ON THE CANCELLATION PROBLEM OF ZARISKI

Dongho Byeon and Hyun Kwang Kim

Let K_{1} and K_{2} be extension fields over a field K with char $K=p>0$. Assume $L=K_{1}\left(x_{1}\right)=K_{2}\left(x_{2}\right) \supset K$ where x_{i} is transcendental over K_{i}, for $i=1,2$. In this paper we prove that if K_{1} is a perfect field, then $K_{1}=K_{2}$.

Let K_{1} and K_{2} be finitely generated extensions of a field K and let x_{i} be transcendental over $K_{i}, i=1,2$. The cancellation problem of Zariski [5] asks if $K_{1}\left(x_{1}\right)=K_{2}\left(x_{2}\right)$, must K_{1} and K_{2} be K-isomorphic? In general the answer is no [1]. However there are some special cases in which the answer is yes [2, 3, 4, 5]. For example, it is known that the answer is yes if $\operatorname{char} K=0$ and $x_{1}=x_{2}[2,5]$. But for the case of a finite base field, very little is known. In this paper we shall prove the answer is yes for an important case of a finite base field, that is, if char $K=p>0$ and K_{1} is a perfect field, then $K_{1} \cong K_{2}$. In this case we have a stronger result, namely $K_{1}=K_{2}$.

Theorem. Let K_{1} and K_{2} be extension fields over a field K with char $K=$ $p>0$. Assume $L=K_{1}\left(x_{1}\right)=K_{2}\left(x_{2}\right) \supset K$ where x_{i} is transcendental over K_{i}, for $i=1,2$. If K_{1} is a perfect field, then $K_{1}=K_{2}$.

Remark. In $[\mathbf{2 , 3}, \mathbf{4}, \mathbf{5}]$, it is assumed that K_{1} and K_{2} are finitely generated extensions of K. However, in our Theorem this assumption in not required.

We start with a lemma.
Lemma. Let K_{1} and K_{2} be fields as in the Theorem. If K_{1} is a perfect field, then so is K_{2}.

Proof: Let φ be the Frobenius automorphism of L so that $\varphi(a)=a^{p}$ for all $a \in L$, where $p=\operatorname{char} K>0$. Then $\varphi(L)=L^{p}=K_{1}^{p}\left(x_{1}^{p}\right)=K_{2}^{p}\left(x_{2}^{p}\right)$. Since $K_{1}^{p}=K_{1}$, $K_{1}\left(x_{1}^{p}\right)=K_{2}^{p}\left(x_{2}^{p}\right)$. Thus $\left[K_{2}\left(x_{1}\right): K_{2}^{p}\left(x_{2}^{p}\right)\right]=\left[K_{1}\left(x_{1}\right): K_{1}\left(x_{1}^{p}\right)\right]=p$. However $p=\left[K_{2}\left(x_{2}\right): K_{2}^{p}\left(x_{2}^{p}\right)\right]=\left[K_{2}\left(x_{2}\right): K_{2}\left(x_{2}^{p}\right)\right] \times\left[K_{2}\left(x_{2}^{p}\right): K_{2}^{p}\left(x_{2}^{p}\right)\right]=p \times\left[K_{2}\left(x_{2}^{p}\right): K_{2}^{p}\left(x_{2}^{p}\right)\right]$. So $\left[K_{2}\left(x_{2}^{p}\right): K_{2}^{p}\left(x_{2}^{p}\right)\right]=1$, that is, $K_{2}^{p}\left(x_{2}^{p}\right)=K_{2}\left(x_{2}^{p}\right)$. This implies that $K_{2}^{p}=K_{2}$. \square

Proof of Theorem: Let $K_{1} K_{2}$ be the compositum of K_{1} and K_{2} in L. Then $L=K_{1} K_{2}\left(x_{1}, x_{2}\right)$ since $K_{1} K_{2}\left(x_{1}, x_{2}\right) \subset L$ and $L \subset K_{1} K_{2}\left(x_{1}, x_{2}\right)$ by the definition of

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/96 \$A2.00+0.00.
compositum. First we show that L is a transcendental extension over $K_{1} K_{2}$. By the Lemma K_{2} is also a perfect field. So $L^{p^{n}}=K_{1}^{p^{n}}\left(x_{1}^{p^{n}}\right)=K_{2}^{p^{n}}\left(x_{2}^{p^{n}}\right)=K_{1}\left(x_{1}^{p^{n}}\right)=$ $K_{2}\left(x_{2}^{p^{n}}\right)$ for every positive integer n. Thus $K_{1} K_{2} \subset L^{p^{n}}$ for every positive integer n.

But $\left[L: L^{p^{n}}\right]=p^{n}$ for every positive integer n. So L is an infinite dimensional extension over $K_{1} K_{2}$. Since $L=K_{1} K_{2}\left(x_{1}, x_{2}\right), L$ must be a transcendental extension over $K_{1} K_{2}$. Now we claim that $K_{1} K_{2}$ must be algebraic over K_{i}, for $i=1,2$. Otherwise $1=t r . d_{K_{i}} K_{i}\left(x_{i}\right)=t r . d_{K_{i}} K_{1} K_{2}+\operatorname{tr} . d_{K_{1} K_{2}} L \geqslant 2$, for $i=1,2$. Since K_{i} is algebraically closed in L, for $i=1,2$, we conclude that $K_{1} K_{2} \subset K_{i}$, for $i=1,2$. Hence $K_{1} K_{2}=K_{1}=K_{2}$.

References

[1] A. Beauville, J.L. Colliot-Thélène, J.J. Sansuc and Sir P. Swinnerton-Dyer, 'Variétés stablement rationnelles non rationelles', Ann. of Math. 121 (1986), 283-315.
[2] J. Deveney, 'Automorphism groups of ruled function fields and a problem of Zariski', Proc. Amer. Math. Soc. 90 (1984), 178-180.
[3] J. Deveney, 'The cancellation problem for function fields', Proc. Amer. Math. Soc. 103 (1988), 363-364.
[4] M. Kang, 'A note on the birational cancellation problem', J. Pure Appl. Algebra 77 (1992), 141-154.
[5] M. Nagata, 'A Theorem on valuation rings and its applications', Nagoya Math. J. 29 (1967), 85-91.

[^1]
[^0]: Received 8th August, 1995

[^1]: Department of Mathematics
 Pohang University of Science and Technology Pohang Korea
 e-mail: faust@posmath.postech.ac.kr

