
6 
The classical motion of the 
massless relativistic string 

6.1 Introduction 

In this chapter we start to consider the properties of the massless relativistic 
string (the MRS). We will begin with a simple situation in which the MRS 
plays the role of a constant force field, acting upon a 'charge' and an 
'anticharge' placed at the endpoints of an open MRS. This means that 
the motion will be in one space dimension along the force direction. We 
will refer to it as the yoyo-mode for reasons that will become clear when 
it is exhibited. 

In later chapters we will come back to more complex modes involving 
several dimensions. All these modes are used in the Lund model as semi­
classical models for different high-energy interactions between hadrons. 
The yoyo-mode is used both to describe an e+ e- annihilation event and 
as a simple model for stable hadrons. In the last section of this chapter 
we provide a possible dynamical analogy between the QCD vacuum and 
superconductivity as a justification for using string dynamics to describe 
hadronic states and interactions. 

In the yoyo-mode the two charges at the endpoints of the string move 
like point particles, i.e. the momentum of the state is localised in these 
endpoint particles of the MRS force field. At any moment the total 
energy of the state can be decomposed into the energy in the force field, 
corresponding to a linearly rising potential, and the kinetic energies of the 
particles at the endpoints. We will use the situation to exhibit in detail the 
causality and the relativistic covariance properties of the MRS. 

In the Lund model the endpoints of an open MRS are always identi­
fied with triplet, 3, or antitriplet, 3, color charges, i.e. with quark, q, or 
antiquark, 71, properties. In connection with the description of baryonic 
particles, cf. Chapter 13, we will consider more complex charge configu­
rations. 
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6.2 The MRS as a constant force field 

1 The equations of motion 

The equations of motion in relativistic particle dynamics are, in general, 
complex in a consistent theory. The finiteness of the maximal velocity, i.e. 
that of light, implies a causality requirement. A message about changes 
in the system, such as e.g. the change in the state of motion of a charge 
somewhere, takes a finite time to be transmitted to any other part of the 
system. Consequently, the reaction of the system to the change, i.e. the 
ensuing force action, is of a retarded character. 

More precisely, some cause at the origin at time to will affect what 
happens at a point R only after a message has been able to reach that 
far. If this moves with the velocity of light, c = 1, in a straight line, it will 
cause an effect at time t with t = to + IRI. The calculations including the 
retarded times then become rather complicated. 

There is one particular situation, that of a constant force, that is easy to 
work with (because then the retardation effects are not noticeable). The 
historical start of what is now known as the Lund string model was based 
upon the consideration of such a force, [14]. We only later learned that 
the ensuing motion is a simple variety of the modes of the MRS [24]. 

If we consider the motion of a relativistic particle in space-time (t, x), 
with rest mass m, energy E and momentum p, under the influence of a 
constant force -K, we have the force equation 

dp 
dt = -K. 

The solution is evidently 

p = p( t) = Po - Kt == K( to - t) 

The velocity of the particle is 

dx p dE 
dt E dp' 

(6.1) 

(6.2) 

(6.3) 

(The first equation of (6.3) corresponds to one of Hamilton's equations, 
the hamiltonian being given by the relativistic particle energy.) 

From Eqs. (6.1) and (6.3) it is possible to obtain an equation for the 
variation of the energy with respect to the space coordinate, if we use the 
chain rule for differentiation: 

dE = (dE) (dP) dt = dp = -K (6.4) 
dx dp dt dx dt 

This equation has, similarly, a simple solution: 

E = E(x(t)) = Eo - KX == K(XO - x) (6.5) 
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m/K 
-E ............ . 

/, 

Fig. 6.1. The motion in space and time of a particle with mass m under the 
influence of a constant force -K. The distance between the hyperbola and the 
intersection (to, xo) between the asymptotes is m/K. 

From the relationship between energy, momentum and mass we conclude 
that the orbit of the motion is 

(6.6) 

i.e. a hyperbola in space-time, centred at (to, xo) and with a size parameter 
m/K (see Fig. 6.1). 

At large negative times the particle comes in from the region of large 
negative space coordinates with its momentum pointing along the positive 
coordinate axis. The momentum decreases and the particle is, at time 
t = to, momentarily at rest at the classical turning-point x - Xo = -m/K. 
Afterwards it moves with increasingly negative momentum back to large 
negative space coordinates. 

We note that if the mass vanishes then the particle will move along 
the lightcones It - tol = Xo - x throughout and it will look as though it 
'bounces' back (changing from velocity +c to -c with vanishing energy 
and momentum at the origin (to,xo)). 

We will use massless particles from now on because of the simplifications 
in the ensuing pictures of the motion. We would like to stress, however, 
that the dynamics we are going to consider is basically independent of 
this assumption (cf. the considerations in Chapter 12). 
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2 The Schwinger model and confinement 

A particularly interesting dynamical situation arises when there is a con­
stant force and a linearly rising potential; this occurs in one-spacedimen­
sional electrodynamics. There are also in three space dimensions situations 
that can be approximated by one-dimensional dynamics, e.g. the field be­
tween two condensor plates. 

Then the usual four-vector potential A,u = (Ao, A) can by a gauge choice 
be arranged so that only the scalar potential Ao == V is nonvanishing. The 
single component of the electric field lff = -dV / dx will in a charge-free 
region fulfil Gauss's law, i.e. 

(6.7) 

which means exactly a linear potential. This constant force is apprOXI­
mately realised in a capacitor. 

A quantised version of one-dimensional electrodynamics was investi­
gated by Schwinger, [101]. He was able to show that an electric field 
coupled to massless fermion particles is (essentially, i.e. leaving aside some 
peculiar modes) equivalent to a free, non-interacting, but massive, quantum 
field theory. 

The quanta of this field are massive and electrically neutral. Their mass 
is a function of the electric charge, m2 = g2/n . Note that the charge g, as 
defined by a gaussian 'integral' (in a one-dimensional world there are no 
transverse dimensions to integrate over) 

(6.8) 

does not have the same dimensions as in the usual three-dimensional case. 
The dimensions of the electric field lff can be read out from the usual 
energy density requirement, that half the square of the field strength is 
equal to the energy density, dE / dx = lff2/2. This means that the electric 
field has (energy) dimensions dimlff equal to 1. Therefore g2 has the 
dimensions of a squared mass in this case. 

The fact that the quanta are electrically neutral is very surprising 
because it seems as if the original electric charges have vanished. It turns 
out, however, that the resulting free-quantum field, </>, corresponds to a 
dipole density. The original massless fermions are arranged two by two 
with a positive and a negative charge bound together as a dipole. 

This is a realisation of confinement, i.e. the original massless fermions 
are not observable by themselves but only in particular combinations. 
In the Schwinger model the original fermions and antifermions can only 
occur in pairs as bound states with one of each kind. 

In this one-dimensional setting this means that one of the charges 
must be to the left of the other, thereby producing a dipole moment. 
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118 The classical motion of the MRS 

We may compare this with with the case of colored quanta, where the 
hadronic states are built from color combinations corresponding to no­
color singlets. In the Lund fragmentation model the hadrons are modelled 
by the massless relativistic string, corresponding to a color field spanned 
between two endpoints associated with quark (color-3) and antiquark 
(color-3) charges (the 'ultimate dipoles' in Chapters 7-14). 

We will also introduce this dipole character in the description of multi­
gluon bremsstrahlung in the dipole cascade model (Chapters 16-18). In 
this case the emitting current has only a direction and a very small space 
extension. Similarly in the linked dipole chain model, which describes the 
properties of deep inelastic scattering (Chapter 20) we will again find the 
same dipole structures, describing the (squared) wave functions of the 
hadrons (the structure functions). 

In the Schwinger-model case confinement is related to the infinitely 
rising field energy necessary in order that a charge should be moved away 
from all the other charges. In our calculations in subsection 1 we found a 
constant energy density along the whole negative axis beyond where the 
particle reaches its classical turning point. 

We will carry the model on a little further to a simulated particle-produc­
tion situation, like the one described in [39]. These authors investigated 
the situation where an external current is composed of a ±g charged 
pair. The charges set out at the time t = 0 in opposite directions along 
the single space dimension, the 1-axis. We assume that they move with 
velocity v = c = 1. This means that there is a current Ufr,jfxt ), where 

jfr = gE(Xt}<5(E(Xt}Xl - t), jrxt = g<5(E(Xt}Xl - t) (6.9) 

(note the appearance of the sign function E = ±1, depending upon the 
sign of its argument, which describes the way the charges ±g move). This 
current corresponds to an external dipole density 

cf>ext = ..[0(t + xt}0(t - xt} 
m 

(6.10) 

where the fields are normalised somewhat differently from that in [39]. Our 
choice is in accordance with the one-dimensional equivalent to the fields 
introduced in Chapter 3; thus the quantum field cf> is, using w == w(k) = 
..Jk2 + m2 and L for the length of the one-dimensional 'quantisation box', 

1 
cf>(Xl, t) = L n:::T {a exp i(kx1 - wt) + a* exp[ -i(kxl - wt)]} (6.11) 

k v 2wL 

Then we may write out the equations of motion for the fields, the Klein­
Gordon equation 

(6.12) 

https://doi.org/10.1017/9781009401296.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401296.006


6.2 The MRS as a constant force field 119 

perform all the operations for quantisation and solve the equations to 
obtain as solution a coherent-state field like those of Chapter 3. Then the 
quanta in every state will be distributed in a Poissonian manner with an 
excitation probability described by the mean occupation number n(k) (cf. 
Eqs. (3.25), (3.41)): 

h = ~ rAJ dtjdxm2qptexP[i(kx-wt)] = ~ (2g ), (6.13) 
'\/ 2wL Jo '\/ 2wL m 

n = Ihl2 = 4g2 2n 
2wLm2 wL 

We have performed the integral in the first line by adding a small negative 
imaginary part to w (remember the three-act scenario described in the 
first section of Chapter 3) and used the relationship between the mass and 
the coupling constant in the second line. 

This means that when we go to the limit L ~ 00 we obtain for n 
L dk 

n8n ~ ndk- = - == dy (6.14) 
2n w 

in terms of the rapidity variable y. This is nothing other than the wee 
parton spectrum of Feynman or, if you like, the distribution of photons 
in the method of virtual quanta in Chapter 2. 

Consequently, an external excitation in the Schwinger model tends to 
spread as a Poissonian fluctuating production of dipole quanta of average 
size one quantum per unit rapidity! 

3 The yoyo-mode at rest 

As a classical model corresponding to Schwinger's dipole quanta we 
consider the motion of a system of two massless particles, a q- and a 
q-particle, which are acting upon each other with an attractive constant 
force. 

In Fig. 6.2 we consider the situation when the q and q go apart with the 
same energy Eo from a common origin but in opposite directions. Such 
a system evidently has a total energy Etot = 2Eo. This coincides with the 
system mass m as the total momentum vanishes. 

According to the results in subsection 1 the particles will move along 
the two different lightcones and each will lose energy-momentum K per 
length and time unit. The starting situation corresponds to the q and q 
each having lightcone energy-momentum 2Eo. 

The ensuing motion can most easily be described in terms of a series 
of fixed-time snapshots (the lines on the right-hand side of the figure, 
although the space-time picture given on the left of Fig. 6.2 provides a 
total view of the system): 

https://doi.org/10.1017/9781009401296.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401296.006


120 The classical motion of the MRS 

tD = 2to 

~ tc ===-t t-=-= 

tB = to 

tA 

Lx 2~ /:;Eo t=O 

Fig. 6.2. On the left, a space-time diagram for the motion of a qq-state, in 
which the particles always have the same energy, i.e. the yoyo-mode at rest. The 
different times mentioned in the text are shown, with the length of the arrowed 
lines corresponding to the energy of the particles and the length of the thicker 
lines corresponding to their separation, i.e. the field in between. 

A After a time tA « EolK == to) they will be a distance 2tA apart, each 
with energy Eo - KtA. The 'lost' energy has gone into the force field, 
which now has energy K times its length, i.e. 2KtA. 

B At time tB = to = EolK they have lost all their energy and they will 
then turn back and move towards each other. 

C At the time (2to » tc > to they will be at a separation 4to - 2tc, 
each with energy Ktc - Eo. This energy has been obtained from the 
force field, which now is dragging them towards each other. 

D At time tD = 2to they will meet again but this time they have 
exchanged their modes of motion compared to the starting point. 
The q moves along the original q-direction and vice versa. 

As can be seen by a straightforward extrapolation of the argument, 
after the time 4to = 4EoiK == 2Etot/K the q- and q-partic1es will come 
back exactly to the starting position. Actually a little thought will tell 
us that the system is always in the same mode of motion at the times t 

and t + 2Etot/K == t + tper. This fact that the period of motion is equal to 
tper = 2Etot/K is true for all modes of the MRS, as we will see later. 

Another general property of the MRS is that the total area A spanned 
by the force field in space-time during one period is related to the squared 
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to exp y 

to exp(-y) 

2Eo e~ ;/2Eo exp(-y) 

Fig. 6.3. The yoyo-mode after a Lorentz boost along the positive direction; the 
times and the lightcone energy-momenta from Fig. 6.2 are shown in the new 
system. 

mass of the system. It is easy to see that the relationship is 

E2 
K2A = K28_0 = m2 

2K2 
(6.15) 

in our case; there are exactly eight identical triangles with side and height 
lengths to = EO/K. 

In this particular mode the q and the Zj will continue to move in and 
out along the lightcones and the name 'yoyo-mode' has a self-evident 
meaning. The energy and momentum are at different times divided in 
different ways between the endpoint particles and the force field. We note 
for future reference that, averaged over a period, half of the energy is in 
the endpoint particles and half of it is in the field. This is the same result 
for energy sharing between the quarks and the gluons in a hadron that 
we quoted in Chapter 5 from the experimental results. 

4 Lorentz covariance and causality properties 

The model is Lorentz-covariant; we will now demonstrate this by an 
explicit calculation. 

We will consider the situation after we have boosted the system (see 
Fig. 6.3) longitudinally, i.e. along its axis, with the rapidity y. Then the 
q-particle, which moves along the positive direction, will by the corre-
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sponding Lorentz transformation change its original (positive) lightcone 
component 2Eo to 2Eo exp( -y) according to the results in Chapter 2. For 
the q we obtain correspondingly for the negative lightcone component 
that 2Eo ~ 2Eo exp y. 

Thus the total system energy, which at the origin is completely in the 
qq-pair, changes from Etot to Etot cosh y == E~ot. The system is now moving 
with a total momentum -Etot sinhy == P{ot. 

It is not obvious that the force equation, Eq. (6.1), is Lorentz-invariant. 
But it is easy to show this property for our massless particles, which move 
along the lightcones x = ±t with energies and momenta E = ±p; the plus 
and minus signs are valid for particles moving to the right and the left, 
respectively. In this case the time and the momentum component of such 
a particle in a different frame are 

t' = t exp(±y), pi = P exp(±y) 

and we immediately obtain that 

dp' dp 
dt' dt 

( 6.16) 

(6.17) 

A more general but also more complex argument could be based upon the 
properties of the electromagnetic field and its interactions with particles; 
then all dynamical variables evidently have simple covariance properties. 
The constant force will occur in one-dimensional QED as mentioned in 
connection with the discussion of the Schwinger model. 

Thus, in the new frame the particles will also be acted upon by a 
constant force of the same size. The main difference is that the q now 
has a diminished, and the q an increased, original energy. Therefore, in 
this case they will not stop at the same time. Again using the equal-time 
snapshot technique we have, from Fig. 6.3, 

A The q will stop and turn around at time t~ = to exp( - y) (at the space 
point to exp( -y)) and after that move behind the q at a distance 
2toexp(-y). 

During the ensuing motion the q is losing its energy to the field and the 
q will be increasing its energy from the field, both of them at the same 
rate. In somewhat vivid language the q 'eats', and the q 'spits out', the 
field as they move along. 

B At time t~ = to exp y (at the spot x' = -to exp y) the q has used up 
its energy and turns around towards the q. 

From Fig. 6.3 we also deduce the following three properties: 
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C1 The two particles will meet again at time to exp y + to exp( -y) = 
2to coshy. 

C2 The meeting point has x' -coordinate given by -2to sinh y. 

C3 By the time they arrive at the meeting point the two particles have 
exchanged their energies and momenta, i.e. the q has gained exactly 
as much energy as the q has lost, and vice versa (although the gain 
and loss have not occurred at the same times but rather through the 
field). 

After a second such yoyo 'round' the q- and q-particles will be back at 
their original energy-momentum conditions. 

The time it has taken is, however, longer than in the rest system, i.e. 
instead of 4to it is 4to cosh y. But we note that the period is again given 
by twice the total energy divided by K: 2E;ot/K = 2Etot/Kcoshy. This is 
the MRS version of the time-dilation effect, described in Chapter 2. 

The Lorentz-contraction phenomenon implies that the field sizes are 
correspondingly always shorter. We note, however, that the Lorentz-con­
traction and the time-dilation effects combine in such a way that the space­
time size spanned by the field during the period will again satisfy Eq. (6.15). 
We leave the proof of this statement to the reader. 

Finally, we note from the above exercise that during such a full period 
the system has moved a distance f>x' from the origin to the meeting point: 

f>x' = 2[toexp(-y) - toexpy] = -4tosinhy == 2P:ot/K. (6.18) 

This is another general property of the MRS: during a period tper = 2Etot/K 
the system will be translated by the vector xper = 2Ptot/K. 

There are two comments to add to this result: 

• when the system is at rest as in the previous subsection then Ptot = 0 
by definition of 'at rest'; 

• the system will move during a period as if it had a mean velocity 
xper/tper = Ptot/Etot, which is just the usual velocity for a particle 
with energy-momentum (Etot , Ptot ). 

This moving extended system contains three parts and behaves in a 
surprising manner. The two particles are moving with the velocity of light 
in the same or opposite directions and therefore contain both energy and 
momentum. There is, further, the field, which throughout seems to be 
longitudinally at rest, i.e. it contains only energy and no momentum. But 
the field nevertheless does change its position because it only exists in the 
region between the charges! 
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c=l 

---~ 

---~ 

v 
---~ 

Fig. 6.4. The yoyo-mode after a Lorentz boost transverse to the field direction. 
The field is shown by the thick solid lines, the endpoints move with the velocity 
of light c = 1 along the thin solid lines and the field moves with velocity v along 
the direction of the broken lines. The dotted lines are the continuations of the 
motion of the endpoints. 

With respect to causality we note that the two particles meet every half 
period, but meanwhile are often at spacelike distances with respect to 
each other. From Figs. 6.2 and 6.3 we note that each particle can while 
in motion in principle send away lightlike and even time like messages 'via 
the field'; these can be received by its partner during the second part of 
the half-period. Thus the typical communication time can be short (when 
the particles move together in a strongly Lorentz-contracted string field) 
or long (when they move apart). It is necessary to introduce some kind of 
measurement procedure to define the notion of 'communication' and we 
will not speculate further on the subject at this point. 

The result is, however, that there is always a finite delay time for any 
message travelling through the system. If one of the endpoint particles were 
acted upon by some outside agent then it would take some time before 
the other one would 'know'. This feature will be more noticeable when 
we consider the reaction of the yoyo system to an external momentum 
transfer, in Chapter 20. 

5 A transverse boost of the yoyo-mode 

It is instructive to consider the yoyo-state in a frame that is boosted 
transversely to the directions of motion of the two endpoints. We will 
then find that the field this time actually must contain also momentum. 
The situation is shown in Fig. 6.4 for two different times. 
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We are now going to analyse the situation using the following two rules. 

1 The two endpoints always move with the velocity of light. 

2 The energy-momentum is conserved throughout and we will see that 
it is even locally conserved owing to causality. 

The left-hand vertical line in Fig. 6.4 corresponds to a time when in its 
rest frame the system is stretched out as far as possible, i.e. at a turning 
time for the two endpoint charges. Then, in a frame where the string is 
moving with velocity v with respect to the rest frame the field contains 
both energy and momentum. If the field length is 21 then its rest frame 
energy is 2Kl. In the moving frame that means (cf. Chapter 2): 

E = 2Kly(v), P = 2Klvy(v) ( 6.19) 

where y(v) = 1/~. Note that the force field does not change its 
shape or size as it is boosted transversely. Equation (6.19) evidently gives 
the total energy-momentum of the system. 

After a time bt (measured in the new frame) the endpoints have moved 
the distance bt and a point in the middle of the field has moved vbt. From 
Fig. 6.4 we conclude that the velocity v is related to the angle 8 by 

v = cos8 (6.20) 

The length of the force field is now 2(1 - b t sin 8) and therefore the 
energy-momentum of the field is proportionally smaller. 

In particular the field energy has decreased by an amount 

bE = 2Kbt sin 8y(v) 

Using Eq. (6.20) we obtain 

which implies that 

1 
y ( v) = ----;--8 

sm 

(6.21) 

(6.22) 

(6.23) 

This field-energy loss is easy to understand from what we already know. It 
means that each endpoint particle will obtain (from the field) an increased 
energy be = Kbt while it moves the distance bt. 

Further, we note that the momentum of the field along the boost 
direction has decreased by 

bP = 2Kbt sin 8vy(v) = 2Kbtcos8 (6.24) 

(again using Eqs. (6.20), (6.22)). This is the amount of momentum bp cos 8 
which the q- and q-particles have picked up along that direction. 
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They have also (in order to fulfil the masslessness condition be = Ibpl) 
acquired two compensating components ±b p sin e along the field direction. 
In this way one can describe the force from the field on the particles 

as ±K sin e = ±KV(1 - vi) in the moving frame. We have seen before 
that the force is not changed for Lorentz boosts along the string but, 
owing to the time dilation effect, it is in this way affected by transverse 
boosts. 

Consequently the energy-momentum is redistributed between the end­
point particles and the field in a local way. Once again we can talk of 
them as 'eating' or 'spitting out' the field in their neighborhoods. 

From the two rules given above it is possible to trace any complicated 
motion of the force field, as we will see in later sections. A useful exercise 
at this point is to consider the necessary Lorentz transformations and the 
ensuing motion if one were to boost the 'flat' yoyo-mode in a direction 
between the longitudinal (exhibited in the previous subsection) and the 
transverse as discussed here. 

You will then notice that it is only the transverse part of the field 
velocity (transverse, of course, with respect to the field direction) that 
plays a role for the field momentum. This means that the field only 
contains momentum with respect to its transverse motion, i.e. longitudinal 
momentum-carrying modes of the field do not exist for the MRS field (but 
they do occur for the endpoints). This is once again quite in accordance 
with good old classical string motion, where only transverse degrees of 
freedom playa role. 

6.3 The QeD vacuum as a color superconductor 

Both the Schwinger model and QCD are confining in the sense that the 
real charges (respectively electromagnetic and color) cannot be isolated 
from each other and only occur in particular singlet combinations. Con­
finement is, however, also expected to lead to restrictions on the spatial 
extension of the force fields between the charges. Calculations in the lattice 
approximation of QCD tend to confirm this behaviour. 

The MRS, as a model of a confining force field in which the charges 
are identified as the endpoints, evidently has both these properties. In 
this section we will provide a motivation for the use of the MRS in 
hadron dynamics. We introduce a color superconductor as a simple model 
for the QCD vacuum state. We will also briefly mention another well­
known model, the bag model for hadrons, and point out its relation to the 
MRS. 
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1 The London equations and types I and II superconductors 

Electromagnetic superconductors have many wonderful properties and we 
mention only a few here: 

• According to condensed-matter physics there is a tiny attractive 
interaction between two electrons close to the fermi surface, owing 
to the exchange of phonons associated with the crystal lattice of the 
material. Therefore there exists a (very) loosely bound state of two 
electrons, a Cooper pair, with spin o. The spatial extent of the state, 
called ~, is often in the Jim range, i.e. it may be of macroscopic size. 
Due to this bosonic nature many such states may overlap in space 
and behave as a degenerate (although charged) Bose gas. The pairs 
move freely through the material and there is no resistance . 

• According to Lenz's law an applied magnetic field will produce a 
(super) current of Cooper-pair states that will expel the applied 
field. Thus a magnetic field will only have an exponentially falling 
penetration depth (called A) in a superconductor. If the temperature 
or the field is increased beyond a critical size, the states will be 
excited and break up and there is thus a phase transition from the 
superconducting to the normal state. 

Due to the relative sizes of ~ and A, such ordinary superconductors have 
one of two rather different behaviours at the critical point. We will now 
consider the two cases, called types I and II superconductors. The shape 
of the normal-state field regions depends upon the superconductor type. 

If ~ ~ A the boundary regions between the superconducting state and 
the rest will be empty because neither the magnetic field nor the Cooper 
pairs can spread there. These regions are then inactive from a dynamical 
viewpoint. Nature will according to the gospel of thermodynamics then 
try to minimise the boundaries of a type I superconductor. 

At the opposite extreme, A ~ ~, both the Cooper-pair density and 
the magnetic fields can populate the boundary region and Nature will 
consequently maximise the boundaries between the superconducting and 
the normal state in a type II superconductor. 

It is known, [98], that there are in QCD possible color magnetic field 
configurations with energy below the no-particle state. In these states gluon 
combinations take the place of the Cooper pairs in an electromagnetic 
superconductor and the color electric field is in this case neutralised by 
the vacuum fields. The sizes of the corresponding lengths ~ and A are not 
known from first principles. If the QCD vacuum corresponds to such a 
state then the appearance of color charges and fields in between them 
will correspond to regions with normal-state properties. Such regions will 
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then be surrounded by such a vacuum color superconductor. In particular 
the boundary regions between the superconducting and normal states are 
interesting. 

For the type I superconductor, the region where the (color) field expands 
(the normal-state region) will have boundaries that are as small as possible. 
For a localised excitation, the field will arrange itself as an (isolated) 
'resonant cavity field', cf. Jackson, with standing waves inside this, in 
general, spherical region. The total field energy is proportional to the 
volume and we note that a sphere has the smallest boundary-to-volume 
ratio possible. 

If the field has a longitudinal extension then the whole field will stay 
inside a cylindrical 'wave guide'. Once again the field energy will be 
proportional to the volume and if the longitudinal size is given then a 
connected cylinder shape will have minimal surface area. 

There are, in QeD, analogy models for the two cases. The first cor­
responds to an isolated hadronic state, containing valence-quark color 
charges and color field energy organised into a spherical bag. The second 
corresponds to the production of an outward-moving qq-state with its 
field energy organised into a flux tube. We will not go into details here 
but the basic idea involves introducing a 'bag-pressure' from the vacuum. 
This is neutralised at the boundary by the pressure from the fields inside 
so that there is a stable boundary. 

To explain the different behaviour of a type II superconductor we con­
sider a slab of matter (width L) in an (electromagnetic) superconducting 
state. Both for types I and II there is a minimal critical field, f!JJc1, for 
which the superconducting state breaks down. We assume the field exists 
inside a region of total area A. Outside A there is still a superconducting 
state. For a type I superconductor the region will be homogeneous and 
the boundary region will have area RJ = 2-fiAL. The whole field passes 
through A and so the total energy deposited in the slab is E = f!JJ~1 AL 
and the total flux is <I> = f!JJc1A. For the type II case there is also a second 
critical field strength, f!JJc2 > f!JJc1. For a field strength in between f!JJc1 and 
f!JJc2, the region will be penetrated by many thin vortex-line fields each of 
a quantised size. The core size is typically ~ and there is a weak repulsive 
interaction which keeps the vortex lines apart so that the field strength 
will vary inside A. 

We may for simplicity consider the area A as divided into n circular 
non-connected regions. You will then find the same flux and the same 
energy deposit but the boundary region now has area RIJ '" -JiiRJ . Thus 
to maximise the boundary it is profitable to subdivide the region. When 
the field strength is greater than f!JJc2 the whole region becomes filled with 
vortex lines and it will behave as for the type I case. 
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We shall exhibit a few steps in the London theory of superconductivity, 
[91], and in particular show the quantisation of the flux lines. 

We consider a constant Cooper-pair density n(x, t) and a corresponding 
current j(x, t) = -2env, with v the velocity field. The continuity equation 
as well as the Lorentz force law will give (with a Cooper-pair mass m and 
charge -2e) for the stable state 

dv 2e 
Vj = Vv = 0, - = --($ + v x f!JI) 

dt m 
(6.25) 

The total change in time of the velocity field should be regarded as the 
change in time for a fixed coordinate plus the change in the coordinate 
for a fixed time; thus 

- = - + V - - v x (V x v) dv ov (v2) 
dt at 2 

(6.26) 

Then the Lorentz force law is equivalent to 

- + -$ + V - = v x V x v - -f!JI OV 2e (v2 ) ( 2e) 
at m 2 m 

(6.27) 

We may now apply the differential vector operator 'curl' (Vx) on both 
sides of this equation and note that, according to Faraday's induction 
law (cf. Chapter 2), V x $ = -of!JIjot and also that V x Va = ° for any 
function a. 

Then one obtains the resulting equation for the vector fI!: 

ofl! 2ef!JI 
----;;- = V x (v x fI!) where fI! = V x v - --
ut m 

(6.28) 

When both fields and current vanish fI! = O. The Londons, [91], made 
the fundamental assumption that fI! should always vanish inside a super­
conductor. This implies immediately an equation for the magnetic field 
because a vanishing fI! means that 

f!JI = -4m 2 (V x j) = -4m 2 (V x (V x f!JI)) = 4m 2 6.f!JI 
ne ne ne 

(6.29) 

Equations (6.28), (6.29) are known as the London equations. To exhibit the 
result in (6.29) we have used Ampere's law (assuming a static situation, 
0$ jot = 0) and also the absence of magnetic charges (cf. Chapter 2). The 
solutions to Eq. (6.29) correspond to magnetic fields which are exponen­
tially falling with a rate equal to the parameter A mentioned above, which 
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fulfils: 

(6.30) 

The inverse of this A is identical to the plasma frequency we met in the 
discussion of the behaviour of the dielectricity in Chapter 2 (although 
here, for the Cooper pairs, the charge is -2e). 

2 Solutions of the differential equation 

We will need a particular solution of Eq. (6.29), i.e. the one corresponding 
to cylindrical symmetry around the 3-axis, with no variation along that 
axis, f!lJ = !!4e3 with a!!4 j aX3 = o. We will solve that equation at the 
same time as we also exhibit the behaviour of the Feynman propagator 
in spacelike regions (as promised in Chapter 3). 

Let us consider symmetrical solutions f == f(x 2) to the equation 

~D.2d - A~d)f = 0 (6.31) 

(for x2 > 0) where 2d is the dimension of the space and A2d is a positive 
number. It is instructive to note that in both of the following cases, 

2d 

x 2 = LX; 
j=l 

2d-l 

x 2 = LX; - t2 

j=l 

we obtain directly the following equation in z = x2 : 

( d2f df ) 2 4 z- +d- -A2df = 0 
dz2 dz 

Assuming that the solution is of the kind 

f(z) = (02o:g(O where ( = JZ > 0 

(6.32) 

(6.33) 

(6.34) 

the equation can be brought into the form (dots mean derivatives with 
respect to 0 

(2g + (2d + 4C( - l)(g + [4C((d + C( - 1) - A~d(2]g = 0 (6.35) 

Then if we choose C( = (1 - d)j2 we obtain a modified Bessel differential 
equation, 

(6.36) 
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For the case we started with, i.e. d = 1 with A2d = A in Eq. (6.30), we have 

f == Pi = CKo ( ~) (6.37) 

where Ko is the modified Bessel function of rank 0, which is exponentially 
falling and behaves for large values of its argument as follows: 

Ko(x) ~ ~ exp( -x) (6.38) 

In order that fA should be a proper magnetic field the normalisation 
constant C must have (energy) dimension 2. 

For the Feynman propagator for space like values of x2 we obtain (d = 2 
and A2d = m) the same exponential falloff as in Eq. (6.38) but a power in 
front: 

(6.39) 

3 The quantisation of the magnetic flux 

The result in Eq. (6.37) has a logarithmic singularity for x2 = 0: 

Pi ~ C 10g(A/ N) (6.40) 

The corresponding magnetic flux, <1>, through the 12-plane is 

<I> = J dXldx2Pi = 2nC foOCJ xdxKo (I) = 2nCA2 = (~:) cnm (6.41) 

We note that the quantity Cm/n is a dimensionless number (n, being a 
three-dimensional space density, then has energy dimension 3 using our 
ordinary convention with c = Ii = 1). 

We also note that the Cooper-pair (super)current j is given by 

. V azj dPi J = x i7iJ = -ecjJ--
dN 

(6.42) 

where the derivative can be expressed in terms of the modified Bessel 
function Kl and therefore again falls off exponentially in directions normal 
to the 3-axis. It is, however, singular, like 1/.jXi, along the 3-axis. 

We also note that the current flows around the origin, i.e. the 3-axis. (The 
unit vector ecjJ circulates around this axis in the direction of increasing 
azimuthal angle 4J.) Thus the Cooper pairs circulate, thereby producing 
a magnetic field similar to that in a solenoid. This is the reason for the 
nonvanishing magnetic flux through the 12-plane and the singularity along 
the 3-axis. 
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In order to understand what is going on we go back to the London 
condition for a superconducting state, f!! = 0, which we write as 

mf!! = V x mv - 2ef!/J = V x (mv - 2eA) = 0 (6.43) 

where we have introduced the vector potential A. In Chapter 11 we will 
study this expression further and show that the canonical momentum of a 
particle with kinetic momentum mv and charge -2e is, in an electromag­
netic field, 

p = mv-2eA (6.44) 

We further note that the flux <I> in Eq. (6.41) is given by 

-2e<l> = J dXldx2m2 = f ds· p (6.45) 

Here we have used Stoke's theorem. This result was noted by F. London 
and he interpreted it correctly, along the lines of a Bohr-Sommerfeld 
quantisation condition: the integral should be equal to an integer times 
Planck's constant h. In this way we obtain that the combination Cmjn in 
Eq. (6.41) is an integer, N, and that the flux <I> = -N j2e. 

The result may at first sight seem like witchcraft. The vector f!! was 
assumed to vanish, according to the London prescription, inside the su­
perconductor. The fact that its surface integral is nonvanishing and in 
particular equal to an integer times a flux unit must then mean that the 
whole surface is not inside the superconductor. We have already pointed 
out that there is a singularity for the solution along the 3-axis. In other 
words there is a thin 'hole' along the axis and we may conclude that it 
should be of the order ~ ~ A and correspond to a lack of Cooper pairs. 
This is a vortex line. 

F. London suggested on the basis of these results that it should be 
possible to produce a magnetic flux trap. Suppose that we have a ring of 
matter in a normal state inside a magnetic field and that we then bring 
the ring into a superconducting state. This will produce a supercurrent 
of Cooper pairs in the ring. Further suppose that after this we remove 
the magnetic field and investigate the magnetic flux through the hole in 
the ring, caused by the supercurrent (which must continue inside the 
superconductor because there is no 'stopping force' !). A set of clever 
experiments, [49], were later performed, which justified both the flux 
trapping and, in particular, the quantisation of the flux. 

We conclude that the solution we have obtained, which corresponds to 
a vortex line, penetrates the superconductor to a small depth and contains 
a definite flux corresponding to an integer times the inverse charge of 
a Cooper pair. This corresponds to the typical type II superconductor 
breakdown. The superconductor is penetrated by as many isolated vortex 
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lines as the field flux permits and we now understand the subdivision of 
the slab discussed above. 

A dynamical vortex line, i.e. one connected to moving charges must have 
a dynamics very similar to the MRS and therefore if the QCD vacuum 
state has the properties of a superconductor type II our use of the MRS as 
a model for the color electric force field is natural. We will later consider 
the question of the width of the Lund string field, cf. Chapter 11, and will 
find that its radius is typically 0.3-0.4 fm. 
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