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Abstract 

This paper explores the role of integrating behavioral science to refine human-AI interaction, essential for 

ensuring safety and efficiency. Advocating for empathetic, user-centric design, the paper illustrates how 

behavioral insights can effectively inform AI-integrated designs, making AI applications more intuitive and 

ethically aligned with diverse human needs. This approach can ultimately enrich interaction across systems, 

fostering a more harmonious human-AI synergy. 
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1. Introduction 
The application of behavioral science to design has deep historical roots, tracing back to the late 19th 

and early 20th centuries when researchers began systematically studying human behavior and cognition: 

Max Wertheimer's groundbreaking research on visual perception, has had a profound influence on 

design, emphasizing the importance of understanding how people perceive and interpret visual stimuli 

(Wertheimer, 1912). Insights from the mid-20th century on operant conditioning have steered design 

thinking, especially in creating systems that motivate desired behaviors through reinforcement, a 

concept explored by Deterding (2012) and Wenker (2022). Donald Broadbent’s research on selective 

attention has significantly impacted the development of user interfaces that highlight pertinent 

information, reducing cognitive overload (Broadbent, 1958). The concept of mental models, as 

articulated by Norman (2013), has been pivotal in creating interfaces that are intuitive and align with 

user expectations. While behavioral science principles have long guided design, one could argue that 

with the emergence of AI driven systems, their relevance has increased. 

The advent of AI in autonomous systems like self-driving cars, smart homes, and AI-powered chatbots 

has brought a paradigm shift in industries ranging from transportation to healthcare. These systems, 

designed to function autonomously with minimal human input, rely on sophisticated algorithms for 

decision-making. Human-Machine Interaction (HMI) in this context has evolved rapidly, becoming 

crucial in systems where human oversight is still necessary (De Fazio et al., 2022). The integration of 

AI amplifies the need to understand human behavior for designing effective interactions (Cross & 

Ramsey, 2021). For instance, research shows that excessive system feedback can overwhelm users, 

leading to reduced performance and over-reliance on automation, the "out-of-the-loop" problem 

(Endsley & Kiris, 1995). Such insights have proven to be critical in designing AI-integrated interfaces 

in autonomous vehicles and smart homes (Choi & Ji, 2015; Lee et al., 2015). Similarly, AI chatbots and 

virtual assistants rely on understanding user intent and conversation dynamics, where research on human 

language processing informs interface design and highlights user tendencies to anthropomorphize AI 
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systems (Kuhail et al., 2023). In military applications, AI-integrated autonomous systems pose 

challenges in workload management and decision-making for human operators. Studies on the impact 

of automation on trust, situational awareness, and accountability are shaping the design of these systems 

to ensure effective integration and utilization (Endsley & Kiris, 1995; Norris, 2018; Sparrow, 2009).  

The growing focus on cognitive and behavioral factors in AI-component systems underscores the 

complexity of applying behavioral science in design (Hopko et al., 2022; Krausman et al., 2022). The 

challenge lies in translating abstract behavioral concepts and theories into practical design solutions, 

often requiring interdisciplinary collaboration. A practical approach for design practitioners could be to 

start with the more applied aspects of behavioral science, and in particular the difference between 

different types of cognitive processes (Voyer, 2015).  Building on this historical context, this paper's 

main thesis emphasizes the growing significance of behavioural science in AI-driven system design, 

particularly in understanding and applying cognitive processes. The subsequent sections explore the 

integration of behavioural science in AI interface design, beginning with a discussion of Kahneman's 

Type I and II cognitive processes and their application in AI systems. We then examine challenges in 

implementing these concepts in AI-driven systems, and present two case studies to illustrate the practical 

application and challenges of applying cognitive dynamics in AI systems: One on AI-enabled unmanned 

aerial vehicles (UAVs) focusing on the balance between human control and AI autonomy, and another 

on adaptive human operator interaction with autonomous systems in high-stakes environments like 

navigation control rooms. The paper concludes by offering insights and recommendations for effectively 

applying behavioural science principles in the design of AI systems, emphasizing the need for a nuanced 

understanding of human cognitive processes. 

2. Cognitive dynamics in Al interface design 
Kahneman's influential work on fast (Type I) and slow (Type II) cognitive processes (see Table 1), 

offers an insightful framework that is especially relevant toAI interface design (Kahneman, 2013). It 

might be useful to clarify these concepts in some detail, for those unfamiliar with behavioral science:  

• Type I thinking is fast and instinctual, used for quick decisions like catching a ball or responding 

to simple queries. It relies on heuristics, which are mental shortcuts that speed up our decision-

making but can lead to biases. For example, reading about a local robbery might cause you to 

overrate the risk of crime, a result of the availability heuristic. In AI interface design, this 

understanding helps create intuitive systems that support swift, effortless decisions, capitalizing 

on our tendency for rapid, automatic thinking, while avoiding the need for detailed analysis in 

every situation. The aim is to enable immediate, efficient AI interaction. 

Table 1. Characteristics of system 1 and system 2 and application in AI design 

Type Characteristics Key aspects AI design application 

Type 1  Automatic. Instinctive, 

rapid, operates 

subconsciously. 

Uses heuristics (mental 

shortcuts), susceptible to 

biases 

Align with users' mental 

models and cognitive maps 

for intuitive interaction 

Type 2 Controlled, slow, limited 

capacity and conscious 

Involves careful processing 

of information, evaluating 

options, &considering 

consequences 

Facilitate analytical 

mindset with information 

and tools for data analysis 

and decision making 

 

• Type II thinking is deliberate and conscious, utilized for complex decisions or problems 

requiring meticulous scrutiny, like challenging math or evaluating job offers. In AI interface 

design, the facilitation of Type II thinking is a critical consideration. AI interfaces should be 

structured in a way that supports and encourages this analytical mindset at appropriate times by 

providing detailed information and tools for thorough analysis. This allows users to weigh 

options and understand consequences, crucial in high-stress or intricate situations. AI interfaces 
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should thus balance immediate responses with the facilitation of deeper, reflective decision-

making where necessary. 

When integrating these concepts into AI interface design (see Table 1), the goal is thus to strike a balance 

that caters to both types of thinking. This means creating interfaces that allow users to make efficient, 

instinctive decisions when appropriate, minimizing the cognitive load for routine tasks. At the same 

time, the interface should provide the necessary tools and information for more considered and analytical 

decision-making when required. This balance is crucial for effective interaction with AI systems, 

especially under pressure or in situations that demand a high level of accuracy and thoughtfulness 

(AlKhars et al., 2019; Nurse et al., 2022). 

2.1. Interplay of cognitive biases and thinking types 

Closely related to the literature on Type I and II thinking is the research into cognitive biases. Cognitive 

biases typically refer to systematic patterns of deviation from norm or rationality in judgment, and are 

integral to our understanding of decision-making processes (see table 2 for an incomplete list). These 

biases are strongly associated with Type I thinking. For instance, the anchoring bias, where initial 

information heavily influences subsequent decisions, often plays out in Type I thinking, as it operates 

under quick, automatic processes (Meppelink et al., 2019). Similarly, the framing effect illustrates how 

decisions are influenced by how options are presented, and is also linked to quick, heuristic-based 

judgments. For example, people tend to be risk-averse when decisions are framed in terms of gains, but 

risk-seeking when framed as losses (Tversky & Kahneman, 1981). This bias is particularly relevant in 

AI systems involving risks or options, such as financial investment or healthcare choices (Stea & 

Pickering, 2019; Tversky & Kahneman, 1981). Social proof, where people follow the actions of others 

particularly in uncertain situations, is leveraged extensively in systems that utilize user-generated content, 

such as online reviews or ratings (Cialdini & Jacobson, 2021). Furthermore, the strategic use of defaults 

in interfaces showcases how preset choices can significantly influence decision outcomes. Studies such 

as Johnson and Goldstein’s work on organ donation demonstrate the power of defaults in shaping user 

decisions and behaviors, a principle that has been effectively applied in various design contexts, including 

AI-powered recommendation systems and online forms (Johnson & Goldstein, 2003; Mertens et al., 

2022). 

Table 2. Cognitive biases 

Cognitive bias Description 

Confirmation bias To look for or to interpret evidence to support prior hypothesis rather than look 

for disconfirming evidence. 

Anchoring effect To rely heavily on one piece of information when making decisions (usually the 

first piece of information acquired: the 'anchor'). 

Availability bias Judgments of likelihood or percentages based on ease of recall (greater 

'availability' in memory) rather than on actual probabilities. 

Framing effect To draw different conclusions from the same information, depending on how that 

information is presented. 

Loss aversion To view losses as looming larger than corresponding gains. 

Sunken-cost fallacy To allow previously spent time, money, or effort to influence present or future 

decisions. 

Social proof Also often referred to as the Bandwagon effect. To do (or believe) things because 

many other people do (or believe) the same. 

 

The exploration of cognitive biases within the frameworks of Type I and Type II thinking offers valuable 

insights into the complexities of human decision-making. Understanding these biases is crucial, not just 

for identifying the limitations and strengths of human cognition, but also for shaping the way we interact 
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with technology. As we will argue next, we can derive design principles from our understanding of 

cognitive biases and thinking processes that can inform the design and functionality of AI systems. 

Behavioural science provides a rich repository of knowledge that can be leveraged to enhance the 

intuitiveness, efficiency, and overall effectiveness of HMI. By applying these insights, we can develop 

AI interfaces and systems that are more in tune with human cognitive processes, potentially reducing 

errors, enhancing user experience, and paving the way for more seamless and productive interactions 

between humans and machines.  

3. Case studies 
Human-Machine Interaction (HMI) design, traditionally centered on usability principles like efficiency 

and effectiveness, is increasingly informed by behavioral scientific insights (Ferreira et al., 2020; 

Jeffries & Wixon, 2007; Zaharias & Poulymenakou, 2006). Operators of autonomous AI-driven systems 

often rely on quick, intuitive decisions. However, these decisions can be influenced by biases. 

Confirmation bias, for instance, might lead an operator to ignore important warning signs if they 

contradict their belief in the system's reliability. Similarly, anchoring bias can cause operators to give 

too much weight to the first piece of information they receive, potentially leading to flawed decisions. 

Increasingly, we see examples of how human behavioral insights are being applied to HMI to either 

investigate and/or mitigate the impact of cognitive biases. 

3.1. Case Study 1: AI-Enabled Unmanned Aerial Vehicles (UAVs) 

A recent example of advanced autonomous systems in action involves the Robotic Autonomous 

Platform for Tactical Operations and Reconnaissance (RAPTOR) unmanned aerial vehicle (UAV). The 

FOCUS AI-enabled autonomy software enables the UAV to autonomously locate, track, and identify 

targets with minimal human supervision, underscoring the growing importance of autonomous systems 

in strategic operations. The adaptability of SSCI's software across various UAV sizes and for 

multidomain operations also expands the scope of AI's application, enabling a wide range of tactical 

operations from surveillance to direct engagement. While this adaptability is technologically impressive, 

it simultaneously broadens the ethical implications of AI in military contexts. 

 
Figure 1. The Robotic Autonomous Platform for Tactical Operations and Reconnaissance 

(RAPTOR) unmanned aerial vehicle (UAV) 

With the increasing autonomy of systems like RAPTOR, new challenges emerge, particularly in the 

realm of decision-making and ethical considerations. The use of AI in such high-stakes scenarios raises 

questions about the balance of control between human operators and autonomous systems, especially in 

situations where rapid, critical decisions are necessary.  In that respect, one of the key aspects of the 

RAPTOR project is its emphasis on human-machine collaboration. Although the UAV can operate 

autonomously, it is designed to function alongside human decision-makers, ensuring that crucial 

strategic decisions remain under human control. This approach aims to mitigate the risk of over-reliance 

on AI and maintains the centrality of human judgment in military operations. 
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As such, the RAPTOR case study illustrates the importance of incorporating behavioral science into AI 

development. Understanding human cognitive biases and decision-making processes is essential in 

designing interfaces and protocols that enhance the effectiveness of human-AI interaction. This is 

especially important in scenarios where operators must quickly interpret and act upon the information 

provided by autonomous systems. In terms of operational efficiency, the FOCUS AI-enabled autonomy 

software significantly reduces the cognitive load on human operators. By autonomously performing 

tasks like target identification and tracking, the software allows operators to focus on higher-level 

strategic planning and decision-making. This division of labor between AI and human cognition can 

lead to more effective and timely responses in dynamic battlefield situations. At the same time, it 

necessitates careful consideration of potential biases arising from rapid, intuitive (Type I) thinking, and 

how ethical performance in military AI systems requires a deliberate effort to counteract these biases 

and foster more reflective (Type II) thinking processes. As AI continues to evolve and integrate into 

various military technologies, the lessons learned from the RAPTOR project will be invaluable in 

guiding the development of future autonomous systems, ensuring they are effective, ethical, and 

synergistic with human oversight. 

3.2. Case study 2: Adaptive Human Operator Interaction with Autonomous 
Systems (AHOI) 

The Adaptive Human Operator Interaction with Autonomous Systems (AHOI) project recently received 

funding by Belgian Defense to explore and address the interplay between human cognitive biases and 

decision-making in the context of AI-driven autonomous systems. The work will focus on critical areas 

like navigation control rooms and other high-stakes environments where the synergy between human 

operators and AI systems is essential. At the core of AHOI’s mission is the understanding that while AI 

systems offer remarkable capabilities in data processing and decision support, human operators bring to 

the table invaluable qualities of intuition, experience, and adaptability. However, human decision-

making is also prone to various cognitive biases. By recognizing and mitigating these biases, the project 

aims to enhance the efficiency and safety of these interactions.  

The research team has at its disposal a Full Mission simulator (FMS), which can simulate the various 

functional parts of ships as realistically as possible. More specifically, two bridge simulators will be 

used that provide a versatile but robust test bed for scenario driven research to explore key factors in 

human-machine teaming and interaction (see Figure 2). 

 
Figure 2. Full Mission bridge simulator 

The research will involve a series of experimental scenarios designed to study cognitive biases and their 

manifestations in real-time AI-human interactions: 

1. Confirmation Bias: In a navigation room, if an AI suggests a new path to avoid collision, an 

operator might show confirmation bias by favoring evidence that supports the AI’s suggestion, 

overlooking other data. 

https://doi.org/10.1017/pds.2024.231 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2024.231


 
2292 ARTIFICIAL INTELLIGENCE AND DATA-DRIVEN DESIGN 

2. Anchoring Effect: When given an Expected Time of Arrival (ETA) by AI, an operator could 

stick to it due to the anchoring effect, not updating it despite new data like weather changes or 

engine issues. 

3. Sunken-Cost Fallacy: If changing course to avoid bad weather means leaving a resource-heavy 

route, an operator may not do so, influenced by the sunken-cost fallacy, preferring to stick with 

the initial investment. 

4. Loss Aversion: Faced with a minor system malfunction, an operator might overreact because of 

loss aversion and overestimate the potential consequences of this minor issue, possibly changing 

course unnecessarily. 

Through these scenarios, the AHOI project will not only identify and study these biases but also develop 

AI systems capable of recognizing and counteracting them. The goal is to create AI interfaces that 

prompt operators to engage in more analytical, reflective thinking (Type II) in situations where intuitive, 

automatic responses (Type I) might lead to biased decisions.  The AHOI project is positioned to make 

significant contributions to the field of AI and human interaction. By integrating insights from 

behavioral science into the design and functioning of AI systems, it can enhance decision-making 

processes in critical environments. The work will not only address the immediate challenges of cognitive 

biases in high-stakes settings but also pave the way for a future where human and AI collaboration is 

more harmonious, efficient, and safe.  Overall, these case studies illustrate the practical implications of 

applying behavioural insights to HMI. Table 3 compares and summarizes key aspects of this approach 

in the two case studies. It highlights the differences in operational efficiency, cognitive bias 

consideration, and ethical considerations, among other factors, in each case study's application of 

behavioural science principles. 

Table 3. Behavioural Insights in HMI: UAVs vs. AHOI 

Aspect RAPTOR AHOI 

Division of Labour Al performs tasks like target identification and tracking, enabling human operators 

to focus on strategic planning and decision- 

making. 

Operational 

Efficiency 

 

Reduction cognitive load human 

operators, leading to effective and timely 

battlefield responses. 

Focus on enhancing the efficiency and 

safety of interactions between humans 

and AI systems. 

Cognitive Biases 

 

Understanding human cognitive biases in 

interpretation of information provided by 

AI. 

Interplay human cognitive biases and 

decision-making in AI-driven 

autonomous systems. 

Reflective 

Thinking 

  

Encourages more reflective (Type II) 

thinking processes to counteract biases 

from rapid, intuitive (Type I) thinking. 

Emphasizes the importance of 

balancing AI capabilities with human 

intuition, experience, and adaptability. 

Ethical 

Considerations 

Ethical performance in military AI systems requires a deliberate effort to maintain 

human judgment at the core of operations, guiding future development of 

autonomous systems. 

Focus on Specific 

Environments  

Focus on dynamic battlefield situations. Concentration on critical areas like 

navigation control rooms and other 

high-stakes environments. 

4. Implications for human machine interaction 
The two case studies mentioned above provide good examples of how behavioral scientific insights can 

enrich and improve HMI. Such case studies, together with other examples, allow us to generate some 

initial design considerations for HMI that consider the cognitive dynamics in human decision making 

(see Table 4 for an overview).   
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Table 4. HMI design considerations 

Design 

Consideration 

Description Examples / References 

Comprehensive 

Information 

Provision 

 

Supply operators with 

comprehensive information, 

including data challenging 

system performance. 

Healthcare, aviation (Eva & 

Norman, 2005; Lighthall & 

Vazquez-Guillamet, 2015; Kaempf & 

Klein, 2017) 

Diverse 

Information 

Presentation and 

Decision Support 

Utilize diverse information 

presentation methods and 

decision support tools to 

mitigate cognitive biases. 

'Time-based de-anchoring,' 

human-Al collaboration (Rastogi etal., 

2020; Eva & Norman, 2005; 

Lighthall & Vazquez-Guillamet, 

2015; Kaempf & Klein, 2017) 

Enhanced 

Decision-Making 

Tools Across 

Industries 

Systematically evaluate 

options to improve decision 

quality in various industries. 

Real estate, fishing management, 

preferential choice problems, 

algorithmic trading (Multiple 

references) 

Heuristic Control 

Strategies for 

Cognitive 

Workload 

 

Estimate cognitive workload, including 

physiological indicators like eye gaze, 

and employ real- time feedback 

mechanisms. 

Eye tracking, EEG signals, (Aygun et 

al.,2022; Knisely et al., 2021; 

Pomranky & Wojciechowski, 2007; 

Yuh et al., 2022; Wiltshire et al., 

2014, 2022) 

Minimizing 

Perceptual and 

Informational Load 

Reduce perceptual and 

informational load to 

prevent cognitive overload. 

Directional cues in visual displays, 

augmented reality (Davis, 2007; de 

Melo et al., 2020) 

Minimizing 

Interruptions for 

Enhanced 

Decision-Making 

 

Interfaces that align with users' mental 

models & minimize 

unnecessary interruptions 

to streamline cognitive 

switching and enhance 

decision-making. 

User interface design in healthcare 

and emergency services (Norman, 

1983; Zhang & Patel, 2006) 

 

Providing operators with comprehensive data is crucial in AI operations, including information that may 

counter expected performance. For instance, in healthcare, giving doctors extensive, varied patient data 

improves decision-making (Eva & Norman, 2005; Lighthall & Vazquez-Guillamet, 2015), a practice 

mirrored in aviation with detailed flight displays aiding pilots (Kaempf & Klein, 2017). Applying 

diverse information presentation and 'time-based de-anchoring' helps mitigate biases and enhance 

human-AI collaboration. Time-based de-anchoring strategy in this context is about using time allocation 

based on AI confidence levels to reduce the impact of anchoring bias and enhance the effectiveness of 

human-AI collaborative decision-making (Rastogi et al., 2020). Decision-making tools have advanced 

across sectors, with Clinical Decision Support (CDS) systems in healthcare aiding treatment decisions 

(George et al., 2000; Gong et al., 2017; Todd & Benbasat, 1991; Bhandari et al., 2008). 

In human-machine interaction, heuristic strategies optimize cognitive resource management. 

Monitoring cognitive workload with physiological metrics like eye gaze (Aygun et al., 2022) and using 

real-time feedback (Knisely et al., 2021; Pomranky & Wojciechowski, 2007), alongside autonomous 

systems that respond to user states (Yuh et al., 2022; Wiltshire et al., 2014, 2022), improve performance. 

Cognitive load management involves reducing perceptual load and aligning interfaces with users' mental 

models to avoid cognitive overload, crucial in high-stakes decisions (Norman, 1983; Zhang & Patel, 

2006; Davis, 2007; de Melo et al., 2020). 
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4.1. A note on training 

Training is essential in managing unmanned vehicles, emphasizing the need for teamwork among 

operators. Experienced personnel sharing knowledge through regular debriefings sharpens decision-

making and situational awareness, which translates to improved safety and performance (Thieme & 

Utne, 2017). The roll-out of Europe's first full-sized autonomous bus, CAVForth, exemplifies the 

ongoing need for adaptive learning in driverless technology (GOV.UK, 2020). Training programs that 

focus on recognizing and mitigating cognitive biases are also critical, impacting sectors from the military 

to finance (AlKhars et al., 2019; Sellier et al., 2019). Operators can then evaluate situations more 

objectively and make informed choices. Feedback mechanisms that offer performance metrics and real-

time analysis play a significant role in the learning process, allowing for the identification of 

improvement areas and skill enhancement. This is particularly important in high-stakes fields such as 

military and emergency response, where decisions must be both rapid and accurate (Junger, 2018; Yu, 

2016). Moreover, the training also benefits AI-driven systems. For example, cooperative reinforcement 

allows a team of Unmanned Aerial Vehicles (UAVs) to learn and adapt control parameters more 

effectively together than in isolation. This leader-follower dynamic not only expedites the learning curve 

but also ensures consistent performance, showcasing the synergistic relationship between human 

expertise and AI capabilities (Jardine & Givigi, 2021). 

5. Conclusion 
This paper has tried to provide an initial exploration of the integration of behavioral science principles 

into the development of AI-driven systems, with a particular focus on human-machine interaction 

(HMI). The research presented emphasizes the necessity for a holistic approach in design, one that 

considers not only the technological advancements, but also the cognitive and behavioral aspects of 

human operators. The discussion of various domains, including unmanned vehicle operation, military 

operations to finance, has hopefully illustrated the diverse applications of these principles. Based on that 

discussion, and two case studies, a number of design considerations were formulated dealing with 

decision tools and feedback mechanisms, while the role of training was also highlighted.  

The intersection of behavioral science and Human-Machine Interaction (HMI) design represents a 

burgeoning area of research, but it is fraught with both potential and challenges. A key concern in this 

field is the adherence to ethical principles in relation to the respect of user privacy, autonomy, and 

dignity. This is demonstrated by studies like Lunter (2020), which highlight the inherent biases in facial 

recognition algorithms against specific racial or ethnic groups, leading to potential discrimination. Such 

findings necessitate the development of systems that encourage critical evaluation of provided 

information, as suggested by Nurse et al. (2022), and caution against over-reliance on algorithmic 

outputs. Furthermore, the proliferation of autonomous systems, such as vehicles collecting data on 

passenger behavior, presents privacy concerns. It is crucial to ensure secure data handling and use for 

intended purposes only. Heuristic control strategies, while beneficial in reducing operator fatigue and 

cognitive overload, also carry implications for liability in accidents. The ethical quandary extends to the 

manipulation of user behavior: While nudging and influencing behavior can yield benefits, it is vital to 

maintain a balance between persuasion and unethical manipulation. Upholding transparency, informed 

consent, and user empowerment is essential. While the ethical dimensions of HMI design, such as those 

related to user autonomy and data privacy, are critical, they are beyond the scope of this paper and 

warrant dedicated research. However, a human-centred approach to HMI, informed by a good 

understanding of human decision making, can help prioritise human values and address key ethical 

issues while ensuring a balance between efficiency and ethical integrity. 

Overall, the integration of behavioral science into autonomous system design offers a number of 

pathways to better HMI. However, this integration is still in its early stages, and ongoing research is 

imperative for developing ethically grounded design strategies that leads to HMI design that is both 

ethically responsible and attuned to the complexities of human decision-making. By focusing on the 

nuanced understanding of behavioral scientific insights, and their limitations, designers can create 

systems that are not only effective, but also respectful of user autonomy and diversity. 
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