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We investigate how the heat flux Nu scales with the imposed temperature gradient Ra
in homogeneous Rayleigh–Bénard convection using one-, two- and three-dimensional
simulations on logarithmic lattices. Logarithmic lattices are a new spectral decimation
framework which enables us to span an unprecedented range of parameters (Ra, Re, Pr)
and test existing theories using little computational power. We first show that known
diverging solutions can be suppressed with a large-scale friction. In the turbulent regime,
for Pr ≈ 1, the heat flux becomes independent of viscous processes (‘asymptotic ultimate
regime’, Nu ∼ Ra1/2 with no logarithmic correction). We recover scalings coherent with
the theory developed by Grossmann and Lohse, for all situations where the large-scale
frictions keep a constant magnitude with respect to viscous and diffusive dissipation. We
also identify another turbulent friction-dominated regime at Pr � 1, where deviations
from the Grossmann and Lohse prediction are observed. These two friction-dominated
regimes may be relevant in some geophysical or astrophysical situations, where large-scale
friction arises due to rotation, stratification or magnetic field.
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1. Introduction

Convection is a dynamical process that governs heat transport and mixing in a variety
of systems ranging from planetary and astrophysical flows to industrial devices. In that
respect, a crucial question is how the heat flux in the system is connected with the
temperature gradient. Near equilibrium, where both quantities are small, Fourier laws
apply, and the heat flux is simply proportional to the temperature gradient. For larger
values, the system enters a nonlinear then turbulent regime, where thermal energy is
converted into mechanical energy, and the relation becomes nonlinear. The deviations from
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linearity are quantified by the relation between the Nusselt number Nu, the ratio between
the heat flux and its laminar value, and the Rayleigh number Ra, the non-dimensional
temperature gradient.

In fluid mechanics, the paradigmatic system describing convection is a fluid enclosed
in a volume, in which thermal energy is injected at the bottom via imposed heat flux or
temperature gradient. Its dynamics is described by the Rayleigh–Bénard (RB) equations.
Despite decades of theoretical, experimental and numerical developments, the scaling of
the heat transfer in RB convection remains a subject of discussion and active research.
In bounded domains at low Ra, a simple argument by Malkus & Chandrasekhar (1954)
based on the criticality of the thermal boundary layer gives Nu ∼ Ra1/3, observed in
many experiments (see Ahlers, Grossmann & Lohse (2009) for a review). As we increase
Ra → ∞, viscous processes (and their associated boundary layers) are believed to become
irrelevant, resulting in an ‘ultimate regime of convection’, where Nu ∼ Ra1/2 (hereafter
called ‘asymptotic ultimate regime’) (Spiegel 1963; Grossmann & Lohse 2000), with
possible logarithmic corrections (Kraichnan 1962; Grossmann & Lohse 2011) (hereafter
called ‘ultimate regime’). Experimental or numerical observations of the (asymptotic)
ultimate regime prove to be very difficult, and no final consensus has been reached so
far about its existence in a pure RB setting (Doering & Constantin 1996; Chavanne et al.
1997; Zhu et al. 2018, 2019a; Urban et al. 2019; Roche 2020) (see Ahlers et al. (2009) for
a less recent but more synthetic review). When the gravity is artificially increased using
centrifugal force, one can indeed observe hints of an ultimate regime (Jiang et al. 2022).
On the other hand, various modifications of the RB geometry aiming at modifying the
influence of the boundary layers result in experimental observation of a regime where
Nu ∼ Ra1/2: using highly elongated cells (Pawar & Arakeri 2016; Castaing et al. 2017),
using rough (Ciliberto & Laroche 1999; Rusaouën et al. 2018; Zhu et al. 2019b; Kawano
et al. 2021) or porous (Zou & Yang 2021; Motoki, Kawahara & Shimizu 2022) boundaries,
or radiatively heating the flow (Lepot, Aumaître & Gallet 2018; Bouillaut et al. 2019).

From a numerical point of view, a simple way to remove boundary layers is to consider
a triply periodic geometry, and heat the flow via an applied temperature gradient. This
setting was first explored by Borue & Orszag (1997), Lohse & Toschi (2003), Calzavarini
et al. (2005) and Calzavarini, Lohse & Toschi (2007) and called homogeneous RB
(HRB) convection. The corresponding scalings and predictions are summarized in table 1.
Although the results of those simulations are consistent with the predictions of Grossmann
& Lohse (2000) (hereafter called GL theory), they are undermined by several drawbacks:
statistics polluted by the growth of uncontrolled exponential instabilities (Calzavarini et al.
2006) of unclear physical relevance, a small Ra and Pr range, sparse data points due to
difficulties in running numerically challenging simulations. Indeed, pushing the Rayleigh
number to large values increases the numerical burden beyond the capacity of present
computers, as the number of grid points needed to describe the flow usually scales like Re3

with Re ∼ Ra1/2. In an attempt to reduce the number of degrees of freedom, models based
on sparse interacting Fourier modes have been recently devised (Campolina & Mailybaev
2018, 2021). Those modes are evenly spaced points in logarithmic space (thus hereafter
called log-lattice) and are interacting via nonlinear equations that are derived from the
fluid equations by substituting for the convolution product a new operator that can be seen
as a convolution on the log-lattice, and preserves all the main symmetries and conservation
laws of the original equations. As such, log-lattices are likely to preserve properties of the
original equations that are directly linked to these symmetries and conservation laws. This
was indeed checked for the Burgers and Navier–Stokes equations in Fourier space (energy
spectrum, energy transfers), over an unprecedented wide range of scales (Campolina &
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Asymptotic ultimate regime of homogeneous RB convection

GL theory f = 0 DNS f = 0 LL f = 1

Nu ∼ √
Ra Pr Pr0.43 Ra0.50 Pr0.51±0.01 Ra0.53±0.03

Re ∼ √
Ra/ Pr Pr−0.55 Ra0.5 Pr−0.54±0.01 Ra0.54±0.01

εθ ∼ c1
√

Re/Ra + c2Re
√

Pr /Ra (Re Pr)−0.17 Rex Prx−0.5 /
√

Ra, 1 � x � 1.2
εu ∼ Re3(Pr /Ra)3/2 Re2.77(Pr /Ra)3/2 Re2.88±0.03(Pr0.95±0.01 /Ra)3/2

Table 1. Scaling predictions for HRB observables in the turbulent regime with and without friction. The
observables are given in table 2. Here DNS stands for direct numerical simulation using regular Fourier modes
(Calzavarini et al. 2005) while LL refers to simulations using Fourier modes on a log-lattice (this paper).
Parameters U2

ls and Θ2
ls are large-scale kinetic and thermal energy. Exponents are computed by fitting over

Ra > 107 (respectively 1 < Pr < 50) for varying Ra (respectively Pr). Errors represent standard deviation of
fit parameters.

Mailybaev 2021). Another interesting feature of log-lattices is that in one dimension, they
encompass classical shell models of turbulence for special values of the log-lattice spacing
(Campolina & Mailybaev 2021), such as the Sabra shell model of turbulence (Gloaguen
et al. 1985; Biferale 2003).

One-dimensional (1-D) shell models of turbulence were used previously in the context
of HRB (Ching & Ko 2008) in an effort to increase the Ra and Pr range of results.
They successfully display the asymptotic ultimate regime of convection, at the price
of tuning several parameters of the model to eliminate the uncontrolled exponential
instabilities. This, combined with the 1-D nature of the model, renders the informative
and conclusive nature of the observations questionable. The goal of the present paper is
therefore to re-explore the HRB equation using the log-lattice framework, which allows
both the exploration of a wide range of parameters on a large array of wavenumbers and
a flexibility of dimensionality from one to three dimensions, at low numerical cost, and
without additional empirical parameters. Given that they preserve all main conservations
laws and symmetry of the original HRB equation, many features of the original equation
are still valid, like the exact conservation laws of table 1. Whether the GL theory still
applies, and what the modifications are of the asymptotic ultimate regime implied by
the log-lattice geometry are interesting open questions that we investigate here. In that
respect, the present paper offers an exploration of the analogy and differences between
log-lattices and classical fluid dynamics in a more complex case (HRB) than previous
examples (Campolina & Mailybaev 2018, 2021).

2. Numerical simulations

2.1. Generalities
The dynamics of a homogeneous fluid, with coefficient of thermal dilation α, viscosity
ν and diffusivity κ , subject to a temperature gradient ΔT over a length H and vertical
gravity g is given by the HRB set of equations (Lohse & Toschi 2003; Calzavarini et al.
2005, 2006, 2007):

∂tu + u · ∇u + 1
ρ0

∇p = ν∇2u + αgθz,

∂tθ + u · ∇θ = κ∇2θ + uz
ΔT
H

,

∇ · u = 0,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.1)
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Figure 1. Absolute value of the rate of growth of instability σ = d log X/d log t, where X = 〈uθ〉 without
large-scale friction ( f = 0), versus Rayleigh number. The green dashed line is the theoretical growth rate for
k = kc = 2π

√
3, corresponding to (2.4). The interval k < kc corresponds to negative values of σ .

where u is the velocity, θ the temperature fluctuation, ρ0 is the (constant) reference density
and p is the pressure. Here, the mean temperature gradient ΔT acts as a forcing term.
This gradient is non-dimensionalized into the Rayleigh number Ra = αgH3ΔT/(νκ). The
Prandtl number Pr = ν/κ is the ratio of the fluid viscosity to its thermal diffusivity. The
mean total heat flux in the z direction is J = 〈uzθ〉 − κΔT which is non-dimensionalized
into Nu = JH/κΔT .

Taking global space and time average of equation (2.1), one can derive (Lohse & Toschi
2003; Calzavarini et al. 2005) two exact relations for the volume-averaged kinetic and
thermal dissipation, which respectively scale as

ν
〈
(∂iuj)

2
〉
V

= ν3H−4NuRaPr−2, (2.2)

κ
〈
(∂iθ)2

〉
V

= κH−2(ΔT)2Nu. (2.3)

Additionally, to eliminate the pressure term, we take the rotational of the above equation
(ω = rotu = ik × u).

2.2. Adaptation on log-lattices: HRB with friction

2.2.1. Exponential instabilities in HRB
As first shown by Calzavarini et al. (2006), HRB equations are prone to exponential
instabilities, due to the conservation of the total energy. In the absence of large-scale
friction, we also observe those instabilities in our log-lattice simulations (figure 2a). As
shown in figure 1, the growth rate of the instability in the log-lattice simulations matches
the theoretical growth rate given by (Calzavarini et al. 2006; Schmidt et al. 2012)

σ
√

Ra Pr = 1
2

[√(
(Pr +1)k2

)2 + 4 Pr(Ra − k4) − (Pr +1)k2
]

∼
√

Ra, (2.4)

for θ, u ∼ exp(σ t + ik·x). This expression yields unstable solutions for Ra > Rac = k4
min,

where kmin is the modulus of the smallest mode on the grid, which is 2π
√

3 in our case.
However, the nonlinear behaviour of the instability in the log-lattice case is quite

different from that reported by Calzavarini: instabilities tend to extend significantly further
and for longer times. Our interpretation is that in our log-lattice model, the modes are not

962 A2-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

20
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.204


Asymptotic ultimate regime of homogeneous RB convection

0 5 10 15

t

102

105

108

Nu

0 2000 4000 6000

t

100

101

102

103(b)(a)

Figure 2. Influence of the large-scale friction on the time behaviour of the Nusselt number Nu in
three-dimensional (3-D) HRB convection. (a) Without friction: we observe the growth of an exponential
instability. (b) With friction: the instability saturates and the dynamics becomes statistically convergent.
Parameters: Ra = 106, Pr = 1, N = 13.

coupled enough to develop the nonlinear saturation. The instabilities widely interfere with
the statistical stability of observables and need to be removed for a meaningful analysis.
Physically, these exponential ramps originate for a lack of energy sink to absorb the
constant energy injection in the bulk by the (fixed) temperature gradient. Previous works
on 1-D simulations (Ching & Ko 2008) have shown that without a large-scale sink to
counteract this source, energy diverges at large scales and scaling laws become incorrect.
Therefore, to eliminate the exponential instabilities, we include a large-scale friction f
on both u and θ . By doing so, the instability saturates, and we achieve a statistically
stationary state for the heat transfer, as displayed in figure 2. Note, however, that the
fluctuations of Nu around the stationary value are very broad, and extend over one or
two orders of magnitude. The same phenomenon was observed in the DNS of HRB
(Calzavarini et al. 2005, 2006) and mentioned to be a source of difficulty to achieve reliable
results (Borue & Orszag 1997). For this reason, very long simulations are necessary to get
steady averages (Pumir & Shraiman 1995; Calzavarini et al. 2006). In DNS, this cannot
be achieved without cutting down the resolution, which may impact the reliability of
dissipation estimates (Yeung, Sreenivasan & Pope 2018). In the log-lattice framework,
we do not have this problem, and we performed high-resolution very-long-time averages
on the log of Nu, and represent all quantities in log–log variables.

2.2.2. Equations
To investigate the ultimate regime, it is natural to non-dimensionalize the equation in
terms of ‘inertial quantities’, i.e. using the vertical width H as a unit of length, the
free fall velocity Uff = αgΔTH as a unit of velocity and ΔT as a unit of temperature.
Table 2 indicates the form taken by observables after rescaling as indicated. The equations
including the temperature gradient and the friction can then be written in terms of velocity
as (with the Einstein convention on summed repeated indices):

∂tui = P

[
−uj∂jui + θδi=z +

√
Pr
Ra

∇2ui − fuiδk≈kmin

]
i

,

∂tθ = −ui∂iθ + uz + ∇2θ√
Ra Pr

− f θδk≈kmin,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.5)
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Nu = JH
κΔT

− 1 → √
Ra Pr · 〈uzθ〉 − 1

Re =
√〈UiUi〉H

ν
→
√

Ra
Pr

·√〈uiui〉

εθ = κ
〈
(∂iΘ)2〉 →

〈
(∂iθ)2〉
√

Ra Pr

εu = ν
〈
(∂iUj)

2〉 →
√

Pr
Ra

· 〈(∂iuj)
2〉

Table 2. Physical quantities expressed as a function of the non-dimensional variables of (2.5). Here 〈·〉
denotes the temporal and spatial average.

where the Dirac δk≈kmin filters out the small scales and the projector, given in Fourier space
by P(A) = A − (ki/k2)kjAj, accounts for the pressure term under the divergence-free
condition. We also looked at those equations expressed in terms of the vorticity ω =
∇ × u:

∂tωi = −ωj∂jui − uj∂jωi + θ [∇ × z]i +
√

Pr
Ra

∇2ωi − f ωiδk≈kmin,

∂tθ = −ui∂iθ + uz + ∇2θ√
Ra Pr

− f θδk≈kmin .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.6)

Adding a large-scale friction to damp the inverse cascade is a classical trick – it is, for
example, routinely used in numerical simulations of two-dimensional (2-D) turbulence
to avoid Bose condensation at k = 0 and enable stationarity (Sukoriansky, Galperin &
Chekhlov 1999). The present case is 3-D, but we interpret the formation of exponential
ramps as a signature of back-scattering of energy, a feature that was already mentioned
previously in shell models of RB convection (Ching & Ko 2008). The addition of the
friction is therefore a convenient way to damp the large-scale modes that are generated
by the large-scale instability. Such friction is also added in many models of climate, as
a subgrid model to account for the friction at the boundary layer that cannot be resolved
in the stratified case. The hand-waving argument is that, within boundary layers, a shear
profile develops, with extraction of energy at the boundaries, which is proportional to the
square of the shear. Assuming the shear to be constant in the boundary layer, we can then
estimate it by the difference between the velocity at the top of the layer minus the velocity
at the boundary which is zero. In total, the energy pumped by friction is proportional to
the square of the velocity, which is exactly the law we have implemented. Such friction is
termed Rayleigh friction in the climate community (Stevens et al. 2002) and can actually
be seen as a way to take into account the boundary conditions that we have removed in the
HRB setting.

2.2.3. Conservation laws for HRB with and without friction
In the absence of friction, the conservation laws for HRB are given by (2.2) and by
(2.3). The presence of the friction just adds a supplementary term proportional to f in
each equation. The result can be made non-dimensional using Uff , H and ΔT as units of
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velocity, length and temperature, resulting in

f
〈
u2δk≈kmin

〉
+ εu = Nu + 1√

Ra Pr
, (2.7)

f
〈
θ2δk≈kmin

〉
+ εθ = Nu + 1√

Ra Pr
. (2.8)

From now on, we define U2
ls = 〈

u2δk≈kmin

〉
and Θ2

ls = 〈
θ2δk≈kmin

〉
.

2.3. Log-lattices
Log-lattice models fit into the more general framework of reduced wavenumber set
approximation (REWA) (Grossmann et al. 1994) or fractal decimated models (Frisch et al.
2012; Lanotte et al. 2015). The spirit of these methods is to use a reduced subset of modes
obeying a well-defined hierarchy, so as to stick closer to the observed organized nature of
turbulence. In the original REWA models (Grossmann et al. 1994), nonlinear interactions
are projectively decreased either in a random manner or such that they are distributed
over a fractal set (Frisch et al. 2012; Lanotte et al. 2015). In log-lattice models, the
mode reduction is achieved by keeping modes following a geometric progression, thereby
allowing to reach very small scales with a very small number of modes. The construction
is detailed in Campolina & Mailybaev (2021), where it is shown that fluid equations on
log-lattices respect all symmetries of the Euler equations, and retain classical and basic
properties of the Navier–Stokes equation, such as constancy of energy flux in the inertial
range.

There are several key differences compared with shell models (Brandenburg 1992;
Ching & Ko 2008) or the original REWA model. Like in a shell model, simulations
are carried out in Fourier space on a logarithmically decimated grid. Unlike shell
models, log-lattices are truly multidimensional, and unlike the original REWA model,
the decimation does not have a fixed number of points per shell: k(n1, . . . , nd) =∑

i λ
niei, ni ∈ Z with d the spatial dimension and ei = x, y, z, . . . . Log-lattices are

endowed with a scalar product:

( f , g) = Re

(∑
k

f (k)g(k)

)
(2.9)

and a convolution operator:

( f ∗ g)(k) =
∑
p,q

p+q=k

f (p)g(q) (2.10)

that naturally extend the corresponding operators on regular Fourier grids. This ensures
that the log-lattice operators respect the symmetries of the Navier–Stokes equation, which
ensures the conservation of energy, helicity (3-D), enstrophy (2-D), etc. provided that
they are conserved in the original equation. The constraint on the interacting triads on
log-lattices ∃p, q ∈ λZ : p + q ∈ λZ restricts the acceptable values of λ to three main
families: λ = 2, the plastic number λ = ρ ≈ 1.324, and λb − λa = 1, (a, b) ∈ N

2, whose
largest solution is the golden number λ = φ ≈ 1.618. From a numerical point of view,
λ = 2 is the ‘fastest’ option, as it has both a maximal span for a given number of points
and the least interactions per point. However, as outlined in the next section, we believe
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Figure 3. Exact conservation laws for εθ in 3-D results. Black points correspond to varying Ra, grey
points correspond to varying Pr. (a) Plot of εθ + f Θ2

ls versus (Nu + 1)/
√

Ra Pr. (b) Compensated plot
(εθ + f Θ2

ls)/((Nu + 1)/
√

Ra Pr) versus (Nu + 1)/
√

Ra Pr.

that λ = 2 should be avoided for incompressible simulations. We thereafter perform all
our simulations with λ = φ, which is the second largest value of λ, and has the second
least number of interactions per grid point.

2.4. Numerical details

2.4.1. Configuration
The minimum wave vector of the grid is set to kmin = 2π to match a simulation on a
box of size L̃ = 1. The grid size N is then set so as to reach the dissipative scale for
both velocity and temperature. We alternate between several initial condition choices
for our simulations: large-scale initialization, Kolmogorov spectrum, flat spectrum. All
those choices are modulated by a weak multiplicative complex noise. We find no
significant influence of those initial conditions on the scaling laws. As Ra or Pr increases,
the simulations become slower and slower. This sets the upper bound on the range
of parameters we can integrate while retaining statistically relevant observables in a
reasonable simulation time (one CPU days at most). In three dimensions, this yields
Ramax ≈ 1010 for Pr = 1 and Prmax ≈ 5 × 104 for Ra = 108. The lower bound is set by the
value of the Nusselt number, which must obey Nu � 1, the value Nu ≈ 1 corresponding to
the laminar regime with trivial scaling laws. Finally, integrating equations on log-lattices
yields interesting and new numerical challenges. We built our own ordinary differential
equation integrator to solve them, as detailed in the supplementary material available at
https://doi.org/10.1017/jfm.2023.204. Once we have run a simulation for a long enough
time, we compute Nu, εθ , εu by taking long time and space averages (with 〈ab〉 =
(1/T)

∫
t dt(a, b)) according to table 2. The accuracy of our results is controlled by

checking that we recover the exact laws of HRB convection equations (2.8) and (2.7).
This is shown in figures 3 and 4 for all 3-D datasets used in the present paper (see table 3).
Furthermore, the ratio between the friction term and the dissipation is shown in figure 5.

2.4.2. Simulation sets
The results we obtained come from seven types of simulation that are described in table 3.
For comparison, we also included in some graphs the results by Calzavarini et al. (2005),
obtained using DNS of the same equations, but at f = 0.
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Figure 4. Exact conservation laws for εu in 3-D results. Black points correspond to varying Ra, grey
points correspond to varying Pr. (a) Plot of εu + fU2
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Ra Pr. (b) Compensated plot
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Figure 5. Ratio between friction fx = fX2
ls and dissipation εx for x = u, θ (a) versus Ra at Pr = 1 and

(b) versus Pr at Ra = 108.

Historically, we performed first vorticity simulations, then velocity simulations,
improving the integrator scheme in between to be able to better handle various numerical
challenges raised by simulating wavenumbers as high as k ∼ 105 in three dimensions. For
transparency reasons, we decided to include all datasets we had at our disposal, but we
believe that the velocity simulations are the more faithful ones, in the sense that they
deal better with the small scales at large Rayleigh or Reynolds number. This sensitivity
to small-scale modelling (and resolution) is also a well-known feature of DNS, especially
when it comes to statistics of gradients or energy dissipation (Yeung et al. 2018).

We have verified that the size of the grid for 3-D simulations (N = 13) does not affect
the mean value of the observables Nu, Re, . . . , which is already converged for grids of size
N ≥ 6. However, the tail of the probability density functions does depend on N. Another
3-D simulation set at N = 20 (not shown here, versus both Ra and Pr) displays the same
scaling laws as the N = 13 case, confirming this analysis.
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Name D Type Ra Pr f N Nav Tolerance Symbol

(I) 1-D Velocity [105, 1050] 1 1 120 — 10−3

(II) 2-D Vorticity [105, 1050] 1 1 20 — 10−3

(III) 3-D Velocity [1, 1010] 1 1 13 >480 10−6

(IV) 3-D Vorticity [1, 1010] 1 1 13 >480 10−6

(V) 3-D Velocity 108 [5 × 10−4, 102] 1 13 >50 10−6

(VI) 3-D Vorticity 108 [5 × 10−4, 102] 1 13 >50 10−6

(VII) 3-D ++Velocity {109, 1010, 1011} [5 × 10−4, 102] 1 13 >80 10−6 —
(VIII) 3-D Velocity [106, 1010] 1 1 13 >50 10−6

Calzavarini 3-D DNS [105, 108] [10−1, 10] 0 — >64 —

Table 3. Parameters of the datasets used in the present paper. Here D is the dimension. The ‘velocity’ datasets
are obtained by integration of (2.5), while the ‘vorticity’ datasets are obtained by integration of (2.6). DNS
refers to direct simulations of Calzavarini et al. (2005), using a classical spectral Fourier code (on a regular
grid). The ++ label refers to an integration using an improved integrator, using a reshuffling of variable
matrices that allows faster simulations. The columns headed Ra and Pr provide the Rayleigh and Prandtl number
range of the simulations, f is the large-scale friction and N = 1 + log kmax/ log(φ), where kmax is the maximal
wavenumber of the simulation and φ, the golden mean, is a measure of the spatial resolution. For log-lattices,
it corresponds to the number of modes in each direction. Parameter Nav is the length of the simulation, divided
by the large-eddy turnover time. It provides the number of decorrelated frames that can be used to estimate
statistical averages. The tolerance refers to the absolute and relative tolerances that are fixed equal in all the
simulations.

2.4.3. A case against λ = 2
This section explains why the log-lattice parameter λ = 2 is ill-suited to simulating
divergence-free equations. It is not specific to HRB simulations; however, we believe this
issue has not been reported in a publication before.

Parameter λ = 2 is the largest grid parameter that can be accommodated on a log-lattice.
For a fixed grid size N in dimension D, it is therefore very tempting to use λ = 2, since
among all the λ values it spans the greatest range of wavenumbers (the convolution
complexity rises as O(ND)). However, λ = 2 misrepresents the convection term uj∂jui.

The heart of the problem is easily understood through a simple 2-D example.
Consider the convection term ux∂xω + uy∂yω of a divergence-free flow, with a large-scale
initialization u(k > k0) = ω(k > k0) = 0 for some k0. From a physical point of view, we
expect convection to populate the k ≥ k0 region as time advances. However, with λ = 2,
this does not happen, as is demonstrated below.

In a divergence-free flow, ux ∗ ∂xω = −i(ωky/k2 ∗ kxω), uy ∗ ∂yω = i(ωkx/k2 ∗ kyω),
where ∗ denotes a convolution. In a λ = 2 log-lattice, convolutions are defined
as (excluding the k = 0 mode, which is not used in this paper) f ∗ g(λn, λm) =
f (λn−1, λm−1)·g(λn−1, λm−1). Due to the initial conditions, this yields

(
ux ∗ ∂xω + uy ∗ ∂yω

)
(k ≈ k0) = 0. (2.11)

There is no forward convection at all; therefore there can be no forward cascade in such a
case.

This does not happen for other values of λ, for which the convolution is evaluated at
asymmetric positions. We therefore advise against using λ = 2 in divergence-free fluids,
and suggest rather using λ = φ (the second-largest grid parameter).
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Figure 6. Non-dimensional heat transfer Nu versus Rayleigh number Ra in one and two dimensions.
Correspondence between symbols and datasets is given in table 3. (a) Plot of Nu versus Ra. The grey dashed
line corresponds to Nu ∼ √

Ra, corresponding to ultimate regime scaling. (b) Compensated plot ANu/
√

Ra
versus Ra, where A is adjusted to collapse the 1-D and 2-D data in the ultimate regime.

2.4.4. Zero-divergence problem in one dimension
In the 1-D case, we cannot impose the zero-divergence condition, so that quantities like
ux∂xθ and ∂x(uxθ) are not equivalent. Here, we have followed the same choice as Ching &
Ko (2008), and write the equation as

∂tu = −u∂xu + θ +
√

Pr
Ra

∇2u − fuδk≈kmin,

∂tθ = −u∂xθ + u + ∇2θ√
Ra Pr

− f θδk≈kmin .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.12)

3. Results and discussion

3.1. One- and two-dimensional cases
Figure 6 presents the Nu versus Ra scaling in one and two dimensions. The 1-D Nu scaling
law extends over 50 orders of magnitude in Ra (figure 6a), and follows closely the law
Nu ∼ Ra1/2, as can be checked by the compensated plot in figure 6(b), in agreement with
Ching & Ko (2008). In the 2-D case, the scaling also extends approximately over 30 orders
of magnitude for Ra > 1023. Moreover, the compensated plot highlights small fluctuations
around this law (see figure 6b) due to statistical noise.

3.2. In three dimensions
In three dimensions, the simulations get significantly more turbulent and results are subject
to more statistical fluctuations. Another source of fluctuations comes from a physical
phenomenon, associated with the existence of friction. To showcase this effect, we plot
in figures 5(a) and 5(b) the ratio between the energy dissipated by friction and the energy
dissipated by viscosity or diffusivity for both the kinetic energy and the thermal energy.

Fixing Pr = 1 and varying Ra between 103 and 108, we observe in figure 5(a) that both
fu = fU2

ls/εu and fθ = f Θ2
ls/εθ behave in the same way as a function of Ra at low Ra. The

dissipation due to friction is small, and gradually increases towards reaching a plateau
around Ra ∼ 107, where energy dissipated by friction reaches about 90 % of the energy
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Figure 7. Non-dimensional heat transfer Nu versus Rayleigh number Ra in three dimensions for Pr = 1.
Correspondence between symbols and datasets is given in table 3. The grey dashed line separates the
non-universal (left) and the universal (right) friction-dominated regimes for data corresponding to figure 5.
(a) Plot of Nu versus Ra. The black dashed line corresponds to Nu ∼ √

Ra, corresponding to asymptotic
ultimate regime scaling. (b) Compensated plot Nu/

√
Ra versus Ra.

dissipated by viscosity or diffusivity. We can thus define a ‘non-universal’ regime where
f /ε depends on Ra, Pr and a ‘universal’ regime where f /ε does not depend on Ra, Pr.

The critical Rayleigh number where the plateau occurs is likely to depend on the Prandtl
number. To check this, we now fix Ra = 108 and vary Pr over several orders of magnitude.
In figure 5(b), we then observe an interesting symmetric behaviour, with respect to Pr = 1:
decreasing Pr, we observe that the energy dissipated by the velocity friction remains of
the same order of magnitude as that dissipated by viscosity, while the energy dissipated
by thermal friction strongly decays and becomes negligible. As Pr shifts away from 1,
we observe the symmetric behaviour, with velocity friction becoming negligible, while
thermal friction remains of the same order of magnitude as the thermal energy dissipation.
As we will see, this has an impact on the thermal transport. Note that at small (respectively
large) Pr, all the thermal (respectively velocity) modes become concentrated at large scale,
where the friction occurs. Therefore, in the large-Pr regime, the kinetic friction and viscous
dissipation compete, while at small Pr the same remark holds for the thermal friction and
diffusive dissipation. This may then explain the vanishing of the friction in those regimes.

We now focus on the regimes where the ratio of friction to dissipation is approximately
constant. These regimes are friction-dominated, but, as we will see, are characterized by
interesting universal scaling regimes.

Figures 7 and 8 present the 3-D Nu versus Ra, Pr scalings. Figures 9 and 10 present
the 3-D Re versus Ra, Pr scalings. Scalings are always displayed both directly and in
compensated form.

At low Ra, we first observe a transition from a laminar regime, where Nu = 1, up to a
turbulent regime starting around Ra ∼ 107 at Pr = 1. In this transition regime, the Nusselt
number varies approximately like Nu ∼ Ra2/3, while the Reynolds number remains less
than 104, but follows approximately Re ∼ Ra1/2. In this regime, the friction is negligible,
as we saw, so that it corresponds to a laminar, frictionless regime.

After this laminar regime, we obtain a turbulent regime around 107 < Ra for Pr = 1 in
which Nu ∼ Ra1/2 and Re ∼ Ra1/2, like GL theory. The exact value of the exponent is
provided in table 1. In this regime, the friction is non-negligible, so that it is a ‘turbulent
friction-dominated regime’. However, as both ratios fu = fU2

ls/εu and fθ = f Θ2
ls/εθ remain

independent of Ra, they do not change the scaling of the total kinetic and thermal energy
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(b)(a)

Figure 8. Scaling of non-dimensional heat transfer Nu as a function of Prandtl number Pr in three dimensions
for Ra = 108. Correspondence between symbols and datasets is given in table 3. The grey dashed line separates
the non-universal (left) and the universal (right) friction-dominated regimes for data corresponding to figure 5.
(a) Plot of Nu versus Pr. The black dashed line corresponds to Nu ∼ √

Pr, corresponding to asymptotic ultimate
regime scaling. (b) Compensated plot Nu/

√
Pr versus Pr.

105
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103 105 107 109

101

100Re

Re
/R

a0
.5

Ra
103 105 107 109

Ra

(b)(a)

Figure 9. Scaling of Reynolds number Re as a function of Rayleigh number Ra in three dimensions for
Pr = 1. Correspondence between symbols and datasets is given in table 3. The grey dashed line separates
the non-universal (left) and the universal (right) friction-dominated regimes for data corresponding to figure 5.
(a) Plot of Re versus Ra. The black dashed line corresponds to Re ∼ √

Ra, corresponding to asymptotic ultimate
regime scaling. (b) Compensated plot Re/

√
Ra versus Ra.

dissipation. Therefore, the argument developed by GL theory should still apply in this
situation, as is indeed observed, with minor corrections due to the small variations of the
ratios.

In that respect, it is not surprising that the the extent of this regime varies with Pr, as
is shown in figure 11 for various Ra. At Ra = 108, the ‘universal GL’ regime stops for
Pr <∼ 10−1. In this range of parameters, Re is still large, so that the flow is turbulent.
However, Nu drops quicker with decreasing Pr than in the universal GL regime, as can be
seen from the filled data points in figure 8, in parallel with a similar drop for the thermal
friction observed in figure 5(b). This regime seems therefore dependent on the variation in
the friction, and is non-universal. In this regime, the Reynolds number variation with Pr is
milder than in the universal regime, as can be seen in figure 10.

As the Rayleigh number increases, we nevertheless observe in figure 11 that the extent
of the universal turbulent regime extends towards smaller and smaller values of Pr, so that
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Figure 10. Scaling of Reynolds number Re as a function of Prandtl number Pr in three dimensions for Ra =
108. Correspondence between symbols and datasets is given in table 3. The grey dashed line separates the
non-universal (left) and the universal (right) friction-dominated regimes for data corresponding to figure 5.
(a) Plot of Re versus Pr. The black dashed line corresponds to Re ∼ 1/

√
Pr, corresponding to ultimate regime

scaling. (b) Compensated plot Re/(1/
√

Pr) versus Pr.

100

Re
/P

r–
0
.5

N
u/

P
r0

.5

100

10–1

10–2

10–3 10–4 10–2 100 102100

Pr

Ra = 108

Ra = 109

Ra = 1010

Ra = 1011

Pr

(b)(a)

Figure 11. Scaling of heat transfer Nu as a function of Prandtl number Pr in 3-D results at fixed Ra, dataset
VII (table 3). Plots of (a) Nu/

√
Pr versus Pr for various Ra and (b) Re/(1/

√
Pr) versus Pr for various Ra.

the universal scaling regime corresponds to an ‘asymptotic scaling regime’ at low value of
Pr < 1, valid in the limit of infinite Ra.

Figures 12 and 13 plot the kinetic and thermal dissipation rates εu, εθ against GL
predictions. In agreement with what has been observed previously, we observe agreement
with GL theory in the range of parameters where the friction ratios are approximately
constant with the parameters, i.e. at large value of Re Pr. Overall, it is interesting to note
that even when the friction is dominant, we can recover the ultimate regime scaling, as long
as the velocity friction ratio remains relatively constant as a function of the parameters and
that there is not too large an asymmetry between the two frictions. In regimes where the
asymmetry prevails, there are no clear scaling laws that emerge, meaning that the scalings
are probably not universal in Ra and Pr only, and that friction-depending corrections need
to be implemented.

4. Conclusion

In this paper, we investigated scaling laws in the HRB equations through a new
mathematical framework (log-lattice). Using a modified DOPRI solver, we are able to
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Figure 12. Scaling of thermal dissipation rate εθ compared with the GL prediction Re
√

Pr /Ra in 3-D
results. Correspondence between symbols and datasets is given in table 3. The grey dashed line separates
the non-universal (left) and the universal (right) friction-dominated regimes for data corresponding to figure 5.
(a) Plot of εθ

√
Ra Pr versus Re Pr. The black dashed line corresponds to the GL prediction εθ ∼ Re(Pr /Ra)1/2.

(b) Compensated plot εθ

√
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√
Re Pr versus

√
Re Pr.
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Figure 13. Scaling of kinetic dissipation rate εu compared with the GL prediction Re3(Pr /Ra)3/2 in 3-D
results. Correspondence between symbols and datasets is given in table 3. The grey dashed line separates the
non-universal (left) and the universal (right) friction-dominated regimes for data corresponding to figure 5.
(a) Plot of εu

√
Ra3 Pr versus Re3 Pr2. The black dashed line corresponds to the GL prediction εu ∼

Re3(Pr /Ra)3/2. (b) Compensated plot εu
√

Ra3 Pr/Re3 Pr2 versus Re3 Pr2.

explore a range of parameters and wavenumbers way beyond what is accessible in DNS
of the equations. By adding a large-scale friction to the HRB equations, we are able to
solve the issue of exponentially diverging solutions. This large-scale friction becomes
non-negligible when the fluid becomes turbulent enough, so that the total energy balance
departs from the energy balance considered in GL theory, where no friction is present.
Despite this, we still observe scaling laws for Nu and Pr that are very close to the
universal turbulent predictions of GL theory: Nu ∼ Ra1/2 Pr1/2, Re ∼ Ra1/2 Pr−1/2, εθ ∼
Re(Pr /Ra)1/2, εu ∼ Re3(Pr /Ra)3/2 for an important range of parameters, corresponding
to situations where the thermal friction is non-negligible and the kinetic friction does not
vary significantly as a function of the parameters. This is obtained at large enough Ra and
for Pr depending on the value of Ra.
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In addition to this regime, we also observe another turbulent friction-dominated regime
at Pr � 1. This regime has no simple and universal dependence on the parameters, and
depends on the variations of the kinetic friction with the parameters.

Our observations show that the inclusion of friction, which is necessary to obtain
stationary regimes in the HRB framework, makes more complex the phase space but
nevertheless allows for the existence of a universal turbulent regime, where scaling laws
are very close to the GL frictionless theoretical laws. In some geophysical or astrophysical
situations, large-scale friction arises due to rotation (Ekman friction), stratification
(Rayleigh friction) or magnetic field (Hartman friction), and the two scaling regimes we
find (one universal and one non-universal) may be relevant and could be explored within
the log-lattice framework.

More generally, we believe that log-lattices, with their unique performances in terms of
numerical complexity, due to a spectrally sparse representation and strong mathematical
qualities, have a great potential in numerical simulations of geophysical or astrophysical
flows. However, as they are still in their infancy, many different paths would benefit from
being explored to better understand their strengths and weaknesses. For example, it is
not yet clear how the decimation of nonlinear interaction that takes place in log-lattices
influences the prefactors of the scaling law. The comparison with DNS data shown in
figure 7(a) for example indicates that the log-lattice model with friction is more efficient
for transporting heat than the DNS without friction. Whether this difference is due to
friction or to the decimation is still an open question, and a topic of ongoing work. Another
issue is whether the inclusion of rotation in log-lattices will play the same role as in DNS,
as rotation is known to influence the nonlinear interactions, not the energy budget. This
is left for future work. Finally, the necessity of dealing with hyper-large wavenumbers
in log-lattices sets an issue as to the best numerical scheme to integrate numerically the
dynamics, and include viscous effects; this is discussed in the supplementary material, and
we are currently exploring whether methods such as discussed in Whalen, Brio & Moloney
(2015) could prove useful in that regard. Other topics of interest include the behaviour of
observables when λ→ 1 and the addition of the k = 0 mode would prove very interesting
to study. Likewise, in a similar spirit as was done for the REWA model in Grossmann,
Lohse & Reeh (1996), a detailed comparison of DNS and log-lattice results (which is far
from trivial, as there is room for interpretation as to the mathematical meaning of the fields
simulated on a log-lattice) would be highly useful.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2023.204.
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