε is finite), note that η′1
does in fact define a continuous path. Assuming that η′1, . . . , η

′

k and Γ ′1, . . . , Γ
′

k
have been defined for some k, we let Γ ′k+1 consist of those loops of Γ ′ which
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are contained in the closure of a component of D \ η′k and which intersect the
range of η′k . Equivalently, Γ ′k+1 consists of those loops of Γ ′ which are not in
Γ ′1, . . . , Γ

′

k and have nonempty intersection with a loop in Γ ′k . We then let η′k+1
be the path which is given by following η′k and, whenever η′k intersects itself
and cuts off a component U , it follows the loops of Γ ′k+1 contained in U as
follows. If η′k has drawn ∂U with a clockwise (respectively counterclockwise)
orientation, then the aforementioned loops of Γ ′k+1 are each drawn with a
clockwise (respectively counterclockwise) orientation starting from and ordered
according to where/when the path which traverses ∂U in counterclockwise
(respectively clockwise) order starting from the first (equivalently, last) point
on ∂U visited by η′k . Assuming the local finiteness of Γ ′, it is not difficult to see
that η′k converges uniformly to a limiting path η′ as k→∞. This limiting path is
space-filling SLEκ ′ and it is the Peano curve associated with the exploration tree
defined in [55] to construct CLEκ ′ .

As mentioned just above, space-filling SLEκ ′ also fits into the imaginary
geometry framework of [34, 37–39] and, in fact, was first proved to be
continuous in [34] which in turn led to the first proof of the local finiteness
of CLEκ ′ . This was established by understanding the manner in which the
imaginary geometry construction of space-filling SLEκ ′ interacts with CLEκ ′ . In
other words, the idea for the construction of space-filling SLEκ ′ is motivated by
its connection to CLEκ ′ described just above, but its existence as a continuous
path (hence the local finiteness of CLEκ ′) was first proved in [34]. As we explain
below, we see in a similar manner that the loops formed by admissible BCLEκ(ρ)
and BCLEκ ′(ρ ′) ensembles are also locally finite.

We now recall the construction of space-filling SLEκ ′ in the context of
imaginary geometry [34] (see Figure 8.4). We begin with the case of chordal
space-filling SLEκ ′(ρ ′1; ρ

′

2). Like chordal SLE, this is a continuous process which
connects two distinct points on the boundary of a domain. Specifically, we
suppose that h is a GFF on H with boundary conditions given by λ′(1 + ρ ′1)
on R− and −λ′(1 + ρ ′2) on R+. Fix a deterministic countable dense set (rk)

in H. Then we can construct an ordering on the (rk) by saying that r j comes
before rk if it is true that the flow line of h starting from r j with angle −π/2
merges with the flow line of h starting from rk with angle −π/2 on its right
side (flow lines started at interior points were constructed in [34]). In this
construction, it is important to describe how these flow lines bounce off ∂H.
For chordal space-filling SLEκ ′(ρ ′1; ρ

′

2), the reflection rule is defined by viewing
R− (respectively R+) as a flow line and then using the interaction rules for
flow lines [34, Theorem 1.7] to determine how the flow lines used to define
η′ behave when they hit ∂H. The orientations of the two boundary segments R−
and R+ depend on the values of ρ ′1, ρ

′

2. In particular, for ρ ′j ∈ (−2, κ ′/2 − 4],
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(a) (b)

Figure 8.4. (a) Suppose that h is a GFF in D = [−1, 1]2 with the illustrated
boundary data where ρ ′1, ρ

′

2 ∈ (−2, κ ′/2 − 2). For each z ∈ D, let ηL
z be

the flow line of h starting from z with angle −π/2. Then we can order the
points of D using h by declaring for z, w ∈ D distinct that w comes before
z if ηL

w merges with ηL
z on its right side. It is shown in [34, Theorem 1.16]

that there exists a noncrossing, non-self-tracing continuous path η′, so-called
space-filling SLEκ ′(ρ ′1; ρ

′

2), which visits the points of D according to this order.
Flow lines bounce off the left (blue) and right (green) sides of ∂D as if
they were flow lines using the interaction rules from [34, Theorem 1.7]. The
direction of these flow lines depends on the values of ρ ′1, ρ

′

2. In particular,
if ρ ′j ∈ (−2, κ ′/2 − 4] (respectively ρ ′j ∈ (κ ′/2 − 4, κ ′/2 − 2)) then the
direction of the corresponding boundary segment is from i to −i (respectively
−i to i). Shown is the case that ρ ′1, ρ

′

2 ∈ (−2, κ ′/2 − 4]. (b) Suppose that
h is a GFF with the given boundary data. Then we can define a space-
filling SLEκ ′ loop by ordering the points of D in the same manner. It follows
from [34, Theorem 1.16] that this is also a continuous curve which fills ∂D
counterclockwise. A similar construction yields a clockwise space-filling SLEκ ′
loop. This path is equal in law to the path on the left when it fills a loop that it has
cut off from its target point. These paths exactly correspond to the Peano curve
associated with the CLEκ ′ exploration tree explored in the counterclockwise and
clockwise directions.

the boundary segment is oriented towards 0 from ∞ and if ρ ′j ∈ (κ
′/2 − 4,

κ ′/2 − 2), the boundary segment is oriented from 0 towards ∞. It is shown in
[34] that there is a continuous path coupled with and determined by h which
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respects this ordering. This is the construction/definition of chordal space-filling
SLEκ ′(ρ ′1; ρ

′

2) from 0 to∞ in H. It is related to ordinary chordal SLEκ ′(ρ ′1; ρ
′

2)

in H from 0 to ∞ in that if one parameterizes it according to half-capacity
then it is an ordinary chordal SLEκ ′(ρ ′1; ρ

′

2). Chordal space-filling SLEκ ′(ρ ′1; ρ
′

2)

from x to y on a bounded Jordan domain D with x, y ∈ ∂D distinct is
defined by applying a conformal transformation H → D which takes 0 to x
and∞ to y.

Due to the flow line interaction rules [34, Theorem 1.7], if we start a flow
line from the target point of a chordal space-filling SLEκ ′(ρ ′1; ρ

′

2), the space-
filling path will visit that flow line in reverse chronological order. If we draw
a counterflow line with the same starting and ending points as the space-
filling SLEκ ′(ρ ′1; ρ

′

2), then the space-filling SLEκ ′(ρ ′1; ρ
′

2) will visit the points
of the counterflow line in the same order. Whenever the counterflow line cuts
off a component from ∞, the space-filling SLE branches in and fills up this
component before continuing along the trajectory of the counterflow line.

There is another version of space-filling SLEκ ′ which is a loop starting and
ending at a given boundary point. This is the version which corresponds to
the space-filling loop constructed out of a CLEκ ′ as described just above. It is
defined in the same way as chordal space-filling SLEκ ′ except the reflection rule
for the flow lines which define the ordering interact with the domain boundary
is different. Namely, in this construction on H, we view ∂H as a flow line
loop which starts and ends at 0 with a counterclockwise orientation. It is not
explicitly stated in [34] that this ordering extends to a continuous path (after
conformally mapping to a bounded domain, say). However, it is actually an
immediate consequence of the continuity of chordal space-filling SLEκ ′(ρ ′1; ρ

′

2)

that this is the case because whenever the latter makes a clockwise loop and then
fills it up, the conditional law of the curve while it is filling the loop visits the
points inside of the loop according to the aforementioned ordering. This defines
a counterclockwise space-filling SLEκ ′ loop. We similarly define a clockwise
space-filling SLEκ ′ loop by viewing ∂H as a flow line loop which starts and ends
at 0 with a clockwise orientation.

8.2.2. Local finiteness of BCLE. We are now ready to state and derive some
consequences of the properties of space-filling SLEs for local finiteness of
BCLEs. The following lemma describes the ‘relative position’ of such a space-
filling SLE with respect to a BCLE.

LEMMA 8.1. Suppose that h is a GFF on D with the boundary conditions so
that it can be coupled with a counterclockwise space-filling SLEκ ′ loop from −i
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Figure 8.5. Shown is a single loop L of a BCLE	κ (ρ), say Λ, coupled with a
GFF h. The boundary data for h and the boundary is oriented as in Figure 8.4 so
as to be compatible with a coupling with a counterclockwise space-filling SLEκ ′
loop η′. Shown are three flow lines of angle −π/2, one starting from inside of
L and two others starting along L (more precisely, at points in the countable
dense set used to define η′ which are very close to L). As Λ is formed by flow
lines of angle c/χ for c = λ′ + λ(1+ ρ)+ 2πχ , which is always at least 3π/2
for ρ ∈ (−2, κ − 4) (that is, point to the left of flow lines with angle −π/2), it
follows from [34, Theorem 1.7] that the former will cross L upon intersecting
and then merge into the domain boundary and the latter will stay to the right of
L. Consequently, η′ will visit the points of L in chronological order and the start
and end points for each excursion it makes from L are equal. Therefore, L (and
all of Λ) can be generated from η′ by excising the intervals of time in which η′

spends in the loops of Λ. This implies that there exists a continuous path whose
range is equal to the union of the loops in Λ and therefore Λ is almost surely
locally finite.

to −i as in Figure 8.5 and let η′ be the associated space-filling SLEκ ′ loop from
−i back to−i . Let c = λ′+λ(1+ρ)+2πχ and letΛ be the BCLE	κ (ρ) coupled
with h as being the loop ensemble formed by a boundary branching flow line of
h + c. Let I =

⋃
j I j be the disjoint union of open intervals of times t in which

η′(t) /∈ Λ and, for each j , write I j = (a j , b j). Then we almost surely have that
η′(a j) = η

′(b j) for all j .

Note that the analogous statement holds if we replace BCLE	κ (ρ) with
BCLE�κ (ρ) and the counterclockwise space-filling SLEκ ′ loop with a clockwise
space-filling SLEκ ′ loop.
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This lemma implies the following:

PROPOSITION 8.2. The collection of loops of a BCLE	κ (ρ) (for κ ∈ (2, 4] and
admissible ρ) is locally finite (if defined in the unit disk, then for all ε, there are
only finitely many loops of diameter greater than ε).

Proof. Let I =
⋃

j I j =
⋃

j(a j , b j) denote the open set of times at which η′ is in
the parts of D which are surrounded by a loop of Λ. By Lemma 8.1, we almost
surely have that η′(a j) = η

′(b j) for all j . This implies that the path η̃′ which is
taken to be equal to η′ on [0,∞) \ I and on each interval (a j , b j) is taken to be
equal to η′(a j) = η

′(b j) is almost surely continuous. Since the complement of
the range of η̃′ is equal to the set of points in D which are surrounded by a loop
in Λ, the desired local finiteness follows from the continuity of η̃′.

Proof of Lemma 8.1. By applying a conformal transformation, we may assume
that we are working on H. Suppose that h is a GFF on H with boundary
conditions given by −λ′ on R− and −λ′ − 2πχ on R+ and let η′ be the
counterclockwise space-filling SLEκ ′ loop associated with h from 0 to 0. Let
c = λ′ + λ(1 + ρ) + 2πχ and let Λ be the BCLE	κ (ρ) which is generated by
considering the boundary branching flow line of h + c targeted at every point of
∂H. As c/χ > 3π/2 for all ρ ∈ (−2, κ − 4), it follows from [34, Theorem 1.7]
that the flow lines which generate the left boundary of η′ always point to the right
of the flow lines which generate Λ. Consequently, as illustrated in Figure 8.5, it
follows that η′ visits the points of a loop L of Λ in chronological order, which
proves the proposition.

We now derive the corresponding results for the BCLE�κ ′ (ρ
′) for κ ′ ∈ (4, 8).

PROPOSITION 8.3. The collection of loops of a BCLE�κ ′ (ρ
′) for κ ′ ∈ (4, 8) and

admissible ρ ′ is locally finite

This is a consequence as before of the following lemma.

LEMMA 8.4. Suppose that h is a GFF on D with the boundary conditions so that
it can be coupled with a counterclockwise space-filling SLEκ ′ loop η′ from −i
to −i as in Figure 8.5. Let c = λ′(2 + ρ) and let Λ′ be the BCLE�κ ′ (ρ

′) process
associated with h+c using a boundary branching counterflow line starting from
−i . Let I =

⋃
j I j be the disjoint union of open intervals of times t in which

η′(t) /∈ Λ and, for each j , write I j = (a j , b j). Then we almost surely have that
η′(a j) = η

′(b j) for all j .
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Again, the analogous statement holds if we replace BCLE�κ ′ (ρ
′) with

BCLE	κ ′ (ρ
′) and the counterclockwise space-filling SLEκ ′ loop with a clockwise

space-filling SLEκ ′ loop.

Proof. This follows from essentially the same argument used to prove
Lemma 8.1.

9. Conclusion of the proofs of Theorem 7.2 and Theorem 7.4

The proofs of Theorem 7.2 and Theorem 7.4 have many similarities. We first
describe in detail the various steps in the derivation of Theorem 7.2, and we
then explain what minor differences one has to implement in order to derive
Theorem 7.4.

9.1. Locality of the boundary-loop-tracing process. Consider a BCLE�κ (ρ)
processΛ in the unit disk D, traced by a boundary branching SLEκ(ρ) beginning
at −i . Assume that the bSLEκ(ρ) processes used to trace Λ are all coupled
with an instance h of the GFF as described in Section 8.1.3: If ϕ : D→ H is a
conformal transformation which takes−i to 0 and i to∞ then h = h̃◦ϕ−χ argϕ′

where h̃ is a GFF on H with boundary conditions given by−λ(1+ρ) on R− and
−λ(1 + ρ) − 2πχ on R+ (recall Table 1). Then, we note that the set of points
belonging to the loops of Λ that intersect a given boundary arc of D containing
−i is a local set of h, because this set can be described by a boundary branching
SLEκ(ρ) starting from −i that only targets a dense set of points in this arc
(instead of a dense set of points on all of ∂D). For every loop L ∈ Λ, let us
define θ(L) to be the first point at which one encounters the loop L as one traces
the boundary ∂D counterclockwise starting from −i (note that θ(L) determines
an ordering of the loops of Λ).

Let ηΛ be the single loop that traces through all of the loops of Λ in the order
described above, with each individual loop of Λ being traversed clockwise. To
be more explicit, if we are given any finite collection {L1,L2, . . . ,Lk}, one can
define a path that traverses ∂D in counterclockwise order except that each time
it first hits one of the Li it traverses that entire loop clockwise before continuing.
By the local finiteness of BCLE�κ (ρ) established in Proposition 8.2, one can then
construct ηΛ as a uniform limit of (appropriate parameterizations of) the paths
defined this way. This ensures that almost surely, ηΛ indeed traces a continuous
path.

We are then interested in the ‘dynamic’ locality property of this path:
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LEMMA 9.1. Suppose that τ is any stopping time for the filtration generated by
the path ηΛ. Then ηΛ([0, τ ]) is a local set for h.

Proof. We fix an open set U ⊆ D. On the event that ηΛ|[0,τ ] does not hit U , we
can determine ηΛ|[0,τ ] from the boundary branching flow line of h started from
−i and targeted at every point on ∂D, stopped upon hitting U . Therefore, the
lemma follows from Proposition 5.1.

We note that we can determine the boundary conditions for the conditional
law of h given ηΛ|[0,τ ] using [37, Proposition 3.8] to make a comparison to
the conditional law of h given the flow lines of h used to generate ηΛ|[0,τ ]. In
particular, if U is a component of D \ ηΛ([0, τ ]) and x ∈ ∂D is such that the
boundary branching flow line of h starting from −i and targeted at x agrees
with ∂U along a boundary segment L , then [37, Proposition 3.8] implies that the
boundary conditions for the restriction of h to U given ηΛ|[0,τ ] along L are the
same as the boundary conditions for the conditional law of h given the flow line
branch targeted at x along L .

9.2. Locality of the nested boundary-loop-tracing process. We now iterate
the BCLE construction, and consider Γ and η = ηΓ as described in Theorem 7.2.
Let us first note that the same argument as for ηΛ can be applied to deduce that
the nested loop tracer η is a continuous path. Let us now describe what GFF
boundary conditions this nested loop tracer corresponds to (when one looks at
the whole path at once).

We note that Λ and Γ are coupled with a GFF as follows. We assume that
we are working on H because this is the setting in which it is easiest to specify
the boundary conditions. Specifically, we suppose that h is a GFF on H with
boundary conditions given by −λ(1 + ρ) on R− and −λ(1 + ρ) − 2πχ on R+
(recall Table 1). These are the same boundary conditions as considered in the
previous section for generating ηΛ. We note that each component V of H \ ηΛ
has a marked point corresponding to where ηΛ first visits ∂V . Let ϕ : V → H be
a conformal map which sends this special point to 0 and any other distinct point
on ∂V to∞.

We now consider two cases depending on whether V is to the left or to the right
of ηΛ (that is, whether V is surrounded by a clockwise or counterclockwise loop
ofΛ). When V is to the right of ηΛ then we know that h̃ = h ◦ϕ−1

−χ arg(ϕ−1)′

is a GFF on H with boundary conditions given by λ on R− and λ− 2πχ on R+
(recall Table 2 and Figure 8.3). Let

cR = −λ
′(1+ ρ ′R)+ 2πχ − λ. (9.1)
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Then the boundary conditions for h̃+ cR are given by−λ′(1+ρ ′R)+2πχ on R−
and −λ′(1 + ρ ′R) on R+. These are the boundary conditions for a BCLE	κ ′ (ρ

′

R)

process (recall Table 1). So, we take the BCLE	κ ′ (ρ
′

R) inside of V to be given by
the image under ϕ−1 of the BCLE	κ ′ (ρ

′

R) generated by the boundary branching
counterflow line of h̃ + cR starting from 0 and targeted at every point of ∂H.

When V is to the left of ηΛ, then we know that h̃ = h ◦ ϕ−1
− χ arg(ϕ−1)′ is a

GFF on H with boundary conditions given by −λ+ 2πχ on R− and −λ on R+
(recall Table 2 and Figure 8.3). Let

cL = λ
′(1+ ρ ′L)− 2πχ + λ. (9.2)

Then the boundary conditions for h̃ + cL are given by λ′(1 + ρ ′L) on R− and
λ′(1 + ρ ′L) − 2πχ on R+. These are the boundary conditions for BCLE�κ ′ (ρ

′

L)

(recall Table 1). So, we take the BCLE�κ ′ (ρ
′

L) inside of V to be given by the
image under ϕ−1 of the BCLE�κ ′ (ρ

′

L) generated by h̃ + cL .
Let η′ be the path which is given by following along the BCLE�κ ′ (ρ

′

L)

(respectively BCLE	κ ′ (ρ
′

R)) loops described just above starting from the first point
visited by ηΛ and with a counterclockwise (respectively clockwise) orientation.

We now study the iterated loop-tracing path η′ when stopped at a given
stopping time.

PROPOSITION 9.2. Suppose that τ is a stopping time for the filtration generated
by the iterated loop-tracing path η′. Then η′([0, τ ]) is a local set for h.

Proof. Fix an open set U ⊆ H. Let τU (respectively τΛ,U ) be the first time that
η′ (respectively ηΛ) hits U . By Proposition 5.1, it suffices to show that the event
that τ 6 τU is determined by the projection of h onto the subspace of functions
which are harmonic in U . In order to show that this is the case, we consider the
following alternative method of generating η′ (see Figure 9.1 for an illustration).

Step 1: Generate ηΛ|[0,τΛ,U ] from h.

Step 2: Generate the BCLE�κ ′ (ρ
′

L)’s and BCLE	κ ′ (ρ
′

R)’s associated with the
components which are completely surrounded by ηΛ|[0,τΛ,U ] as branching
counterflow lines stopped at the first time they hit U from the GFF given
by h conditioned on the result of the previous step.

Step 3: In each component W not completely surrounded by ηΛ|[0,τΛ,U ], we
draw a branching counterflow line of the field plus cL (respectively
cR) conditioned on the previous steps starting from the point on ∂W
first drawn by the left (respectively right) side of ηΛ|[0,τΛ,U ] targeted
at every point on ∂W which is drawn by the left (respectively right)

https://doi.org/10.1017/fmp.2017.5 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2017.5


J. Miller, S. Sheffield and W. Werner 88

(a)

(c)

(b)

Figure 9.1. Illustration of the commutation argument used in the proof
of Theorem 7.2. (a) BCLEκ(ρ) exploration path ηΛ up until hitting U .
Regions surrounded clockwise in gray are ‘true loops’ and regions surrounded
counterclockwise are ‘false loops.’ (b) Path until finishing loop it is currently
drawing. (c) Left/right boundaries of counterflow line to marked point.

side of ηΛ|[0,τΛ,U ], with each counterflow line branch stopped upon first
hitting U .

Step 4: Generate the rest of the stopped counterflow lines from the previous step
(that is, until they have reached their target point).

Step 5: Generate the rest of ηΛ from the GFF given by h conditioned on the
previous steps.

Step 6: Generate the rest of the BCLE�κ ′ (ρ
′

L)’s and BCLE	κ ′ (ρ
′

R)’s as branching
counterflow lines of h conditioned on the previous steps.

The difference between this method of generating loops using h from that used
in the original definition of η′ is that we have (partially) generated some of the
BCLE�κ ′ (ρ

′

L)’s and BCLE	κ ′ (ρ
′

R)’s before seeing the entire realization of ηΛ. One
could therefore worry that the loops thus formed are not the same as those if we
had seen the entire realization of ηΛ. We however now explain that this is not
the case (that is, that this method of generating loops does in fact generate the
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same family as in the definition of η′). This claim indeed implies the proposition
because the first three steps in this method of generating η′ fully determine η′ up
until hitting U and do not require the observation of the values of h on U itself.
In particular, this implies that the event τ 6 τU is determined by the projection
of h onto the functions which are harmonic in U .

First, we note that it is obvious that both methods of generating loops produce
the same result inside of those components which are completely surrounded
by ηΛ|[0,τΛ,U ] (corresponding to Step 2 above). Indeed, the conditional law of h
given ηΛ|[0,τΛ,U ] restricted to such a component is the same as the corresponding
conditional law given all of ηΛ. Moreover, conditionally on ηΛ|[0,τΛ,U ], the
restriction of h to such a component is independent of the restriction of h to
the other components of H \ ηΛ([0, τΛ,U ]).

It therefore remains to show that the joint law of the loops generated in Step 3
and Step 4 above given the previous steps is the same as the joint law which
results by first generating the rest of ηΛ and then sampling the BCLE�κ ′ (ρ

′

L)’s and
BCLE	κ ′ (ρ

′

R)’s from h given all of ηΛ. That is, we must show that the operation
of drawing the rest of ηΛ commutes with Step 3 and Step 4 above. This type
of commutation between flow and counterflow lines was already explained in
Section 8.1.2 (and indeed follows since flow and counterflow lines are locally
determined by the GFF).

9.3. Identification of the law of η′. Assume that we have chosen ρ ′L, ρ
′

R as
in (7.3). That is, we let

ρ ′L =
κ ′

4
ρ + κ ′ − 4 and ρ ′R = −

κ ′

4
(ρ + 2)

and note that ρ ′L+ρ
′

R = κ
′/2−4. These choices ensure that−λ(1+ρ)+cL = λ

′

and −λ(1 + ρ) − 2πχ + cR = −λ
′. Let us first fix a boundary point which is

distinct from the starting point of the path and compute the law of the path η̃′

which is given by parameterizing η′ by capacity (that is, targeted at) as seen
from this marked point. By applying a conformal mapping to H, we may assume
that η̃′ starts from 0 and that this marked point is equal to∞. Suppose that τ is
a stopping time for the filtration generated by η̃′. We now want to describe the
conditional law of h given η̃′|[0,τ ] in the unbounded component of H \ η̃′([0, τ ])
(see Figure 9.2 for an illustration). As η̃′([0, τ ]) is a local set for h, we know
that the conditional law of h given η̃′|[0,τ ] is that of a GFF on H \ η̃′([0, τ ])
with boundary conditions that can be determined using [37, Proposition 3.8] as
follows (here, our choice of ρ ′L, ρ

′

R will ensure that one gets a bSLEκ ′): Let ϕ be
a conformal transformation which takes this unbounded component to H fixing
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Figure 9.2. Illustration of the computation of the conditional law of h given η′

up to time τ . Note that the values of ρ, ρ ′L, ρ
′

R are chosen so that, after applying
the conformal change of coordinates ϕ which takes the unbounded component
of H \ η′([0, τ ]) to H fixing ∞ and with ϕ(̃η′(τ )) = 0, the boundary data for
the field changes only at the image of the tip of the path and the most recently
visited point on the trunk. That is, there are no marked points corresponding to
where the left and right sides of η′ have most recently hit R.

∞ and with the tip η̃′(τ ) taken to 0. Let X be the image of the point on ηΛ most
recently visited by η̃′ before time τ under ϕ.

(In this particular setting, one can apply [37, Proposition 3.8] to the family of
local sets An defined as follows. Given η̃′|[0,τ ], let Un be a decreasing sequence
of open sets consisting of finite unions of balls with rational radii centered at
points with rational coordinates and with

⋂
n Un = η̃

′([0, τ ]) and then take An to
be given by the union of ηΛ stopped upon exiting Un together with the branching
counterflow lines on its left and right sides used to generate the BCLE�κ ′ (ρ

′

L)

and BCLE	κ ′ (ρ
′

R), also stopped upon exiting Un .) If X < 0, then η̃′ is in the
process of drawing a counterclockwise loop on the right side of its trunk and
the continuation of this counterflow line is given by the image under ϕ−1 of the
counterflow line starting from 0 of the GFF h̃ = h ◦ ϕ−1

− χ arg(ϕ−1)′ + cR on
H. This GFF has boundary conditions given by λ′ on [X, 0), by −λ′ on R+ and

λ′ + cR − cL = −λ
′(1+ ρ ′L + ρ

′

R)+ 4πχ − 2λ

on (−∞, X), As ρ ′L + ρ
′

R = κ
′/2 − 4 so that the boundary data on (−∞, X) is

equal to −λ′ + 2πχ , the martingale characterization [37, Theorem 2.4] implies
that this counterflow line is evolving as an SLEκ ′(κ ′−6)with a single force point
located at the most recent point on ηΛ visited by η̃′ before time τ . The very same
argument can be applied when X > 0, and we can then conclude η̃′ evolves as
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an SLEκ ′(κ ′ − 6) process when it is not hitting the trunk ηΛ (with marked point
located at the last point visited on ηΛ).

Let us now consider the path η̃′ when parameterized by capacity seen from
infinity. This will in particular erase all its loops that are ‘hidden from infinity’
when they are made (this is exactly like looking at the usual bSLEβκ ′ instead of
at the full bSLEβκ ′). It is easy to see that this curve has a continuous Loewner
driving function because it is easy to see that the corresponding family of hulls
grows continuously (see, for example, [29]). Moreover, by Proposition 9.2, it
evolves as an SLEκ ′(κ ′ − 6) when it is ‘tracing a loop’, its law is invariant
under scaling (because the whole construction is invariant under scaling), and
satisfies the conformal Markov property (because the path is determined by the
field and we have determined the conditional law of the field given the path up to
a stopping time just above). Therefore, Lemma 3.1 implies that it evolves as an
SLEβκ ′(κ

′
− 6) process for all times. We note that the same argument also applies

for interior points z to get that the law of η′ reparameterized by capacity as seen
from z is that of an SLEβκ ′(κ

′
−6) up until the first time that z has been surrounded

by a loop. Indeed, recall that SLEβκ ′(κ
′
− 6) is target-invariant. Consequently, to

show that η′ as seen from an interior point z has the law of an SLEβκ ′(κ
′
− 6)

process, it suffices to show that η′ as seen from a boundary point has this property
as this can be iterated by choosing successive boundary points in a measurable
manner. That this is the case follows from the argument given just above. Note
also that from the construction we have that if z andw are distinct points, then the
branch of η′ targeted at z is the same as the branch of η′ targeted atw up until the
two points are disconnected, after which the two branches evolve independently.

We also note that the value of β has to be the same for all target points (because
the corresponding paths η̃′ are identical at small times). We are now getting
closer to identifying the distribution of the path η′

∞
, as defined in Theorem 7.2,

as a full bSLEβκ ′ , but we are not quite there yet, because we need to also describe
the behavior of η′ within the ‘pockets.’

Recall that the nested loop tracing path η′ constructed just above has the
property that if we fix any point z ∈ D, then the law of η′ parameterized by
capacity from z′ evolves as an SLEβκ ′(κ

′
− 6) targeted at z. Moreover, it follows

from the construction that if we consider the path targeted at two different points,
once these two points are first separated, the two continuations of the targeted
paths become conditionally independent. It is easy to see that these properties
characterize the law of η′ and identifies η′

∞
as a full bSLEβκ ′ .

9.4. Proof of Theorem 7.2. We have shown so far that for each admissible
triple ρ, ρ ′L , ρ ′R there exists β ∈ [−1, 1] such that the path η′y is a full
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(a) (b)

(c)

Figure 9.3. Illustration of the commutation argument used in the proof of
Theorem 7.4. (a) BCLE�κ ′ (ρ

′) exploration path ηΛ drawn up to hitting given
open set U . (b) The continuation of ηΛ up until the current loop being drawn
is finished, that is, up to its most recent intersection of R+. (c) Flow line starting
from this point.

bSLEβκ ′ process. It is immediate from the construction that this map that to each
admissible triple the corresponding β is injective (because the law of the trunk
of a bSLEβκ ′ has to be unique). It therefore remains to show that the map from
admissible triples to β is surjective onto [−1, 1]. This, in turn, follows from the
continuity argument described at the end of the proof of Proposition 5.3 and the
fact that β = 1 and β = −1 are reached for the extremal values of ρ.

9.5. Proof of Theorem 7.4. We now turn our attention to the case of BCLEκ
loops attached to BCLEκ ′ . The discussion is essentially the same, and can be to
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a large extent copied and pasted from the proof of Theorem 7.2. Let η, Λ and
Γ now be as in Theorem 7.4. First of all, the very same arguments as above
using the local finiteness of the BCLEs show that the iterated loop tracer η is a
continuous path.

The proof of the fact that η([0, τ ]) is a local set for h when τ is a stopping time
does also follow the same line as above, with some minor difference only in the
formulas for the boundary values of the field and the commutation argument (see
Figure 9.3).

Identifying the law of ηy follows again the same lines as before, and it is
actually a simpler task than in the previous case, because one has to show that
it is a bSLEβκ process, and the issues of ‘pockets’ and full bSLEβκ ′ versus bSLEβκ ′
do not arise.

10. Variants and comments

10.1. Generalized SLEκ(ρ) processes. The iteration scheme (sampling a
flow line and well-chosen counterflow lines) that we used in the previous section
can be generalized to other values of ρ and iterated in different ways. In this
section, we illustrate this by first explaining how one can use the same ideas
to construct the totally asymmetric generalized SLEκ(ρ) processes (in the ‘non-
light-cone regime’) and thereby derive some of their properties (continuity of the
trace, and the fact that they can be viewed as a deterministic function of the GFF
with which they are naturally coupled).

We stress that while it is possible to construct the couplings of these processes
with the GFF directly, by adapting the arguments of [11, 37, 51, 56] (even if there
is a slight technicality to be dealt with because Bessel processes with dimension
δ ∈ (0, 1) are not semimartingales due to the principal value correction in the
drift when the process is hitting 0), deriving these additional properties is a priori
not an easy task.

An almost identical analysis, with a little extra work, can be applied to
construct these SLEβκ (ρ) processes for the other values of β (and prove similarly
the continuity of the trace and properties of the coupling with the GFF). One
then has, like in the iterated BCLE scheme, to start with an SLEκ(ρL; ρR) trunk
and to attach loops on both of its sides.

As before, we separately treat the cases κ 6 4 and κ ′ > 4 (even if this is
actually not really needed in the present case, because the arguments are now
exactly the same). The corresponding ranges of values for ρ and ρ ′ are

ρ ∈ (−2− (κ/2), (κ/2)− 4) and ρ ′ ∈ (−2− (κ ′/2), (κ ′/2)− 2).
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Recall that this does not quite cover all of the generalized SLEκ(ρ) cases with
ρ < −2. The missing light-cone regime where κ 6 4 and −2 > ρ > max(−2−
κ/2,−4+ κ/2) is addressed in [36].

10.1.1. Generalized totally asymmetric SLEκ ′(ρ ′) processes. Fix κ ′ > 4 and
ρ ′ ∈ (−2 − (κ ′/2),−2). (In this case we assume that ρ ′ < −2 because the
continuity and coupling properties with the GFF of the SLEκ ′(ρ ′) processes with
ρ ′ > −2 and β = 1 or β = −1 have already been analyzed in [37].) Define then

ρ = −
κ

4
(ρ ′ + 2+ (κ ′/2)) = −

κ

4
(ρ ′ + 2)− 2.

Let h be a GFF on H with boundary conditions given by−λ on R− and λ(1+ρ)
on R+ and let η be the flow line of h from 0 to ∞. Note that η is an SLEκ(ρ)
process with force point at 0+. Since ρ ∈ (−2, 0) for ρ ′ ∈ (−2 − (κ ′/2),−2),
it follows that η may or may not hit R+. Suppose that we have fixed η and let
U be a component of H \ η which is to the right of η and let ϕ : U → H be a
conformal map which takes the first (respectively last) point on ∂U visited by η
to 0 (respectively∞). We then add

c = λ+ λ′(1+ ρ ′) (10.1)

to the field and draw in the branching counterflow line starting from 0 and
targeted at every point on ϕ(∂U ∩ η) = ϕ(∂U\∂H) = R−. We note that
the counterflow line starting from 0 and targeted at ∞ has the law of an
SLEκ ′(ρ ′ + κ ′/2). Note that ρ ′ + κ ′/2 ∈ (−2, κ ′/2 − 2) so that the counterflow
line almost surely hits R−. The same argument used to prove Proposition 8.3
implies that there exists a continuous path γ which follows the loops generated
by the branching counterflow lines in the order in which they are visited by η.

As in the previous subsection, the key to determining the law of γ is to
describe its evolution when it is not hitting η. This amounts to showing that
γ ([0, τ ]) is a local set for h for each stopping time τ and then identifying
the conditional law of h given γ |[0,τ ]. The proof of the locality of γ ([0, τ ]) is
analogous to the proof of Proposition 9.2. We omit the details of this here, and
instead focus on identifying the conditional law of h given γ |[0,τ ].

Let ϕ be a conformal transformation from the unbounded component of
H \ γ ([0, τ ]) to H which fixes ∞ and takes γ (τ) to 0. Let X be the image
under ϕ of the point on η most recently hit by γ . Suppose that X 6= 0, that is,
that X < 0. Then h̃ = h ◦ ϕ−1

−χ arg(ϕ−1)′+ c has the law of a GFF on H with
boundary conditions given by (and this is why we chose the previous values for
ρ and c) −λ′ on R+, λ′ on [X, 0) and λ′(1+ ρ ′) on (−∞, X).

Combining this with the general characterization of [37, Theorem 2.4] implies
that γ is evolving as an SLEκ ′(ρ ′) process with a single force point at the most
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recent point visited by η′ before time τ . Hence, using the characterization of the
generalized SLEκ(ρ) processes and the scale invariance of the law of γ , we can
conclude that:

• The path γ is an SLEβκ ′(ρ
′) process for β = 1, as the loops it makes are always

to the right of the trunk.

• It is almost surely a continuous curve.

• It is a deterministic function of the GFF h.

• The joint law of (h, γ ) is characterized by the form of the conditional law of
h given γ |[0,τ ] for each γ -stopping time τ .

We note that the difference between the boundary data to the left and to the right
of 0 for the GFF used to construct γ is given by λ′(2 + ρ ′), which is the same
difference as in the case of SLEκ ′(ρ ′) for ρ ′ > −2. The construction in the case
that β = −1 instead of β = 1 is analogous, except the trunk will be on the right
rather than the left side.

10.1.2. Generalized totally asymmetric SLEκ(ρ) processes. We now fix κ ∈
(0, 4] (note that we include κ = 4 here) and ρ ∈ (−2− (κ/2), (κ/2)− 4). Note
that this second condition in fact implies that κ > 2 as otherwise, this interval of
possible values for ρ would be empty. This time, we choose

ρ ′ = −
κ ′

4
(ρ + 2+ (κ/2)) = −

κ ′

4
(ρ + 2)− 2.

Let h be a GFF on H with boundary conditions given by λ′ on R− and−λ′(1+ρ ′)
on R+ and let η′ be the counterflow line of h from 0 to ∞. Note that η′ is an
SLEκ ′(ρ ′) process with a single force point located at 0+. Suppose that we have
fixed η′ and let U be a component of H\η′ which is either surrounded by η′ with
a clockwise orientation or is to the right of η′ and let ϕ : U → H be a conformal
map which takes the first point visited by η′ on ∂U to 0 and any other point to
∞. We then add c = −λ′ − λ(1 + ρ) to the field and draw in a branching flow
line starting from 0 and targeted at every point on ϕ(∂U ∩ η′) = ϕ(∂U \ ∂H).

The argument of Proposition 8.2 implies that there exists a continuous path
γ which follows the loops generated by the branching flow lines in the order
in which they are visited by η′. Exactly as in the previous case, the key to
determining the law of γ is to describe its evolution when it is not hitting η′. This
is then done word for word as in the previous case, and leads to the following:

• This path γ is an SLEβκ (ρ) process for β = 1, as the loops it makes away from
its trunk are always to the right of the trunk.
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• It is almost surely a continuous curve.

• It is almost surely determined by the GFF h.

• The joint law of (h, γ ) is characterized by the form of the conditional law of
h given γ |[0,τ ] for each γ -stopping time τ .

We note that the difference between the boundary data to the right and to the left
of 0 for the GFF used to construct γ is given by λ(2 + ρ), which is the same
difference as in the case of SLEκ(ρ) for ρ > −2. The construction in the case
that β = −1 instead of β = 1 is analogous, except the trunk will be on the right
rather than the left side.

REMARK 10.1. It is interesting to remark that the critical value ρ = κ/2 − 4
is where the SLEκ(ρ) processes with ρ < −2 make the transition from the
trunk phase to the light-cone phase. In this case, the branching flow lines in
each of the components surrounded by η′ with a clockwise orientation have the
law of an SLEκ(κ − 4;−2) with force points immediately to the left and right
of the seed. Thus these paths can be interpreted as tracing along the boundary
of the corresponding component cut off by η′, but in the opposite order in
which the boundary was drawn by η′, that is, counterclockwise. This means that
an SLEκ(κ/2 − 4) process has the same range as an SLEκ ′(ρ ′) process with
ρ ′ = (κ ′/2) − 4 but visits the points of its range in a different order. This point
is elaborated on further in [36].

Note also that ρ = −2 − (κ/2) is the critical value at or below which the
SLEκ(ρ) processes are not defined. Note that, in this case, the value of ρ ′ for the
SLEκ ′(ρ ′) trunk converges to 0 as ρ ↓ −2 − (κ/2). Thus we can interpret an
SLEκ(ρ) with ρ = −2− (κ/2) as corresponding exactly to an SLEκ ′ .

In summary, as ρ varies from−2− (κ/2) to (κ/2)− 4, the law of an SLEκ(ρ)
process interpolates between the law of a curve which has the same range as
an SLEκ ′-type process but visits its points in a different order and the law of an
SLEκ ′ itself.

10.1.3. Other values of β. The results of Sections 10.1.1, 10.1.2 can be
extended to the cases of the non-totally-asymmetric SLEβκ (ρ) and SLEβκ ′(ρ

′)

processes for the same range of values of ρ and ρ ′. Let us just state without
proof the type of results that one obtains in this way.

Fix κ ′ > 4, ρ ′ ∈ (−2−(κ ′/2), κ ′/2−2), and choose ρ ′L, ρ
′

R ∈ (−2, (κ ′/2)−2)
such that ρ ′L + ρ

′

R = ρ
′
+ (κ ′/2)− 2. We then let

ρL = −
κ

4
(ρ ′L + 2) and ρR = −

κ

4
(ρ ′R + 2).

https://doi.org/10.1017/fmp.2017.5 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2017.5


CLE percolations 97

Let h be a GFF on H with boundary conditions given by −λ(1+ ρL) on R− and
λ(1 + ρR) on R+ and let η be the flow line of h from 0 to∞. Note that η is an
SLEκ(ρL; ρR) process with force points located at 0− and 0+. Suppose that we
have fixed η and let U be a component of H \ η which is to the right of η and
let ϕ : U → H be a conformal map which takes the first (respectively last) point
visited by η on ∂U to 0 (respectively∞). We then add

cR = −λ+ λ
′(1+ ρ ′R) (10.2)

to the field and draw in a branching counterflow line starting from 0 and targeted
at every point on ϕ(∂U ∩ η) = ϕ(∂U \ ∂H). Similarly, if U is to the left of η,
then we add

cL = −λ
′(1+ ρ ′L)+ λ (10.3)

to the field and draw in a branching counterflow line starting from 0 and targeted
at every point on ϕ(∂U ∩ η) = ϕ(∂U \ ∂H). As before, one can see that there
exists a continuous path γ which follows the loops generated by the branching
counterflow lines in the order in which they are visited by η. Note that the law of
this path is scale-invariant.

Again, in order to determine the law of γ , we first describe its evolution when
it is not hitting η. This amounts to showing that γ ([0, τ ]) is a local set for h for
each stopping time τ and then identifying the conditional law of h given γ |[0,τ ].
The proof of the locality of γ ([0, τ ]) is analogous to the proof of Proposition 9.2,
and one can work out the boundary conditions of the GFF given γ |[0,τ ] which
leads to a statement of the following type:

THEOREM 10.2. For each β ∈ [−1, 1] and ρ ′ ∈ (−2− (κ ′/2), κ ′/2− 2) \ {−2}
there exists ρ ′L, ρ

′

R ∈ (−2, (κ ′/2)− 2) with ρ ′L + ρ
′

R = ρ
′
+ (κ ′/2)− 2 such that

with ρL = −κ(ρ
′

L+2)/4 and ρR = −κ(ρ
′

R+2)/4, the path γ constructed above
with these parameters is distributed like a ‘full’ SLEβκ ′(ρ

′) process. In particular,
if we parameterize it according to half-plane capacity seen from infinity (thereby
excising all ‘loops hidden from infinity’), we get exactly a path γ # distributed like
an SLEβκ ′(ρ

′). Similarly, for each µ ∈ R there exists ρ ′L, ρ
′

R, ρL, ρR satisfying the
above relations with ρ ′ = −2 such that the path constructed is distributed as an
SLEµκ ′(−2) (with β = 0). In particular, in all cases these processes are uniquely
coupled with and determined by the GFF and are almost surely generated by
continuous curves.

We note that there are some admissible triples ρ ′L, ρ
′

R, ρ
′ in which either

ρ ′L 6 κ ′/2 − 4 , ρ ′R 6 κ ′/2 − 4, or both. If ρ ′L (respectively ρ ′R) is in this
range, then it means that the excursions that γ makes to the left (respectively
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right) of its trunk terminate on the most recently visited point of the trunk
before the excursion started. This simply follows because the corresponding
counterflow line completely fills the trunk. The commutation argument is the
same as described in the proof of Theorem 7.2 and Theorem 7.4, except in this
case the counterflow lines considered actually swallow entirely the flow lines
considered. As explained in [37], in particular in the proofs of continuity of the
SLEκ ′(ρ ′) processes with ρ ′ ∈ (−2, κ ′/2−4], this type of commutation naturally
fits into the imaginary geometry framework.

We also note that in the case ρ ′ ∈ (−2−(κ ′/2), (κ ′/2)−4], the path γ does not
branch into the components that it cuts off from∞ so that there is no distinction
between γ and the path which arises by reparameterizing γ according to capacity
as seen from ∞. This follows because if η′ is an SLEκ ′(ρ ′) process with ρ ′ 6
(κ ′/2)− 4 in H from 0 to∞ with a single boundary force point located at x > 0
then η′ first hits [x,∞) at x .

Using the same argument as in the proof of Theorem 10.2, we also obtain the
following.

THEOREM 10.3. For each β ∈ [−1, 1] and ρ ∈ (−2 − (κ/2), (κ/2) − 4) there
exists ρL, ρR ∈ (−2, κ − 4) with ρL + ρR = ρ + (κ/2)− 2 such that with ρ ′L =
−κ ′(ρL+2)/4 and ρ ′R = −κ

′(ρR+2)/4, the path γ constructed above, switching
the roles of flow and counterflow lines, with these parameters is distributed like
an SLEβκ (ρ) process. In particular, these processes are uniquely coupled with
and determined by the GFF and are almost surely generated by continuous by
curves.

As in the case β = 1 mentioned above, the gap in the boundary data for the
GFF in the couplings of Theorem 10.2 and Theorem 10.3 is the same as in the
coupling of SLEκ ′(ρ ′) for ρ ′ > −2 and SLEκ(ρ) for ρ > −2 with the GFF.

10.2. Brief discussion of CLEκ and CLEκ ′ couplings with the GFF. Let
us now very briefly comment on the couplings of CLEs with the GFF that we
constructed and used in the present paper: As BCLE is coupled with the GFF as
a local set as either a boundary branching flow or counterflow line and we have
shown that it is possible to obtain CLEβκ by appropriately iterating BCLEs, we
get that CLEβκ for all κ ∈ (8/3, 8) \ {4} is naturally coupled with the GFF as
a local set. Similarly, CLE0

4 is also coupled with the GFF as a local set and the
coupling can be constructed by iterating BCLE4’s. In particular, it is possible to
read off the boundary data for the GFF along the CLE loop boundaries because
we know the boundary data for the GFF along the loop boundaries for BCLE.
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Some important aspects of the nature of this coupling of CLE with the GFF are
different for κ ∈ (8/3, 4), κ = 4, and κ ′ ∈ (4, 8):

• In the case of CLE0
4, the boundary data for the field along the loops is only

determined by the orientations of the loops. That is, the boundary data in the
inside of a loop is 2λ (respectively −2λ) if the loop has a counterclockwise
(respectively clockwise) orientation.

• When κ ′ ∈ (4, 8), once we choose the starting point of the bSLEβκ ′ exploration
tree and we know the loops of the CLEβκ ′ , together with their orientations, then
the boundary of the field along all the loop boundaries is fully determined.
Indeed, the exploration tree is a function of its root and of the entire oriented
CLEβκ ′ . Then, in this exploration tree, each loop γ of the CLEκ ′ will be traced
starting from one of its points w(γ ) which is the first one that the trunk hits.
The GFF boundary data along this loop is then given by a constant plus a
winding term which is counted starting from w and will have a ±2πχ jump
at w (depending on the orientation of the loop). So, the boundary data is more
complicated to work out than in the CLE0

4 case, but each choice of a boundary
point on ∂D makes it possible to determine all the boundary conditions inside
all the loops from the knowledge of CLEβκ ′ .

• In the setting of CLEβκ for κ ∈ (8/3, 4), one needs to specify much more
information to determine the boundary data of the field along the loop
boundaries. The reason is that (as is shown in [40]), the CLEβκ and the root
of the tree are not sufficient to recover the trunk of the bSLEβκ . So, neither
the position of the special point w on each CLEβκ loop where the boundary
value jumps by ±2πχ nor the actual additional constant that comes from
the winding of the trunk before it hits that point can be worked out from the
knowledge of the bSLEβκ and the root of the tree only.
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[10] J. Dubédat, ‘Duality of Schramm-Loewner evolutions’, Ann. Sci. Éc. Norm. Supér. (4) 42(5)
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