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HAMILTONIAN CYCLES IN PRODUCTS
OF GRAPHS

BY
JOSEPH ZAKS

Let ¥(G) and E(G) denote the vertex set and the edge set of a graph G; let K,
denote the complete graph with n vertices and let K, ,, denote the complete bi-
partite graph on n and m vertices. A Hamiltonian cycle (Hamiltonian path, re-
spectively) in a graph G'is a cycle (path, respectively) in G that contains all the ver-
tices of G. A graph G is called Hamiltonian if it contains a Hamiltonian cycle.
The path number m(G) of a graph G is defined as the minimum number of dis-
joint paths needed to cover all the vertices of G (see [3], [1] and [4]). Clearly, a
graph G has a Hamiltonian path if and only if m(G)=1; every Hamiltonian graph
has a Hamiltonian path, hence a graph G is non-Hamiltonian if m(G)>2.

The Cartesian product GxH and the strong product GXH of two graphs G and
H are defined by:

V(GxH) = V(GXH) = V(G)xV(H)
and

E(GxH) = {(“b vy)(, v5) I uy, Uy € V(G), vy, v, € V(H) and either

u; = uy and vy, € E(H) or else v; = v, and u,u, € E(G)},
while

E(GXH) = E(GxH) U {(u3, v,)(ts, v5) | uyu, € V(G), vy, v, € V(H),
u,u, € E(G) and v,v, € E(H)}.

Let xG™ (XG™, respectively) denote the graph GxGx---xG (n times)
(GxGx- « %G, n times, respectively).

G. Sabidussi ([6], Lemma 2.3) proved that if G is an n-connected graph and
H is a k-connected graph, then GxH is (n+k)-connected; he also proved that if
G is a connected graph and H is a cycle, then GxH is Hamiltonian provided

V(H) > 2V(G)—2

(for a proof, apply Lemma 2.7 of [6], with Y=Z=the cycle H). Recently, M.
Rosenfeld and D. Barnette [5] proved that if G is a connected graph and H is a
cycle, then GxH is Hamiltonian provided the maximum degree of the vertices of
G is not more than the number of the vertices of H; for related results, see [2].

The purpose of this note is to present few properties of products of graphs,
concerning the existence of a Hamiltonian cycle in them.
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THEOREM 1. If for a graph G and a natural number n, the graph xG" is Haril-
tonian, then the graph xG* is Hamiltonian for all k>n.

Proof. It is obviously enough to prove that xG™** is Hamiltonian whenever
xG™ is. Suppose XG” is Hamiltonian, and G has m vertices. Let H be a Hamil-
tonian cycle in XG™. The graph G is clearly connected (see [6], Lemma 2.2), and
the maximum degree of G is less than m; the graph H has m" vertices, hence by [5]
the graph GxH is Hamiltonian; since the graph GxH spans xG"**2, it follows that
xG™*! is Hamiltonian.

THEOREM 2. For every n and k, n,k>1, there exists an n-connected graph
G=G(n, k), such that the graph XG* is non-Hamiltonian.

Proof. Let n and k be given, and let ¢ be an arbitrary natural number. The path
number m(X(K,,,)") of the graph (X, ;)" satisfies the inequality

m(xX(K,,)") 2 2" —(+1)%;

to prove it, let u be the r-valent vertex of X; , and let vy, ..., v, be the 1-valent
vertices of K; ;. A vertex of X(K; )" is an n-tuple (y, . . . , y,), Where y; € V(K )
for all 1<i<n; two vertices (yy,...,¥,) and (z,, ..., z,) of X(K, )" form an
edge of X(K;,,)" if and only if y;z, for at least one index 7, and for all j, 1< j<n,
y;=z; or y;z; € E(K; ;). Let a vertex (yy, ..., y,) of the graph X(X; )" be of type
lifue{y,...,y,, where the last set has less than or equal to »n elements; the
rest of the vertices of the graph X(X; )" belong to type 2. The graph (X )"
has ¢* vertices of type 2 and (¢4-1)"—¢" vertices of type 1. Every edge of the graph
K, has the vertex u as an end point, hence every edge of the graph X(X )"
has at least one vertex of type 1 as an end point; every pair of vertices of type 2
in a simple path in X(Kj, )" is therefore separated by a vertex of type 1; every
simple path in the graph X(X; ;)" contains at most one more vertex of type 2
than those of type 1, hence t"—(t4-1)"—1"=2¢"—(t+1)" <m(X(Ky,,)").

As a consequence, m(X(Ky )"*)>2t"*—(t4+1)"*=f(t), where f(t) is a poly-
nomial in ¢ of degree nk; since n, k>1, there exists a natural number s for which
f()>2.

The graph G=G(n, k)=%x(K, ,)" is an n-connected graph, as follows from the
connectedness of the graph K ; by induction on #, using Lemma 2.3 of [6]; more-
over m(XG¥)>2, hence XG* is non-Hamiltonian.

REMARK. The idea of dividing the vertex set of a graph in order to show that the
graph is non-Hamiltonian is due to T. A. Brown [3].

THEOREM 3. The graph x(K, ,)* is non-Hamiltonian for all k>1, provided
n#m.

Proof. Let {u;,...,u,} and {v;,...,v,} be the partition of the vertex set
V(K,,m) of K, .. The vertices of the graph x(K,, ,,)* are all the k-tuples (yy, . . . , yy)

https://doi.org/10.4153/CMB-1974-138-7 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1974-138-7

1975] HAMILTONIAN CYCLES 765

with y, e V(K, ,); two vertices of x(K, )% (Ji,...,y») and (z,...,z),
form an edge of that graph if y,5z; for exactly one index i, 1 <i<k, and where
y:z; € E(K,,,,,). Let a vertex (34, . .., y;) of the graph x(X,, ,)* belong to type 1
if the number of indices j, for which y; € {u;, . . . , #,}, is even; let the rest of the
vertices of the graph x(X,,,,.)* belong to type 2. All the edges of the graph K, ,,
are of the form u,v;, hence every edge of the graph x(K, ,,)* has exactly one end
point of type 1 and the other one of type 2; a straightforward calculation shows
that the number of vertices of type 1 exceeds the number of vertices of type 2 by
(n—m)¥, hence m(x(K,,,,)*) > (n—m)*; it follows that if n£m the graph x(X,,,)*
is non-Hamiltonian.

Every spanning subgraph of a non-Hamiltonian graph is itself non-Hamiltonian;
as a result, we have the following corollaries.

COROLLARY 1. If T is a tree spanning the graph K, .., with n>m>1, then xT*
is non-Hamiltonian for all k> 1.

COROLLARY 2. If T is a tree with an odd number n of vertices, and n>3, then
xT* is non-Hamiltonian for all k>1.

Is it true that for every connected graph G with at least two vertices, there exists
an integer k=k(G) for which the graph XG* is Hamiltonian?
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