HAMILTONIAN CYCLES IN PRODUCTS OF GRAPHS

BY
JOSEPH ZAKS

Let $V(G)$ and $E(G)$ denote the vertex set and the edge set of a graph G; let K_{n} denote the complete graph with n vertices and let $K_{n, m}$ denote the complete bipartite graph on n and m vertices. A Hamiltonian cycle (Hamiltonian path, respectively) in a graph G is a cycle (path, respectively) in G that contains all the vertices of G. A graph G is called Hamiltonian if it contains a Hamiltonian cycle. The path number $m(G)$ of a graph G is defined as the minimum number of disjoint paths needed to cover all the vertices of G (see [3], [1] and [4]). Clearly, a graph G has a Hamiltonian path if and only if $m(G)=1$; every Hamiltonian graph has a Hamiltonian path, hence a graph G is non-Hamiltonian if $m(G) \geq 2$.

The Cartesian product $G \times H$ and the strong product $G \overline{\mathrm{x}} H$ of two graphs G and H are defined by:

$$
V(G \times H)=V(G \overline{\mathrm{x}} H)=V(G) \mathrm{x} V(H)
$$

and

$$
\begin{aligned}
E(G \times H) & =\left\{\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right) \mid u_{1}, u_{2} \in V(G), v_{1}, v_{2} \in V(H)\right. \text { and either } \\
u_{1} & \left.=u_{2} \text { and } v_{1} v_{2} \in E(H) \text { or else } v_{1}=v_{2} \text { and } u_{1} u_{2} \in E(G)\right\},
\end{aligned}
$$

while

$$
\begin{aligned}
E(G \overline{\mathrm{x}} H)=E(G \mathrm{x} H) \cup\left\{\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right) \mid u_{1} u_{2} \in V(G),\right. & v_{1}, v_{2} \in V(H), \\
u_{1} u_{2} & \left.\in E(G) \text { and } v_{1} v_{2} \in E(H)\right\} .
\end{aligned}
$$

Let $\mathrm{x} G^{n}$ ($\overline{\mathrm{x}} G^{n}$, respectively) denote the graph $G \mathrm{x} G \mathrm{x} \cdots \mathrm{x} G$ (n times) ($G \overline{\mathrm{x}} G \overline{\mathrm{x}} \cdots \overline{\mathrm{x}} G, n$ times, respectively).
G. Sabidussi ([6], Lemma 2.3) proved that if G is an n-connected graph and H is a k-connected graph, then $G \times H$ is $(n+k)$-connected; he also proved that if G is a connected graph and H is a cycle, then $G \times H$ is Hamiltonian provided

$$
\overline{\overline{V(H)}} \geq 2 \overline{\overline{V(G)}}-2
$$

(for a proof, apply Lemma 2.7 of [6], with $Y=Z=$ the cycle H). Recently, M. Rosenfeld and D. Barnette [5] proved that if G is a connected graph and H is a cycle, then $G \times H$ is Hamiltonian provided the maximum degree of the vertices of G is not more than the number of the vertices of H; for related results, see [2].

The purpose of this note is to present few properties of products of graphs, concerning the existence of a Hamiltonian cycle in them.

Theorem 1. If for a graph G and a natural number n, the graph x^{n} is Hamiltonian, then the graph $\mathrm{x} G^{k}$ is Hamiltonian for all $k \geq n$.

Proof. It is obviously enough to prove that $\mathrm{x} G^{n+1}$ is Hamiltonian whenever $\mathrm{x} G^{n}$ is. Suppose $\mathrm{x} G^{n}$ is Hamiltonian, and G has m vertices. Let H be a Hamiltonian cycle in $\mathrm{x} G^{n}$. The graph G is clearly connected (see [6], Lemma 2.2), and the maximum degree of G is less than m; the graph H has m^{n} vertices, hence by [5] the graph $G \times H$ is Hamiltonian; since the graph $G \times H$ spans $\times G^{n+1}$, it follows that $\mathrm{x} G^{n+1}$ is Hamiltonian.

Theorem 2. For every n and $k, n, k \geq 1$, there exists an n-connected graph $G=G(n, k)$, such that the graph $\overline{\mathrm{x}} G^{k}$ is non-Hamiltonian.

Proof. Let n and k be given, and let t be an arbitrary natural number. The path number $m\left(\overline{\mathrm{x}}\left(K_{1, t}\right)^{n}\right)$ of the graph $\overline{\mathrm{x}}\left(K_{1, t}\right)^{n}$ satisfies the inequality

$$
m\left(\bar{x}\left(K_{1, t}\right)^{n}\right) \geq 2 t^{n}-(t+1)^{n} ;
$$

to prove it, let u be the t-valent vertex of $K_{1, t}$ and let v_{1}, \ldots, v_{t} be the 1 -valent vertices of $K_{1, t}$. A vertex of $\overline{\mathrm{x}}\left(K_{1, t}\right)^{n}$ is an n-tuple $\left(y_{1}, \ldots, y_{n}\right)$, where $y_{i} \in V\left(K_{1, t}\right)$ for all $1 \leq i \leq n$; two vertices $\left(y_{1}, \ldots, y_{n}\right)$ and $\left(z_{1}, \ldots, z_{n}\right)$ of $\overline{\mathrm{x}}\left(K_{1, t}\right)^{n}$ form an edge of $\overline{\mathrm{x}}\left(K_{1, t}\right)^{n}$ if and only if $y_{i} \neq z_{i}$ for at least one index i, and for all $j, 1 \leq j \leq n$, $y_{j}=z_{j}$ or $y_{j} z_{j} \in E\left(K_{1, t}\right)$. Let a vertex $\left(y_{1}, \ldots, y_{n}\right)$ of the graph $\bar{x}\left(K_{1, t}\right)^{n}$ be of type 1 if $u \in\left\{y_{1}, \ldots, y_{n}\right\}$, where the last set has less than or equal to n elements; the rest of the vertices of the graph $\overline{\mathrm{x}}\left(K_{1, t}\right)^{n}$ belong to type 2 . The graph $\overline{\mathrm{x}}\left(K_{1, t}\right)^{n}$ has t^{n} vertices of type 2 and $(t+1)^{n}-t^{n}$ vertices of type 1 . Every edge of the graph $K_{1, t}$ has the vertex u as an end point, hence every edge of the graph $\overline{\mathrm{x}}\left(K_{1, t}\right)^{n}$ has at least one vertex of type 1 as an end point; every pair of vertices of type 2 in a simple path in $\overline{\mathrm{x}}\left(K_{1, t}\right)^{n}$ is therefore separated by a vertex of type 1 ; every simple path in the graph $\overline{\mathrm{x}}\left(K_{1, t}\right)^{n}$ contains at most one more vertex of type 2 than those of type 1, hence $t^{n}-(t+1)^{n}-t^{n}=2 t^{n}-(t+1)^{n} \leq m\left(\overline{\mathrm{x}}\left(K_{1, t}\right)^{n}\right)$.

As a consequence, $m\left(\overline{\mathrm{x}}\left(K_{1, t}\right)^{n k}\right) \geq 2 t^{n k}-(t+1)^{n k}=f(t)$, where $f(t)$ is a polynomial in t of degree $n k$; since $n, k \geq 1$, there exists a natural number s for which $f(s)>2$.

The graph $G=G(n, k)=\overline{\mathrm{x}}\left(K_{1, s}\right)^{n}$ is an n-connected graph, as follows from the connectedness of the graph $K_{1, s}$ by induction on n, using Lemma 2.3 of [6]; moreover $m\left(\overline{\mathrm{x}} G^{k}\right)>2$, hence $\overline{\mathrm{x}} G^{k}$ is non-Hamiltonian.

Remark. The idea of dividing the vertex set of a graph in order to show that the graph is non-Hamiltonian is due to T. A. Brown [3].

Theorem 3. The graph $\mathrm{x}\left(K_{n, m}\right)^{k}$ is non-Hamiltonian for all $k \geq 1$, provided $n \neq m$.

Proof. Let $\left\{u_{1}, \ldots, u_{n}\right\}$ and $\left\{v_{1}, \ldots, v_{m}\right\}$ be the partition of the vertex set $V\left(K_{n, m}\right)$ of $K_{n, m}$. The vertices of the graph $\mathrm{x}\left(K_{n, m}\right)^{k}$ are all the k-tuples $\left(y_{1}, \ldots, y_{k}\right)$
with $y_{i} \in V\left(K_{n, m}\right)$; two vertices of $\mathrm{x}\left(K_{n, m}\right)^{k},\left(y_{1}, \ldots, y_{k}\right)$ and $\left(z_{1}, \ldots, z_{k}\right)$, form an edge of that graph if $y_{i} \neq z_{i}$ for exactly one index $i, 1 \leq i \leq k$, and where $y_{i} z_{i} \in E\left(K_{n, m}\right)$. Let a vertex $\left(y_{1}, \ldots, y_{k}\right)$ of the graph $\mathrm{x}\left(K_{n, m}\right)^{n}$ belong to type 1 if the number of indices j, for which $y_{j} \in\left\{u_{1}, \ldots, u_{n}\right\}$, is even; let the rest of the vertices of the graph $\mathrm{x}\left(K_{n, m}\right)^{k}$ belong to type 2 . All the edges of the graph $K_{n, m}$ are of the form $u_{i} v_{j}$, hence every edge of the graph $\mathrm{x}\left(K_{n, m}\right)^{k}$ has exactly one end point of type 1 and the other one of type 2 ; a straightforward calculation shows that the number of vertices of type 1 exceeds the number of vertices of type 2 by $(n-m)^{k}$, hence $m\left(x\left(K_{n, m}\right)^{k}\right) \geq(n-m)^{k}$; it follows that if $n \neq m$ the graph $\mathbf{x}\left(K_{n, m}\right)^{k}$ is non-Hamiltonian.

Every spanning subgraph of a non-Hamiltonian graph is itself non-Hamiltonian; as a result, we have the following corollaries.

Corollary 1. If T is a tree spanning the graph $K_{n, m}$, with $n>m \geq 1$, then $\mathrm{x} T^{k}$ is non-Hamiltonian for all $k \geq 1$.

Corollary 2. If T is a tree with an odd number n of vertices, and $n \geq 3$, then $\mathrm{x} T^{k}$ is non-Hamiltonian for all $k \geq 1$.

Is it true that for every connected graph G with at least two vertices, there exists an integer $k=k(G)$ for which the graph $\overline{\mathrm{x}} G^{k}$ is Hamiltonian?

References

1. D. Barnette, Trees in Polyhedral graphs, Canad. J. Math. 18 (1966), 731-736.
2. M. Behzad and S. E. Mahmoudin, On Topological Invariants of the Products of Graphs, Canad. Math. Bull. 12 (1969), 157-166.
3. T. A. Brown, Simple paths on Convex Polyhedra, Pacific J. Math. 11 (1961), 1211-1214.
4. B. Grünbaum, Convex Polytopes, J. Wiley, New York, 1967.
5. M. Rosenfeld and D. Barnette, Hamiltonian Circuits in Certain Prisms, Discrete Math. 5 (1973), 389-394.
6. G. Sabidussi, Graphs with given group and given graph-theoretical properties, Canad. J. Math. 9 (1957), 515-525.
7. - Graph Multiplication, Math. Z. 72 (1960), 446-457.

Michigan State University,
East Lansing, Mich. U.S.A.
and
University of Haifa,
Haifa, Israel

