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Abstract
The global and uneven spread of COVID-19, mirrored at the local scale, reveals stark differences along
racial and ethnic lines.We respond to the pressing need to understand these divergent outcomes via neigh-
borhood level analysis of mobility and case count information. Using data from Chicago over 2020, we
leverage a metapopulation Susceptible-Exposed-Infectious-Removed model to reconstruct and simulate
the spread of SARS-CoV-2 at the ZIP Code level. We demonstrate that exposures are mostly contained
within one’s own ZIP Code and demographic group. Building on this observation, we illustrate that we
can understand epidemic progression using a composite metric combining the volume of mobility and
the risk that each trip represents, while separately these factors fail to explain the observed heterogeneity
in neighborhood level outcomes. Having established this result, we next uncover how group level differ-
ences in these factors give rise to disparities in case rates along racial and ethnic lines. Following this, we
ask what-if questions to quantify how segregation impacts COVID-19 case rates via altering mobility pat-
terns. We find that segregation in the mobility network has contributed to inequality in case rates across
demographic groups.
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1. Introduction
The spread of the SARS-CoV-2 virus during 2020 was uneven not only across countries and
cities but also across neighborhoods within cities. The consequences are stark racial, ethnic,
and class inequalities both in incidence and mortality rates (Adhikari et al., 2020; Almagro &
Orane-Hutchinson, 2022; Chen & Krieger, 2021; Hatef et al., 2020; Hawkins et al., 2020; Krieger
et al., 2020; van Dorn et al., 2020; Wang & Tang, 2020; Torrats-Espinosa, 2021; Levy et al., 2022).
Latinx communities, in particular, have experienced sweeping outbreaks inmultiple large US cities
(Benitez et al., 2020; Kim et al., 2020; Reitsma et al., 2021), such as New York City (Adhikari
et al., 2020; Ogedegbe et al., 2020; Pathela et al., 2021) and Chicago (Kim & Bostwick, 2020;
Bryan et al., 2021). Similar unequal patterns have also been observed in cities around the globe
(Zhang et al., 2020; Gozzi et al., 2021; Mena et al., 2021). This heterogeneity results in mounting
challenges in policy design aimed at curbing the progression of the pandemic without exacer-
bating already existing inequalities (Gozzi et al., 2021; van Dorn et al., 2020; Hunter et al., 2021;
Sheng et al., 2022; Cevik & Baral, 2021). To date, a comprehensive explanation for racial disparities
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in the contagion and incidence of COVID-19 remains elusive (Levy et al., 2022; Tizzoni et al.,
2022).

In this work, we contribute to the epidemiological modeling literature by building more
systematic explanations of sociodemographic case rate inequality among segregated urban neigh-
borhoods (Tizzoni et al., 2022; Zelner et al., 2022). In the early phase of the pandemic, researchers
turned their attention to international travel and between place mobility to understand how
COVID-19 spread from city to city (Brinkman & Mangum, 2022; Hâncean et al., 2021; Wells
et al., 2020), while follow-up work documented that reduced mobility limits the size of out-
breaks (Badr et al., 2020; Glaeser et al., 2020; Schlosser et al., 2020; Wellenius et al., 2021).
Furthermore, residential segregation along race, ethnic, and class lines emerges as a link between
pandemic dynamics and mobility (Acevedo-Garcia, 2000), as it spatially structures where peo-
ple can and cannot reduce mobility. For instance, communities with more essential workers
who were required to commute to work tended to have more severe outbreaks (Almagro &
Orane-Hutchinson, 2022; Glaeser et al., 2020). These different mobility patterns provided one
possible explanation for racial and ethnic inequalities (Selden & Berdahl, 2020; Almagro &Orane-
Hutchinson, 2022) and highlighted that working from home is a privilege enjoyed predominantly
by white Americans (Blow, 2020; Carrión et al., 2021; Gould & Shierholz, 2020).

Given the tight correlation between mobility and case rates, policymakers implemented var-
ious measures aimed at curtailing the spread of the virus (Gostin & Wiley, 2020; Zheng et al.,
2020). Lockdowns, curfews, school and business closures, and limiting travel to essential trips
have been some of the most important public health measures that cities implemented to “flat-
ten the curve” prior to the availability of pharmaceutical interventions (Chinazzi et al., 2020;
Courtemanche et al., 2020; Kraemer et al., 2020; Maier & Brockmann, 2020; Tian et al., 2020;
Wellenius et al., 2021). Despite these steps, cities exhibited ample variation in case rates, which
calls for a more nuanced explanation of how within- and between-neighborhood mobility affect
epidemic progression.

Using Chicago as an exemplar major US city, we perform a set of measurements using mobility
(SafeGraph, 2021) and case count data (The City of Chicago, 2021) at the ZIP Code level. Our
analysis indicates that daily travel, and thus exposure to COVID-19, is contained mostly within
neighborhoods and demographic groups. Although this localization of daily mobility was ampli-
fied in 2020, it also exists independent of pandemic conditions. Underpinned by this observation,
we reveal how the volume of mobility and the risk that each trip represents together as a com-
posite metric shape contagion progression in a meta-population SEIR model (Chang et al., 2020).
While neither of these two factors alone can reliably explain the observed heterogeneity across
neighborhoods, our composite metric does. This approach allows us to perform data-driven sim-
ulations to ask what-if questions related to neighborhood inequality in counterfactual scenarios
probing the effects of shifts both in mobility patterns and in the risk that each trip represents.
For instance, redirecting 25 percentage points of trips from Latinx majority ZIP Codes to Latinx
majority ZIP Codes to other ZIP Codes yields approximately 20 percentage point case rate reduc-
tion in the same group without significantly affecting the outcomes in other demographic groups.
Through simulations we provide policymakers with critical information about how COVID-19
spreads in cities, andwhat short- and long-term leversmay be available for creatingmore equitable
outcomes.

2. Methods
We first describe the datasets and the mobility network we derive from these data underpinning
our analysis. Then, we discuss the SEIR model governing epidemic progression over the mobility
network, and the algorithm to calculate the time-varying risk profile of each ZIP Code. Finally, we
detail how we create various counterfactual scenarios to reveal the role of network structure and
demographic disparities.
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2.1 Datasets
2.1.1 Demographic data
Demographic data comes from the US Census Bureau, American Community Survey, 2014–2018
5-year estimates (United States Census Bureau, 2020). We label ZIP Codes by their majority racial
or ethnic group using a 50% threshold. If a ZIP Code does not meet this threshold for any race
or ethnicity, then we label it “Mixed.” Additional variables from the Census used for analysis
include the median household size, median income, percentage of employed individuals, percent-
age of insured individuals, percentage of households with four or more people (i.e., overcrowded
households), and percentage of buildings over 50 years as a proxy for the quality of ventila-
tion. These additional variables are used to represent the trade-offs between socio-demographic
characteristics and mobility metrics to achieve city-average case rates by demographic groups.

2.1.2 Mobility data
We rely on the SafeGraph Social Distancing Metrics dataset for mobility data (SafeGraph, 2021).
SafeGraph aggregates anonymous cellphone-based movement data and provides estimates of
(i) devices residing within a census block group and (ii) trips between each block group pair.
We aggregate these data to the ZIP Code level to match the geographic resolution of the data
available on COVID-19 cases in Chicago. Where the boundaries of census block groups do not
perfectly fit within ZIP Codes, we split trips between ZIP Codes using weights provided by the
US Housing and Urban Development (Wilson & Din, 2018). Finally, we scale trips between ZIP
Codes by applying a ZIP Code specific scaling factor. We calculate scaling factors by dividing a
ZIP Code’s census population by its average number of devices between January 15 and February
15, 2020. We select this period as it precludes early January holiday travel and major COVID-19
disruptions in the United States. The average scaling factor in our data is 25 (Tables S1–S4). For
each day in 2020, our final movement data is a set of 58-by-58 matrices with cells containing the
estimated daily trips between and within each ZIP Code.

2.1.3 Population data
Daily population estimates are based on the number of smartphone devices residing within a ZIP
Code in a 24-h period. We multiply the number of devices using the same ZIP-specific factors
used to scale mobility data to estimate the daily population residing in a ZIP Code (Figure S1).
Population size is allowed to vary over time to account for temporal fluctuations (e.g., people
leaving/returning to the metro area), which recent census data shows were significant during the
first year of the pandemic (Frey, 2022).

2.1.4 COVID-19 case and test data
In Chicago, longitudinal ZIP Code level COVID-19 case data is provided weekly by the
Department of Public Health for all 58 ZIP Codes starting March 1, 2020 (The City of Chicago,
2021). We first distribute these case counts uniformly across the days of the given week to obtain
reported daily case counts, then the reported case count is corrected by considering testing dis-
parities as well as the data from the covidestim project that provides daily estimates of the case
count in Cook county (https://covidestim.org/) (Chitwood et al., 2022). To our knowledge, we rely
on the most recent and highest quality data available to correct for the fact that not all COVID-19
cases are diagnosed (Pitzer et al., 2021; Bilal et al., 2021). Our approach (detailed in Supplementary
Materials (SM) section S1) also reflects effects of disparities in testing across demographic groups,
thus offering a significant improvement over prior research that used a time-invariant scaling
factor agnostic to demographic differences (Chang et al., 2020).

In Milwaukee, longitudinal ZIP Code level COVID-19 case and test data are provided daily by
Wisconsin Department of Health Services (2022), thus no daily attribution from weekly reports
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was necessary. For more details, see SM section S7. These data are used for robustness analyses to
reproduce the main results obtained in Chicago.

2.1.5 Data ethics
COVID-19 confirmed case counts for Chicago are aggregated to the ZIP Code level and pub-
lished online by the Chicago Department of Public Health (The City of Chicago, 2021). SafeGraph
mobility data covers individuals who consent to share their location data in third party mobile-
phone applications. SafeGraph aggregates the location information of users who opt-in to the
collection of anonymous geo-spatial data. The description of our project was reviewed by the
New York University Abu Dhabi Institutional Review Board and a determination of “non-human
subjects research” was issued as (i) the researchers were not engaged in collecting any data used
in this paper, and thus were not interacting with human subjects; and (ii) the data used do not
contain identifiable information, nor could be re-identified.

2.2 Mobility network
We consider a directed graph G = (V , E) with time-varying edges. The vertices V =
{v1, v2, . . . , vn} represent the n nodes of interest (i.e., ZIP Codes). Each node has both time-
invariant and time-varying attributes. Time-invariant attributes include the area and demograph-
ics composition among other characteristics from US Census data. Time-varying attributes at
time t include the population size N(t)

i , the number of people in different disease states, and the
parameter ψ (t)

i characterizing the average risk of exposure during a trip (the latter two are dis-
cussed in “Model dynamics”). Directed edges are weighted, where the weight w(t)

i,j represents our
estimate of the number of individuals from node vi visiting node vj on the tth day of our simula-
tion. Furthermore, the nodes belong to a demographic group Gg for g = 1, 2, . . . ,KG (e.g., KG = 4
in Chicago yielding the following demographic groups: Majority Black, Majority Latinx, Majority
White, and Mixed).

2.3 Model dynamics
Tomodel the spread of SARS-CoV-2, we overlay a metapopulation disease transmissionmodel on
the mobility network defined earlier (Chang et al., 2020; Parino et al., 2021). This model builds on
prior work focusing on the transmission of SARS-CoV-2 incorporating a fine-grained and time-
varying mobility network into the calculations of the transmission rate to address recent calls for
integrating data on the contact structure with epidemiological models (Cevik & Baral, 2021).

We use an SEIR model with susceptible (S), exposed (E), infectious (I), and removed (R) com-
partments for each node vi (SM section S2). Susceptible individuals have never been infected,
hence they can acquire the virus and enter the exposed state upon contact with an infectious indi-
vidual. During the exposed state, individuals carry the disease but are unable to infect others. In
the removed state, individuals can no longer be infected or infect others (e.g., recovered, self-
isolated, or deceased individuals). While reinfection with COVID-19 has been possible, but rare,
during the course of 2020 (Qureshi et al., 2022), in our model no individual may be reinfected.
Note also that our analysis covers 2020, that is, prior to the widespread roll-out of COVID-19 vac-
cines that began on the 15th of December (The City of Chicago, 2020). As a consequence, the SEIR
models considered here shall not be further complicated with additional compartments, such as
vaccinated individuals. The E→ I and I→ R transition rates are inversely proportional to the
mean latency and infectious periods, respectively.

Each node vi maintains its own SEIR instantiation with S(t)i , E(t)i , I(t)i , and R(t)i denoting the
number of individuals in each disease state on day t. The total size of the population at node vi
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at time t is given by N(t)
i = S(t)i + E(t)i + I(t)i + R(t)i . To reflect the standard transitions between

consecutive disease states, we update them at each time step t as follows: S(t+1)i = η(t)(S(t)i −
N(t)
Si→Ei), E

(t+1)
i = η(t)(E(t)i +N(t)

Si→Ei −N(t)
Ei→Ii), I

(t+1)
i = η(t)(I(t)i +N(t)

Ei→Ii −N(t)
Ii→Ri), and R(t+1)i =

η(t)(R(t)i +N(t)
Ii→Ri), where η

(t) =N(t+1)
i /N(t)

i ensures that population size at time t+ 1 will scale
from its size at time t.

2.3.1 New exposures
To compute the number of new exposuresN(t)

Si→Ei at node vi at time t, we assume that any suscep-
tible visitor to node vj at time t has the same independent probability λ(t)j of being infected and
transitioning from the susceptible to the exposed state. That is, we do not consider heterogeneity
in transition rates by demographic groups. As there are w(t)

i,j visitors from node vi to node vj at
time t, and we assume that S(t)i /N

(t)
i fraction of them are susceptible, the number of new expo-

sures among them is distributed according to Binom(w(t)
i,j S

(t)
i /N

(t)
i , λ(t)j )≈ Pois(λ(t)j w(t)

i,j S
(t)
i /N

(t)
i ).

Rather than including heterogeneous mixing within each node as seen in other studies (Gozzi
et al., 2021; Melegaro et al., 2017; Mossong et al., 2008; Zhang et al., 2020), our approach assumes
homogeneous mixing of visitors. Thus, the number of new exposures among those from node
vi is distributed as the sum of the above expression over all nodes, so that new exposures are
distributed as

N(t)
Si→Ei ∼ Pois

⎛
⎝ S(t)i
N(t)
i

n∑
j=1

w(t)
i,j λ

(t)
j

⎞
⎠ , λ

(t)
j =

ψ
(t)
j

aj

n∑
k=1

w(t)
k,j

I(t)k
N(t)
k

. (1)

Here, the rate of infection λ(t)j at node vj at time t decreases with the area aj of the ZIP Code
and increases with the inflow to node vj, the probability of infected people visiting, and the time-
dependent and ZIP-specific parameterψ (t)

j , capturing the risk that trips carry on average. This risk
depends on many factors, for example, typical length, nature of exposure, use of protective equip-
ment, such as mask wearing, and the possibilities for and adherence to social distancing guidelines
and norms, etc. See Figure S8 for the temporal distribution of this parameter. The calculation of
ψ

(t)
j is detailed when model calibration is discussed below.

2.3.2 New infectious and removed cases
Exposed individuals become infectious at a rate that is inversely proportional to the mean latency
period δE, which is assumed to be identical for all nodes. Similarly, infectious individuals tran-
sition to the removed state at a rate that is inversely proportional to the mean infectious period
δI which is also considered to be identical for all nodes. Therefore, we assume that at each time
step t each exposed individual has a time-independent probability of first becoming infectious
then of transitioning to the removed state, given by N(t)

Ei→Ii ∼ Binom
(
E(t)i , 1/δE

)
and N(t)

Ii→Ri ∼
Binom(I(t)i , 1/δI), respectively. According to previous studies (Chang et al., 2020), estimates for
the mean latency and infectious periods are δE = 4 days and δI = 3.5 days, respectively. These are
the parameters we adopt.

2.3.3 Initialization
We first identify the first day with non-zero estimated case count: March 7, 2020, the 67th day of
the year. We take this as day 0 (t= 0) in the computational model. Additionally, we approximate
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the infectious and removed compartments at t= 0 as initially empty, that is, all infected indi-
viduals are in the exposed compartment (Chang et al., 2020). Finally, we assume that the same
initial prevalence occurs in every ZIP Code, that is, every individual in each demographic group
has the same independent probability p0 of being exposed (Chang et al., 2020). Accordingly, the
model is initialized as S(0)i = (1− p0)N(0)

i , E(0)i = p0N(0)
i , E(0)i = R(0)i = 0 with p0 = 0.001. Studying

the impact of different seeding probabilities are outside of the scope of our study.

2.3.4 Calibration of the model
Calibration of the SEIR model is performed by estimating the value of the unknown parameter
ψ

(t)
i for each day t based on the new infections C(t)

i occurring on that specific day among the
people residing in the ZIP Code. The time-dependent and ZIP-specific parameter ψ (t)

j captures
the risk that trips carry on average (see the “New exposures” section above for further details).

For each ZIP Code, the estimate C(t)
i is the realization of the random variable N(t)

Si→Ei . Since
N(t)
Si→Ei follows a Poisson distribution, its expected value can be decomposed as

E

[
N(t)
Si→Ei

]
= S(t)i

N(t)
i

n∑
j=1

w(t)
i,j λ

(t)
j =

S(t)i
N(t)
i

n∑
j=1

w(t)
i,j
ψ

(t)
j

aj

n∑
k=1

w(t)
k,j

I(t)k
N(t)
k

,

= S(t)i
N(t)
i

⎛
⎝ψ (t)

i
ai

w(t)
i,i

n∑
k=1

w(t)
k,i

I(t)k
N(t)
k

+
n∑
j�=i

w(t)
i,j
ψ

(t)
j

aj

n∑
k=1

w(t)
k,j

I(t)k
N(t)
k

⎞
⎠ ,

thus yielding

E

[
N(t)
Si→Ei

]
= S(t)i

N(t)
i

⎛
⎝ψ (t)

i ρ
(t)
i

w(t)
i,i

N(t)
i

n∑
k=1

w(t)
k,i

N(t)
k

I(t)k +
n∑
j�=i

ψ
(t)
j ρ

(t)
j

w(t)
i,j

N(t)
j

n∑
k=1

w(t)
k,j

N(t)
k

I(t)k

⎞
⎠ , (2)

where ρ(t)i =N(t)
i /ai is the population density of node vi on day t. When estimating ψ (t)

i , we
assume that ψ (t)

j ≈ψ (t−1)
j , corresponding to the assumption that contributions from nodes are

not expected to change drastically on a daily basis. With this, we estimate ψ (t)
i as

ψ̂
(t)
i =

C(t)
i

N(t)
i

S(t)i
−

n∑
j�=i

ψ̂
(t−1)
j ρ

(t)
j

w(t)
i,j

N(t)
j

n∑
k=1

w(t)
k,j

N(t)
k

I(t)k

ρ
(t)
i

w(t)
i,i

N(t)
i

n∑
k=1

w(t)
k,i

N(t)
k

I(t)k

(3)

to ensure that C(t)
i =E

[
N(t)
Si→Ei

]
, where we relied on the estimate ψ̂ (t−1)

j from the previous time

step of ψ (t−1)
j . Therefore, the estimation algorithm is as follows. First, we initialize ψ̂ (0)

j = 0
for j= 1, 2, . . . , n. Then, for t= 1, 2, . . . , tstop we compute ψ̂ (t−1)

i from (3) for i= 1, 2, . . . , n.
Although this approach yields a slightly suboptimal solution (as we are solving decoupled scalar
optimization problems instead of solving them jointly), it produces negligible prediction error
(Figure S9) as the slight imprecisions due to substituting the unknown quantity ψ (t)

j with ψ (t−1)
j

calculated in the previous round are further attenuated as contributions from between-ZIP trips
are typically dominated by those from within-ZIP trips (Tables S1–S4).
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While the fit produces almost no error at the group level, there are 8 small ZIP Codes belonging
to the same group (Majority White) in close proximity to each other where error is considerably
higher than in all other ZIP Codes. Further analysis reveals that in all these ZIP Codes the move-
ment pattern shows significantly lower homophily (here the percentage of trips occurring within
the same ZIP Code) than the population average (Figure S9), thus a possible explanation is misat-
tribution of trips among neighboring ZIP Codes. Therefore, we next considered combining these
8 ZIP Codes, leading to no significant changes in the distribution of trips, population, area, move-
ment pattern, and epidemic progression (Figure S10), while ZIP Code level performance of the
model accuracy increases dramatically, virtually eliminating all error (Figure S9). Therefore, in
what follows, we combine these ZIP Codes (60601, 60602, 60603, 60604, 60605, 60606, 60654, and
60661), and treat this aggregate as a single node.

2.4 Analysis details
2.4.1 Source of exposures
Considering new exposures among people residing in ZIP Code i, it follows from (1) that those
that are due to trips to ZIP Code j and to ZIP Codes in group Gk are distributed according
to Poisson processes with parameters S(t)i /N

(t)
i w(t)

i,j λ
(t)
j and S(t)i /N

(t)
i
∑

j∈Gk
w(t)
i,j λ

(t)
j , respectively.

Therefore, the group level average probabilities that exposure in group Gi happens due to trips
within one’s own ZIP Code and one’s own group, respectively, are given at time t by

p(t)i =
1
ni

∑
j∈Gi

w(t)
j,j λ

(t)
j∑n

k=1 w
(t)
j,kλ

(t)
k

, q(t)i =
1
ni

∑
j∈Gi

∑
k∈Gi w

(t)
j,kλ

(t)
k∑n

k=1 w
(t)
j,kλ

(t)
k

,

where ni is the number of nodes in group Gi. For more details, see SM Tables S1–S4.

2.4.2 Eliminating case rate disparities
Considering (1), the number of new exposures in ZIP Code i at time t follows a Poisson
distribution with parameter

S(t)i
N(t)
i

n∑
j=1

w(t)
i,j λ

(t)
j =

S(t)i
N(t)
i

n∑
j=1

w(t)
i,j
ψ

(t)
j

aj

n∑
k=1

w(t)
k,j

I(t)k
N(t)
k

. (4)

Introduce

β
(t)
i =ψ (t)

i
N(t)
i
ai

(
w(t)
i,i

N(t)
i

)2

and γi = I(t)i
N(t)
i

, (5)

and note that from (4) it follows that the number of new exposures N(t)
Si→Ei in ZIP Code i at time t

can be approximated as a Poisson distribution with parameter β(t)i S(t)i I(t)i /N
(t)
i since

S(t)i
N(t)
i

n∑
j=1

w(t)
i,j λ

(t)
j ≈ β(t)i γ

(t)
i S(t)i .

if w(t)
i,j /w

(t)
i,i 	 1/n, γ (t)

i /γ
(t)
j ≈ 1, and β(t)i /β

(t)
j ≈ 1, which are confirmed in Figure S10b, Figure

S3, and Figure S12a, respectively. Therefore, epidemic progression in ZIP Code i is largely deter-
mined by β(t)i , encompassing the evolution of three major ZIP-specific factors: the parameterψ (t)

i ,
population density N(t)

i /ai, and within-ZIP trip rate w(t)
i,i according to (5). While separately none
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of these factors displays a strong correlation with case rate, their combination in β(t)i defined in
Equation (5) has significant predictive power regarding case rate (Figure S12).

While between-ZIP trips are crucial at the beginning of the pandemic (Brinkman & Mangum,
2022; Hâncean et al., 2021; Wells et al., 2020), once started, within-ZIP trips largely drive the epi-
demic progression, as they are significantly more frequent (Tables S1–S4). As a result, we can
approximate the transmission rate at ZIP Code i as β(t)i neglecting the effects of between-ZIP trips
in two ways. First, by omitting trips leading to other ZIP Codes, we do not take into account the
corresponding exposures. Second, by discarding incoming trips, thus the risk they carry, we also
underestimate the infection rate at ZIP Code i. Therefore, β(t)i quantifies the average number of
individuals that a disease carrier would infect daily (Kermack & McKendrick, 1927) in a network
of disconnected nodes.

When matching a group level characteristic, within the selected group we modify both the
mean and temporal evolution of this characteristic such that they match the group level mean and
temporal evolution in the target group.

2.4.3 Structural effects
To analyze the effects of network segregation among demographic groups, we manipulate the
levels of homophily in the movement matrices. We measure homophily as the percentage of trips
occurring within the same ZIP Code and the same group.

We reduce homophily (i.e., reduce segregation in the mobility network) via Laplace smoothing
(Manning et al., 2008) on all outgoing trips originating in nodes from a given group, focusing
on one group at a time, while all other trips (originating in different groups) remain unchanged.
This is achieved by transforming the movement matrices via the following rescaling of the weights
(i.e., redirecting trips among ZIP Codes): w̄(t)

i,j ← (w(t)
i,j + αnd2)/(1+ αnd) with d= 1

n
∑N

j=1 w
(t)
i,j ,

where n is the number of nodes in the graph (i.e., number of ZIP Codes). This scaling has four
important properties. First, for α= 0 we have w̄(t)

i,j =w(t)
i,j , thus we recover the original mobility

patterns. Second, as α→∞ we have w̄(t)
i,j → d, that is, outgoing edges will have uniform weights,

corresponding to homogeneous movement. Third, for all values of α we have
∑n

j=1 w̄
(t)
i,j = nd=∑n

j=1 w
(t)
i,j , so that the overall movement volume (outgoing trip rate) for any of the nodes remains

unchanged. Finally, for all values of α the ordering of trips remain unchanged, i.e., if w(t)
i,j <w(t)

i,k
then w̄(t)

i,j < w̄(t)
i,k .

We increase homophily for a selected group in two ways. In the first scenario, we isolate each
demographic group, one at a time. When isolating group Gi, we remove all trips between the
selected group and other groups, and rescale the remaining edge weights according to

w(t)
j,k←

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

w(t)
j,k

∑n
h=1 w

(t)
j,h∑

h/∈Gi w
(t)
j,h

j, k /∈Gi,

w(t)
j,k

∑n
h=1 w

(t)
j,h∑

h∈Gi w
(t)
j,h

j, k ∈Gi,

0 otherwise.

so that all (outgoing) trip rates remain unchanged and preserved outgoing trips maintain the
same relative importance for each node. In the second scenario, we isolate nodes within each
demographic group, one at a time according to
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w(t)
j,k←

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑n
h=1 w

(t)
j,h j= k ∈Gi,

w(t)
j,k

∑n
h=1 w

(t)
j,h∑

h/∈Gi w
(t)
j,h

j, k /∈Gi,

0 otherwise.

This way, we remove edges between nodes in the selected group, as well as trips that lead to ZIP
Codes in other demographic groups, and we increase the frequency of within-ZIP trips to preserve
the trip rate. The above transformation also rescales the remaining edges in the network so that
all (outgoing) trip rates remain unchanged, and the preserved outgoing trips maintain the same
relative importance for each node in all other groups.

To reiterate, all manipulations of the movement matrices preserve the overall movement vol-
ume (outgoing trip rate) for all ZIP Codes. This is crucial as the counterfactual computational
experiments we conduct provide us with results that relate to the structure of mobility, rather
than to its volume. For more details, see SM section S5.

2.4.4 Achieving equal group outcomes in case rate
We first generate counterfactuals by modifying both vulnerability and trip rate (while maintaining
their temporal evolution) in each group according to ψ (t)

j ← fψψ (t)
j and w(t)

j,k← fww(t)
j,k where the

scaling factors fψ and fw are selected (for each group separately) as follows: fψ is sampled from a
uniform distribution over [0.5, 2], whereas fw is computed as

√
fβ/fψ where fβ = fψ f 2w is chosen

randomly from the range [0.05, 1]. This way the group level β is determined randomly over the
range [0.05, 1], and this change is achieved randomly by modifying both the vulnerability via ψ (t)

j

and the movement quantity via w(t)
j,k . For β < 0.6, the relationship between group level mean β

and case rate is approximately linear (Figure S12). With this, we can compute not only how β

should have changed for a given group to achieve a certain case rate outcome, but we can also
translate these to changes into vulnerability and trip rate according to (5). Similarly, for six of the
most relevant socio-economic differences (median household size, median income, percentage
of employed, percentage of insured, overcrowdedness, and percentage of buildings over 50 years
old), we first calculate the correlation between them and both the case rate and β , then relying on
linear regression analysis we compute the required change in these socio-demographic factors to
achieve a particular group level case rate outcome. For more details, see SM section S6.

2.4.5 Other counties
As our approach is underpinned by the relative isolation of ZIP Codes (high homophily), we
consider 15 of the largest metropolitan areas: Chicago, IL; Columbus, OH; Dallas, TX; Detroit, MI;
Fort Worth, TX; Houston, TX; Indianapolis, IND; Los Angeles, CA; Las Vegas, NV; Miami, FL;
New York, NY; Philadelphia, PA; Phoenix, AZ; San Diego, CA; Seattle, WA. In these cities, there
are 5 demographic groups (not necessarily in every city): Majority Asian, Majority Black, Majority
Latinx, Majority White, and Mixed. The movement patterns in all these counties display a high
degree of homophily (Figures S4–S7, Table S5). Therefore, we expect that our analytical approach
can be extended to other major US cities provided that the required data become available. At
present, a major bottleneck is the lack of geographically fine-grained data on COVID-19 cases
and testing frequency.
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(a) (b)

Figure 1. A compartmental SEIR model overlaid on a mobility network faithfully captures the progression of the pandemic
in Chicago over 2020 including multiple peaks. (a) We combine reported case count with testing data to obtain estimates
of case rates given the importance of undetected infections in sustaining the epidemic spread (Giordano et al., 2020), which
is then leveraged to calculate the risk of exposure over time, considering mobility patterns. This approach enables us not
only to reveal the composition of where infections occur over time, but also to evaluate various counterfactual scenarios. (b)
Group level estimated case rate is depicted in black, simulation data from 10 independent runs are depicted with dots, their
average is displayed with thick curves of the same color (SM section S2).

3. Results
We begin by parameterizing the compartmental SEIR model overlaid on a mobility network to
faithfully reconstruct the progression of the pandemic in Chicago over 2020 including multiple
peaks. Figure 1 presents the general analytical approach and the results of model fitting. Using
this model as a baseline, our analysis then proceeds through four additional steps: (i) we uncover
the source and distribution of exposures (e.g., within ZIP Codes and demographic groups versus
between ZIP Codes and across demographic groups); (ii) we quantify the average risk that each
trip represents in each demographic group and its link to case rate disparities during the pro-
gression of the epidemic; (iii) we investigate how the structure of the mobility network shapes
epidemic progression; and (iv) we reveal the trade-offs between behavioral (e.g., trip rate) and
socio-economic factors (e.g., income, household size) when establishing group-level outcomes in
COVID-19 case rates. In addition to these main steps, we evaluate the robustness of our approach
by recreating some results in 15 counties containing large cities and all the main analysis for the
much smaller city ofMilwaukee. The following sections describe in detail each step of our analysis.

3.1 A compartmental SEIR model overlaid on amobility network faithfully captures the
progression of the pandemic

We represent the movement of individuals among ZIP Codes as a directed network G = (V , E)
where weight w(t)

i,j between node vi and vj represents the number of people traveling from ZIP
Code i to ZIP Code j on day t. In 2020, the network comprises 1,211,040 daily edges among the 58
ZIP Codes in Chicago, and the mobility network displays weak connections and a spatial arrange-
ment roughly analogous to the actual city layout Figure 2. We overlay a compartmental SEIR
model on the mobility network (Figure 1(a)) to reconstruct the progression of the COVID-19
pandemic in Chicago over 2020 at the ZIP Code level (Figure 1(b)), where each ZIP Code’s popu-
lation is distributed over susceptible (S), exposed (E), infectious (I), and removed (R) states. New
infections occur daily according to the movement within and between ZIP Codes, without the
possibility of reinfections (Chang et al., 2020).

3.2 The overwhelmingmajority of exposures occur due to within-ZIP trips
Despite the central role of interconnectivity in mobility networks, our observations show
that much of human mobility remained local in Chicago (Figure 2), echoing prior findings
(Alessandretti et al., 2018; Schläpfer et al., 2021). While marked decreases in urban mobility
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Figure 2. Daily mobility is concentrated within one’s own ZIP Code and demographic group, fundamentally governing the
spread of COVID-19. (a) Chicago ZIP Codes together with the observed mobility network (colored by majority demographic
group), displayed using an inverse edge weighting (Fruchterman & Reingold, 1991) of trip probability between ZIP Codes
(low probability and within-ZIP trips are not displayed). For more details, see Figure S2. (b) Group level averages of outgoing
trip distribution and estimated sources of exposure across demographic groups are displayed in the outer rings, whereas
inner rings represent trips to own ZIP and exposures within own ZIP.

occurred, especially after the declaration of national emergency in the US, the structure ofmobility
remained relatively stable and became even more geographically concentrated (Marlow et al.,
2021). Examining the distribution of trips during the 2020 COVID-19 pandemic (Figure 2(b))
reflects this pattern: over 80% of an individual’s trips are contained within their own ZIP Code
(Majority Black: 85%; Majority Latinx: 86%; Majority White: 85%; Mixed: 84%, see Tables S1–S4
for ZIP Code level data). The rest of the trips highlight isolation along demographic lines: over
90% occur within group (Majority Black: 94%;Majority Latinx: 91%;MajorityWhite: 94%;Mixed:
90%), reflecting patterns of neighborhood segregation (Wang et al., 2018; Sampson, 2019), leav-
ing less than 10% for trips connecting different groups (Majority Black: 6%; Majority Latinx: 9%;
Majority White: 6%; Mixed: 10%). From an epidemic progression perspective, this means that
instead of having a well-connected network composed of intertwined ZIP Codes, the mobility
network, in reality, comprises almost entirely isolated ZIP Codes with a low level of between-
node mobility, mostly confined to trips within the same demographic group. This pattern extends
to other major US cities as well (Figures S4–S7).

The mathematical model underpinning our analysis allows us not only to accurately recon-
struct epidemic progression at the ZIP Code level (Figure S9), but also to deconstruct the source
of exposures (Tables S1–S4). In particular, we estimate (Figure 2(b)) that over 80% of infections
occurred within a person’s own ZIP Code in 2020 (Majority Black: 83%; Majority Latinx: 86%;
Majority White: 84%; Mixed: 84%), and over 90% within the same demographic group (Majority
Black: 93%; Majority Latinx: 91%; Majority White: 93%; Mixed: 90%). These surprisingly high
numbers are a direct consequence of the significant isolation of ZIP Codes highlighted earlier.
As the overwhelming majority of exposures happen during trips confined to one’s own ZIP Code
(within-ZIP trips), trips connecting ZIP Codes (between-ZIP trips) play a relatively minor role in
the emergence of case rate disparities. However, in line with our understanding of the diffusion of
simple contagions via bridging ties in networks (Macy, 1991; Park et al., 2018), between-ZIP travel
is crucial in the early phase when seeding a local outbreak (Brinkman &Mangum, 2022; Hâncean
et al., 2021; Wells et al., 2020; Kuchler et al., 2022).

3.3 Vulnerability and trip rate together explain differences in epidemic progression between
demographic groups

The daily infection rate depends on the volume of movement, the probability that traveling indi-
viduals are infected, the area ai of each ZIP Code, and a time-varying parameterψ (t)

i that captures
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Figure 3. Vulnerability and trip rate together govern epidemic progression. (a) Group level averages of vulnerability (defined
as the product of ψ (t)i and population density N(t)i /ai) and trip rate (both normalized to the smallest). (b) Difference in case
rate between groups (grey dots). The baseline scenario refers to the observed outcome in Chicago over 2020 (total of six
observed differences considering the four groups). For each counterfactual scenario, the indicated characteristic (trip rate,
vulnerability, approximate transmission rate) of each ZIP Code that belongs to a select group is scaled by the same factor,
until the group average reaches that of a target group, atwhich point the case rate difference is calculated between these two
groups (three rescalings for each of the four groups, yielding a total of 12 differences). White circles represent the median of
these differences, black segments denote the interquartile ranges, and grey shaded regions indicate the probability density
of the data (smoothed by a kernel density estimator, see (Hintze &Nelson, 1998) formore details). Approximate transmission
rate is scaled via trip rate, results are similar when scaled via vulnerability (SM section S4). Full red/green circles denote the
observed difference between the Majority Latinx and Majority Black/White groups in the baseline scenario. Empty red/green
circles denote the difference between the Majority Latinx and Majority Black/White groups in the counterfactuals such that
the Majority Black/White groups serve as targets when rescaling the indicated characteristic of the Majority Latinx group. For
more details, see SM section S4 for a pairwise comparison between demographic groups, includingmatching not only group
level means, but also the temporal evolution of trip rate, vulnerability, and approximate transmission rate.

the risk of exposure to COVID-19 due to trips leading to ZIP Code i. We estimateψ (t)
i for each ZIP

Code usingMaximum Likelihood estimation to calibrate our SEIRmodel using the estimated case
count for each ZIP Code. This approach not only yields an accurate reconstruction of COVID-19
progression at the ZIP Code level capturing multiple peaks, but it also enables the construction
and analysis of a wide range of counterfactual scenarios.

We define vulnerability as the product of ψ (t)
i with population density N(t)

i /ai. The average
number of individuals that a disease carrier would infect daily (Kermack & McKendrick, 1927)
is given by the approximate transmission rate β(t)i in (5), connecting the quality and quantity of
mobility via the interplay of vulnerability and trip rate, and also exposing key differences between
demographic groups. For instance, while the trip rate of the Majority Black group is 11% lower
than that of the Majority White group (6.77 vs 7.60), the former group has a 18% greater case
rate (39% vs 33%), owing to their 67% higher vulnerability (0.0175 vs 0.0105). Similarly, while the
Majority Latinx and Mixed groups have almost identical trip rates (8.10 vs 7.84), their case rates
differ by 48% (62% vs 42%) as the vulnerability of the former exceeds by 33% that of the latter
(0.0132 vs 0.0099).

Leveraging the observation that within-ZIP trips tend to concentrate most of the population’s
mobility, we may compare different demographic groups through the lens of vulnerability and
trip rate (Figure 3(a)). The derivation of β(t)i underscores that focusing on either vulnerability or
trip rate to explain differential outcomes across different demographic groups is not sufficient.
To isolate the unique contribution of vulnerability and mobility to discrepancies in COVID-19
outbreaks across demographic groups, we estimate the impact of these factors by constructing
counterfactual scenarios where we change either the vulnerability or the trip rate of all ZIP Codes
of one demographic group to closely resemble the average observed in another demographic
group (Figure 3(b)). For instance, throughout 2020 the Majority Latinx group has 23 percentage
points higher case rate than Majority Black group and 29 percentage points higher than Majority
White group. This is due to the fact that the Majority Latinx group has both high vulnerability
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and trip rate (Figure 3(a)). When decreasing their trip rate to match that of the Majority Black
and Majority White groups, the discrepancy decreases (to 9 and 27 percentage points, respec-
tively), yet significant gaps remain due to differences in vulnerability. Next, while the difference
in case rates decreases when decreasing the vulnerability of the Majority Latinx group to match
the group level average of the Majority White group (to 17 percentage points), it further increases
when increasing it to match the group level average of the Majority Black group (to 29 percentage
points). These results highlight that differences in vulnerability and trip rate alone do not provide
sufficient explanation of observed group level disparities.

Once the combined effect of vulnerability and trip rate is matched via the group level aver-
age of the approximate transmission rate β(t)i , the differences in case rates virtually disappear
(Figure 3(b)). For instance, the difference between the Majority Latinx and Majority Black group
decreases to three percentage points, and the difference between the Majority Latinx andMajority
White group decreases to four percentage points. Our approach thus allows us to attribute the
differences in case rate between ZIP Codes of different demographic composition to differences
in vulnerability and trip rate. This further highlights that both the volume of movement (trip rate)
and the risk of exposure per trip (vulnerability) are essential in understanding and mitigating epi-
demic progression, and inequality in either can and will lead to inequality in case rate among
demographic groups.

3.4 Decreased network segregation reduces case rate inequality
After revealing how vulnerability and trip rate together lead to inequalities in outcomes, we next
investigate the contribution of movement patterns to reveal the role that the structure of the
mobility network plays. To this end, we focus on both further increasing segregation of demo-
graphic groups (i.e., pushing the mobility network towards higher levels of homophily), as well as
decreasing segregation (i.e., increasing uniformity of outgoing between-ZIP trips, thereby push-
ing the network towards lower levels of homophily). Thus, we generate a set of counterfactual
movement networks (SM section S5), keeping both trip rate and vulnerability unchanged across
all demographic groups at all times to isolate the impact of the structure of the mobility network.

From both sets of analysis, a similar pattern emerges: decreasing homophily leads to reduced
inequality in case rates, while increasing segregation could significantly exacerbate outcomes in
already vulnerable groups (see also (Laumann & Youm, 1999) documenting a substantively sim-
ilar pattern in case of sexually transmitted diseases). Specifically, the case rate in the Majority
Latinx group would rise from 63% to approximately 72% when we isolate the group, and to 71%
when we further isolate all nodes in this group (Figure 4). In turn, when we decrease segregation
for the Majority Latinx ZIP Codes, a 25 percentage point reduction in homophily yields approx-
imately 20 percentage point case rate reduction in the same group without significantly affecting
the outcomes in other groups. Conversely, when we apply Laplace smoothing on the outgoing
trips originating in Majority White ZIP Codes, case rates increase mildly in this group, balanced
by a comparable drop in the Majority Latinx group (Figure S26).

These results are the direct consequence of the most moderate and pronounced outbreaks
occurring in the Majority White and Majority Latinx groups, respectively. Redirecting trips from
the former to other groups (including the Majority Latinx group) has two main consequences:
(i) trips from the Majority White group now lead to neighborhoods with higher case rates; and
(ii) the probability of encountering someone infected in the Majority Latinx group decreases due
to the influx from the Majority White group (with lower average case rates). We can interpret
redirecting trips from the Majority Latinx group similarly, and as expected, rewiring the mobility
pattern in the other groups yield similar but smaller changes (Figure S26).

These observations underscore a secondary effect of policies that aim to reduce the vol-
ume of mobility. As prior work has already demonstrated, trip rate reduction primarily impacts
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Figure 4. Decreased homophily reduces inequality in COVID-19 case rate. Baseline refers to the observedmobility data (dark
circles). Homophily is reduced by rescaling outgoing trips using Laplace smoothing for all nodes within a select group in 5%.
increments (light circles), keeping both the trip rate and the ordering of weights (i.e., importance of connections) unchanged,
without affecting trips originating in other groups. Homophily is increased either by isolating a select group from the rest of
the network (diamonds), or by further isolating nodes within the group (stars). Case rate is presented only for the group with
altered mobility patterns (SM section S5).

longer-distance trips and trips leading to demographically dissimilar ZIP Codes (Marlow et al.,
2021). These changes thus yield an increase in segregation and may “lock in” privilege, as well
as exacerbate inequalities. In fact, keeping the level of mobility and vulnerability unchanged but
reducing group-level homophily in the mobility network to its pre-pandemic levels, the city level
case rate remains practically identical, but the gap between the worst faring (Majority Latinx)
and best faring (Majority White) groups reduces by 4.16 percentage points, or 15% (Table S6).
Specifically, while the former sees a reduction in case rate of 2.95 percentage points, the latter
experiences an increase of 1.21 percentage points. This highlights that even subtle increases in
the group-level homophily in the mobility network could meaningfully contribute to inequal-
ity in outcomes by protecting and further increasing the privilege of some communities at the
expense of already vulnerable ones. Thus, policy-makers should consider such unintended and
detrimental effects, and balance these with the beneficial impact of mobility reduction (Badr et al.,
2020; Glaeser et al., 2020; Wellenius et al., 2021; Chinazzi et al., 2020; Courtemanche et al., 2020;
Kraemer et al., 2020).

3.5 The trade-off betweenmobility, vulnerability, and socio-demographic factors
A large body of prior work documented an association between COVID-19 case rates and socio-
demographic characteristics, such as race, ethnicity, socio-economic status, and occupational
structures (Torrats-Espinosa, 2021; Glaeser et al., 2020; Chen et al., 2021; Levy et al., 2022). While
these associations are crucial in understanding the resource needs of various communities, they
are notoriously hard to change via short-term interventions. Reducing mobility or decreasing vul-
nerability (e.g., introducing and enforcing mask mandates, or providing quarantining facilities to
avoid exposing family members in densely populated households) are thus more suitable candi-
dates for short-term intervention. Via the approximate transmission rate (β(t)i ) we can associate
variations in each of its components with changes in case rates, as well as translate these varia-
tions in vulnerability and trip rate to shifts in the socio-demographic composition of ZIPs using a
simple linear regression.

To this end, we first generate counterfactual scenarios to explore the relationship between
group level approximate transmission rates and case rates as follows. We start with randomly
rescaling both the trip rate and vulnerability of each node within all groups, then we simulate the
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Figure 5. Trade-offs between vulnerability, mobility, and sociodemographic factors. Circles correspond to the observed
baseline, stars represent the value that would ensure that the case rate within the selected group would match the city
level average (43%).

corresponding scenarios using the network model to reveal the connection between case rate and
approximate transmission rate. Considering the effect that changing the group level vulnerability
and trip rate would have on the approximate transmission rate according to (5), we can select a
target case rate in any of the groups, translate it to the corresponding approximate transmission
rate, and through that identify the required group level vulnerability or trip rate, while leaving the
other unchanged. This exposes inequalities in case rates across demographic groups in a new light
(Figure 5). For instance, those living in Majority Latinx ZIPs would need to cut 0.93 daily trips on
average to achieve the city level average case rate, while those living in Majority White ZIPs could
afford 0.84more daily trips—a difference of almost 2 daily trips (with a population average of 7.5).

We can further translate these changes in mobility and vulnerability to changes in socio-
economic composition associated with case rates. We consider six factors that have been asso-
ciated with COVID-19 case rate: mean household size, median household income, percentage of
individuals employed, percentage of individuals insured, percentage of overcrowded households
(i.e., households with 4 or more people), and the percentage of old buildings (i.e., buildings older
than 50 years, which may impact respiratory health and exposure to environmental contaminants
such as lead (Shaw, 2004)). These factors show an expected strong correlation with case rate and
approximate transmission rate (SM section S6). Our results reveal that due to their low case rate,
the Majority White group could afford a 25% increase in median household size or a 50% drop
in median household income to reach the city level average case rate, instead of increasing their
daily trip rate by 0.84. Conversely, as the Majority Latinx group suffers from a case rate signifi-
cantly greater than the city level average, the required socioeconomic changes are of the opposite
sign (as an alternative to 0.93 fewer daily trips) to ensure the same case rate outcome (Figure 4).
Taken together, these results provide a cross-walk between changes in vulnerability, trip rate, and
socio-demographic factors via the case rate.

3.6 Limitations
The most important limitations of our work are centered around (i) data availability constraints
in other cities; (ii) granularity of our analysis; and (iii) modeling assumptions.

First, our approach requires temporally and spatially fine-grained mobility, testing, and case
data. While mobility data are available in each of the 15 major US cities, case and testing data
are only available for Chicago, New York, and Seattle. In New York, ZIP Code level testing/case
data are made public for only after the first major peak of the pandemic. In Seattle, ZIP Codes
are classified as either Majority White or Mixed, failing to provide a context for the rich analysis
that we carried out in Chicago to uncover disparities across demographic groups. Notably, in
Milwaukee, where the data required for the analysis are available, our key findings hold about
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how segregated mobility patterns amplify neighborhood disparities in the spread of COVID-19
(SM section S7).

Second, we perform our analysis at the ZIP Code level, treating them as if they were
homogeneous units. Similarly to other recent work (Bluhm et al., 2022; Crawford et al., 2022;
Levy et al., 2022; Pei et al., 2021; Wikle et al., 2022), we assume that SafeGraph mobility data
are representative of the population with no major discrepancies across demographic groups.
Additionally, we consider test and case counts at the ZIP Code level, however, majority group
membership of a ZIP Code may not accurately reflect the demographic composition of the pop-
ulation actually tested or infected. Finally, while our analysis uncovers ZIP-to-ZIP variability in
the average risk that trips represent, it may mask heterogeneity across trips within each ZIP
(e.g., due to duration). To address these limitations, subsequent analysis would require (currently
unavailable) higher resolution data, such as (i) mobility patterns disaggregated at the ZIP Code
level by demographic background; (ii) the racial and ethnic composition of those who are tested
or diagnosed within each ZIP Code; and (iii) detailed information about individual trips (e.g.,
duration).

Third, our model makes several assumptions about the dynamics of COVID-19 spread which
decrease the realism of the model. First, while we capture heterogeneity in contact between socio-
demographic groups based on their trips between ZIP Codes, we assume homogeneous mixing
within ZIP Codes, due to lack of finer grained data. Second, our approach does not incorporate
either compartments for the vaccinated population or the possibility of reinfections. Similarly,
while we assume that the period between exposed and infected states does not appreciably change
over 2020, this might need to be revisited with the emergence of new variants. While these were
appropriate choices for 2020, they ought to be revised for modeling the COVID-19 pandemic
beyond 2020 by introducing additional compartments or more complex transition probabilities
between compartments.

4. Discussion
The analysis we present in this paper relies on longitudinal mobility, case, and test data at the ZIP
Code level in Chicago. Our approach presents a significant improvement over prior work, given
the fine-grained geographic resolution of case data, and the integration of novel estimates for the
number of infected but asymptomatic individuals even accounting for testing disparities across
demographic groups. We build on the observation that ZIP Codes are essentially isolated from
one another in the mobility network, enabling us to interpret epidemic progression in Chicago
over 2020 through the lens of the approximate transmission rate β(t)i encompassing ZIP Code
level characteristics alone: volume of within-ZIP trips and the average risk that each of these trips
represents. In addition to pinpointing where exposures occur, we also demonstrate that differences
in either of these factors alone do not explain the discrepancy in case rates across demographic
groups. Obtaining qualitatively similar results in Chicago and Milwaukee despite the dramatic
difference in population size suggests the generalizability of our findings (SM section S7). As the
mobility network of 15 major US cities display a pattern similar to those observed in Chicago and
Milwaukee (i.e., ZIP Codes and groups are essentially isolated), we expect similar results in those
contexts, provided that longitudinal ZIP Code level case and test data become available.

Over the course of 2020 urban mobility networks changed significantly (Schlosser et al., 2020;
Marlow et al., 2021), as mobility has become more localized, and neighborhoods have become
more isolated. We demonstrate that this isolation, which likely extends beyond 2020, rein-
forces inequalities in case rates across communities, and our observations suggest that these
effects are further amplified by localized and concentrated mobility upon the onset of an out-
break. By leveraging actual mobility data to better approximate contact between demographic
groups and neighborhoods, we reinforce the findings of exploratory SEIR models highlighting

https://doi.org/10.1017/nws.2023.6 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2023.6


Network Science 427

that demographic stratification of contact can increase inequality in case rates (Ma et al., 2021).
Homophily thus likely protects already privileged communities where the material conditions of a
neighborhood (e.g., the availability of protective equipment, better building conditions, and mini-
mal overcrowding) already contribute to reducing the risk that each trip represents. Additionally,
segregation in mobility could further privilege places where residents can more easily adopt
behaviors that limit their exposure, such as forming close-knit social bubbles (Block et al., 2020) or
strategically accessing essential services to avoid crowding (Chang et al., 2020; Nishi et al., 2020).

It is important to recognize that our results are consistent with COVID-19 spreading as a sim-
ple, rather than a complex contagion (Centola, 2020), where weak ties connecting neighborhoods
remain important in seeding localized epidemics. However, as we show, within-neighborhood
mobility fundamentally shapes the long-term trajectory of local epidemics. In the future, inequal-
ities in vaccination rates (Agarwal et al., 2021) could further exacerbate these divergent pandemic
experiences by socio-demographic background. While reducing mobility has proven to be effec-
tive to “flatten the curve,” the next frontier of interventions must focus on reducing the likelihood
of infection upon contact, which includes vaccination campaigns and mask mandates that have
become hot-button political issues (DeMora et al., 2021; Romer & Jamieson, 2020). Upon design-
ing and implementing these strategies, policy makers must also strive to ensure that their
beneficial effects are enjoyed equitably across demographic groups, instead of further widening
the gap among them.
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