Canad. Math. Bull. Vol. 17 (5), 1975

HAMILTONIAN CYCLES IN PRODUCTS OF GRAPHS

BY JOSEPH ZAKS

Let V(G) and E(G) denote the vertex set and the edge set of a graph G; let K_n denote the complete graph with n vertices and let $K_{n,m}$ denote the complete bipartite graph on n and m vertices. A Hamiltonian cycle (Hamiltonian path, respectively) in a graph G is a cycle (path, respectively) in G that contains all the vertices of G. A graph G is called Hamiltonian if it contains a Hamiltonian cycle. The path number m(G) of a graph G is defined as the minimum number of disjoint paths needed to cover all the vertices of G (see [3], [1] and [4]). Clearly, a graph G has a Hamiltonian path if and only if m(G)=1; every Hamiltonian graph has a Hamiltonian path, hence a graph G is non-Hamiltonian if $m(G) \ge 2$.

The Cartesian product GxH and the strong product $G\bar{x}H$ of two graphs G and H are defined by:

and

$$V(G\mathbf{x}H) = V(G\bar{\mathbf{x}}H) = V(G)\mathbf{x}V(H)$$

 $E(GxH) = \{(u_1, v_1)(u_2, v_2) \mid u_1, u_2 \in V(G), v_1, v_2 \in V(H) \text{ and either} \}$

$$u_1 = u_2$$
 and $v_1 v_2 \in E(H)$ or else $v_1 = v_2$ and $u_1 u_2 \in E(G)$,

while

 $E(G\bar{x}H) = E(GxH) \cup \{(u_1, v_1)(u_2, v_2) \mid u_1u_2 \in V(G), v_1, v_2 \in V(H),$

 $u_1u_2 \in E(G)$ and $v_1v_2 \in E(H)$.

Let xG^n ($\bar{x}G^n$, respectively) denote the graph $GxGx \cdots xG$ (*n* times) $(G\bar{x}G\bar{x}\cdots\bar{x}G, n \text{ times}, \text{ respectively}).$

G. Sabidussi ([6], Lemma 2.3) proved that if G is an *n*-connected graph and H is a k-connected graph, then GxH is (n+k)-connected; he also proved that if G is a connected graph and H is a cycle, then GxH is Hamiltonian provided

$$\overline{\overline{V(H)}} \ge 2\overline{\overline{V(G)}} - 2$$

(for a proof, apply Lemma 2.7 of [6], with Y=Z= the cycle H). Recently, M. Rosenfeld and D. Barnette [5] proved that if G is a connected graph and H is a cycle, then GxH is Hamiltonian provided the maximum degree of the vertices of G is not more than the number of the vertices of H; for related results, see [2].

The purpose of this note is to present few properties of products of graphs, concerning the existence of a Hamiltonian cycle in them.

THEOREM 1. If for a graph G and a natural number n, the graph xG^n is Hamiltonian, then the graph xG^k is Hamiltonian for all $k \ge n$.

Proof. It is obviously enough to prove that xG^{n+1} is Hamiltonian whenever xG^n is. Suppose xG^n is Hamiltonian, and G has m vertices. Let H be a Hamiltonian cycle in xG^n . The graph G is clearly connected (see [6], Lemma 2.2), and the maximum degree of G is less than m; the graph H has m^n vertices, hence by [5] the graph GxH is Hamiltonian; since the graph GxH spans xG^{n+1} , it follows that xG^{n+1} is Hamiltonian.

THEOREM 2. For every *n* and *k*, *n*, $k \ge 1$, there exists an *n*-connected graph G=G(n, k), such that the graph $\bar{x}G^k$ is non-Hamiltonian.

Proof. Let *n* and *k* be given, and let *t* be an arbitrary natural number. The path number $m(\bar{x}(K_{1,t})^n)$ of the graph $\bar{x}(K_{1,t})^n$ satisfies the inequality

$$m(\bar{x}(K_{1,t})^n) \ge 2t^n - (t+1)^n;$$

to prove it, let u be the *t*-valent vertex of $K_{1,t}$ and let v_1, \ldots, v_t be the 1-valent vertices of $K_{1,t}$. A vertex of $\bar{\mathbf{x}}(K_{1,t})^n$ is an *n*-tuple (y_1, \ldots, y_n) , where $y_i \in V(K_{1,t})$ for all $1 \le i \le n$; two vertices (y_1, \ldots, y_n) and (z_1, \ldots, z_n) of $\bar{\mathbf{x}}(K_{1,t})^n$ form an edge of $\bar{\mathbf{x}}(K_{1,t})^n$ if and only if $y_i \ne z_i$ for at least one index *i*, and for all $j, 1 \le j \le n$, $y_j = z_j$ or $y_j z_j \in E(K_{1,t})$. Let a vertex (y_1, \ldots, y_n) of the graph $\bar{\mathbf{x}}(K_{1,t})^n$ be of type 1 if $u \in \{y_1, \ldots, y_n\}$, where the last set has less than or equal to *n* elements; the rest of the vertices of the graph $\bar{\mathbf{x}}(K_{1,t})^n$ belong to type 2. The graph $\bar{\mathbf{x}}(K_{1,t})^n$ has t^n vertices of type 2 and $(t+1)^n - t^n$ vertices of type 1. Every edge of the graph $K_{1,t}$ has the vertex u as an end point, hence every edge of the graph $\bar{\mathbf{x}}(K_{1,t})^n$ has at least one vertex of type 1 as an end point; every pair of vertices of type 2 in a simple path in $\bar{\mathbf{x}}(K_{1,t})^n$ is therefore separated by a vertex of type 1; every simple path in the graph $\bar{\mathbf{x}}(K_{1,t})^n$ contains at most one more vertex of type 2 than those of type 1, hence $t^n - (t+1)^n - t^n = 2t^n - (t+1)^n \le m(\bar{\mathbf{x}}(K_{1,t})^n)$.

As a consequence, $m(\bar{x}(K_{1,t})^{nk}) \ge 2t^{nk} - (t+1)^{nk} = f(t)$, where f(t) is a polynomial in t of degree nk; since $n, k \ge 1$, there exists a natural number s for which f(s) > 2.

The graph $G=G(n, k)=\bar{x}(K_{1,s})^n$ is an *n*-connected graph, as follows from the connectedness of the graph $K_{1,s}$ by induction on *n*, using Lemma 2.3 of [6]; moreover $m(\bar{x}G^k)>2$, hence $\bar{x}G^k$ is non-Hamiltonian.

REMARK. The idea of dividing the vertex set of a graph in order to show that the graph is non-Hamiltonian is due to T. A. Brown [3].

THEOREM 3. The graph $x(K_{n,m})^k$ is non-Hamiltonian for all $k \ge 1$, provided $n \ne m$.

Proof. Let $\{u_1, \ldots, u_n\}$ and $\{v_1, \ldots, v_m\}$ be the partition of the vertex set $V(K_{n,m})$ of $K_{n,m}$. The vertices of the graph $\mathbf{x}(K_{n,m})^k$ are all the k-tuples (y_1, \ldots, y_k)

764

with $y_i \in V(K_{n,m})$; two vertices of $x(K_{n,m})^k$, (y_1, \ldots, y_k) and (z_1, \ldots, z_k) , form an edge of that graph if $y_i \neq z_i$ for exactly one index i, $1 \leq i \leq k$, and where $y_i z_i \in E(K_{n,m})$. Let a vertex (y_1, \ldots, y_k) of the graph $x(K_{n,m})^k$ belong to type 1 if the number of indices j, for which $y_j \in \{u_1, \ldots, u_n\}$, is even; let the rest of the vertices of the graph $x(K_{n,m})^k$ belong to type 2. All the edges of the graph $K_{n,m}$ are of the form $u_i v_j$, hence every edge of the graph $x(K_{n,m})^k$ has exactly one end point of type 1 and the other one of type 2; a straightforward calculation shows that the number of vertices of type 1 exceeds the number of vertices of type 2 by $(n-m)^k$, hence $m(x(K_{n,m})^k) \geq (n-m)^k$; it follows that if $n \neq m$ the graph $x(K_{n,m})^k$ is non-Hamiltonian.

Every spanning subgraph of a non-Hamiltonian graph is itself non-Hamiltonian; as a result, we have the following corollaries.

COROLLARY 1. If T is a tree spanning the graph $K_{n,m}$, with $n > m \ge 1$, then xT^{k} is non-Hamiltonian for all $k \ge 1$.

COROLLARY 2. If T is a tree with an odd number n of vertices, and $n \ge 3$, then xT^k is non-Hamiltonian for all $k \ge 1$.

Is it true that for every connected graph G with at least two vertices, there exists an integer k = k(G) for which the graph $\bar{x}G^k$ is Hamiltonian?

References

1. D. Barnette, Trees in Polyhedral graphs, Canad. J. Math. 18 (1966), 731-736.

2. M. Behzad and S. E. Mahmoudin, On Topological Invariants of the Products of Graphs, Canad. Math. Bull. 12 (1969), 157-166.

3. T. A. Brown, Simple paths on Convex Polyhedra, Pacific J. Math. 11 (1961), 1211-1214.

4. B. Grünbaum, Convex Polytopes, J. Wiley, New York, 1967.

5. M. Rosenfeld and D. Barnette, Hamiltonian Circuits in Certain Prisms, Discrete Math. 5 (1973), 389-394.

6. G. Sabidussi, Graphs with given group and given graph-theoretical properties, Canad. J. Math. 9 (1957), 515-525.

7. —, Graph Multiplication, Math. Z. 72 (1960), 446-457.

MICHIGAN STATE UNIVERSITY,

EAST LANSING, MICH. U.S.A.

and

UNIVERSITY OF HAIFA, HAIFA, ISRAEL