
E S T I M A T I O N O F R A N D O M C H A N G E S 

I N T H E E A R T H ' S R O T A T I O N 

B. D. T A P L E Y a n d B . E. S C H U T Z 
Dept. of Aerospace Engineering and Engineering Mechanics, 

The University of Texas at Austin, Austin, Texas 78712, U.S.A. 

Abstract. The usual procedures for estimating the motion of the Earth's pole use a least squares data 
reduction procedure to estimate the coefficients in a time series solution for the coordinates of the 
pole. Whether optical data or radar tracking data from near Earth satellites is used, the presence of 
random accelerations in the equations which describe the motion of the Earth's pole will lead to 
errors if the data is reduced in the classical least squares manner. This investigation presents a 
technique for estimating the polar motion in the presence of unmodeled accelerations. The unmodeled 
acceleration is represented by a first order stationary Gauss-Markoff process which can be separated 
into a timewise correlated component and a purely random component. Using this model, a sequential 
estimation procedure is developed for estimating the orientation of the pole, the components of 
Earth's angular velocity and the magnitude of the components of the unmodeled acceleration. The 
application of the method using both optical and radar tracking data from near Earth satellites is 
discussed. 

The rotational motion of the Earth about its center of mass is influenced by the effects 
of the atmosphere, the oceans, the solid lithosphere, the fluid components of the Earth's 
interior and the lunar, solar and planetary gravitational torques. These components 
interact in various complex modes to exchange energy and momentum. As a conse
quence, the Earth rotates about an axis whose orientation changes continuously and 
the rate of rotation of the Earth about its instantaneous axis is not constant when 
measured against the time indicated by an atomic clock. 

The dynamical system which describes the Earth's rotational motion can be sepa
rated into the modeled components of the forcing moment, unknown or unmodeled 
components and purely random components. Discrepancies between the predicted 
motion of the Earth's pole and the observed motion can be attributed to (1) errors in 
the model used to describe the Earth 's motion, (2) errors in the observations used to 
determine the Earth's motion and (3) deficiencies in the methods used to reduce the 
observations. 

The primary data source for determining the Earth's polar motion is optical obser
vations of the 'fixed' stars. However, several new sources are providing data of sig
nificantly higher accuracy than the present optical data. These sources include the 
observations of near Earth satellites, the lunar laser ranging experiments and the use 
of very long base-line interferometry. With these data sources it is natural to consider 
procedures for improving the accuracy achieved in reducing the observation. In this 
summary, present procedures for determining the Earth's polar motion are reviewed 
briefly and a proposed extention of these methods to account for errors induced by 
unmodeled accelerations is described. 

At the present time, there are two organizations which determine the position of the 
pole using optical data, the IPMS in Mizusawa-shi, Japan (Yumi, 1970), and the BIH 
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in Paris, France (Guinot, 1970). A third organization, the United States Naval Weapons 
Laboratory, Dahlgren, Virginia uses satellite doppler data (Anderle and Beuglass, 
1970). The polar motion is determined by each of these organizations using observa
tions of the variation in latitude at observation points around the Earth. 

For example, the coordinates of the poles are determined by the IPMS using 
observations of the variation in latitude obtained at the five International Latitude 
Service (ILS) stations. These stations are positioned around the Earth at approxi
mately the same latitude of 38°8'. The coordinates of the pole, (x9y), and the non-polar 
variation of latitude, z, are determined from the relation 

A^i = x cosXt + y sinXi{ + z, i = 1, k (1) 

where AQ^cfri — &i9 4>t is the observed latitude of the /th station, 4^ is the mean 
latitude of the /th station and Xt is the longitude of the ith station and k represents the 
number of stations. If the notation, 

(2) 

is used, where hn=cosXt and hi2 = sinXh the relation between the observations and 
the polar positions can be expressed in matrix notation as 

[ A n hl2 vl ~ 
Af2 h22 1 

, x = 
X 

y 

-hi hi 1_ -Vk-
_z_ 

(3) 

The least squares solution for the components of the Earth's pole of rotation is 
obtained then as 

*k — (H£H*) 1 H^yfc = PfcHjvfc (4) 

provided k>3, i.e., provided the number of observations is, at least, equal to the 
number of coordinates to be determined. If one additional observation 

y*+1 = \ + i x + y k + 1 (5) 

becomes available, the least square estimate of the polar position is given by 

Zk+l = (HT

kHk + h [ + A + 1 ) " 1 (H[y k 4- h k

r

+ 1 y f c + 1 ) (6) 

In each of Equations (4) and Equations (6), the estimate is obtained by inverting a 
(3 x 3) matrix. While the inversion of a (3 x 3) matrix is not a difficult task, if 1ik has 
been computed, Hk+l can be computed with only a scalar division. If the observations 
are being used to determine other model parameters, then the state vector may be of 
higher dimension and the matrix inversion may require considerable effort. 

Using the definition P*+ x = (P f c + h [ + x h f c + x ) " 1 , a well known matrix identity (Liebelt, 
1967) can be used to express P k + 1 as follows 

Pfc+i — [I — K f c + 1 h k + 1 ] Pit 
+ I = ^V1* + 1 [hk + i P f c h f c + 1 + I ] 1 (7) 
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Substituting Pk+1 into Equation (6) and rearranging the terms leads to the following 
expression for k k + l 

* k + 1 = * k + K k + l [ y k + l - h k + A ] . (8) 

The dimension of the matrix to be inverted in Equations (7) and (8) is equal to the 
number of observations included in the vector y k + 1 . If only a single observation is 
added, then the new estimate is obtained by a simple scalar division. This procedure 
for computing the estimate is referred to as a sequential estimation procedure as 
contrasted with the batch procedure represented by Equation (6). 

The primary advantage of using Equations (7) and (8) rather than Equation (6) for 
estimating the state, with the observation-state relationship represented by Equation 
(1), lies in the reduction in the matrix computation. However, Equations (1) represent 
a determination of the polar motion based on geometric considerations only. To 
obtain maximum benefit of the more accurate observations now being made available, 
the dynamical effects of the Earth 's motion must be introduced. In addition, the 
observations should attempt to obtain better estimates of such parameters as station 
locations, geopotential terms, etc. Squires et al. (1969) discuss the errors which occur 
when a batch processor is used to reduce observations obtained from a satellite in
fluenced by unmodeled accelerations. The study concludes that the batch algorithm 
is insensitive to the unmodeled accelerations and, as a consequence, arrives at erro
neous results. The approach discussed in the previous paragraph can be extended to 
obtain an algorithm for estimating the motion of the Earth 's poles, using a model 
that includes the effects of both random and unmodeled accelerations on the Earth's 
motion. The application of the algorithm to the problem of determining the trajectory 
and the unmodeled accelerations acting on a lunar orbiting satellite are discussed in 
Tapley and Ingram (1970), Ingram and Tapley (1971), and Tapley and Ingram (1971). 
The algorithm is applied to the problem of estimating the Earth's polar motion by 
assuming that the observational data are range and range-rate observations of a near-
Earth satellite. 

The equations of the dynamical system, i.e., the rotational motion of the Earth 
and the motion of the satellite, can be described by a set of first order non-linear 
differential equations of the following functional form: 

f = v , v = a m ( r , J , r m , r s ) 

a = f(co, a ) , co = g ( c o , J, rm , r s, E ) 

where r and v are the position and velocity components of the satellite, a and co are 
the Euler angles and angular velocity components of the Earth 's motion, r m and r s are 
position vectors of the Moon and Sun, J is a vector of model parameters such as J2 

or JLL and £ is an unmodeled random acceleration which influences the Earth's rota
tional motion. Equation (9) can be expressed as 

f | = f ( T l , £ , t) (10) 

where r\ is a w-vector which represents the components of the position and velocity 

https://doi.org/10.1017/S0074180900098302 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900098302


ESTIMATION OF RANDOM CHANGES IN THE EARTH'S ROTATION 175 

of the satellite, the Euler angles and the components of the angular velocity of the 
Earth, unknown parameters in the model which are to be estimated, and s(t) is a 
3-vector of unmodeled or random forcing terms. In the subsequent analysis z(t) is 
modeled as the superposition of a purely random component and an exponentially 
time-wise correlated component. A process which satisfies these assumptions can be 
described by the following differential equation 

£=BE + U (11) 

where B is a (3 x 3)-matrix of constant correlation coefficients and u is a random 
forcing term assumed to be distributed with zero mean and known covariance, i.e., 

£ [ u ] = 0 , E[_u(t)uT(T)-]=Q(t)8(t-r) (12) 

where S(t—x) is the Dirac delta function, defined by 

<5(0 = lim Sa(t) 
<x->0 

<M0 = 

0, | f | <a, 
1 

, | / | < < r . 
[2<x' 

This definition implies that 

\ , t l < t < t2 

S(t - r ) d t hh=t or 
0, otherwise. 

The covariance matrix in Equation (12) implies the further assumption that u(t) is 
not correlated in time. If the ^-vector X r = [ t ] r j € r ] is defined, then Equations (10) 
and (11) can be combined to obtain 

X = F ( X , u , f ) , X(* 0 ) = X 0 . (13) 

The observation-state relations can be expressed as 

Y, = G(X„ + i = l , . . . , / c . (14) 

where \ t is the noise in the observations. Since the observations are non-linear func
tions of the state, and since in general an analytic solution of Equation (13) is not 
available, the observations at the various times must be related by numerically in
tegrating Equations (13). For simplicity, Equations (13) and (14) are linearized, under 
the assumption that the true motion of the dynamical system differs by only a small 
amount from the modeled motion. The linearized relations are given by 

x = A ( 0 x + C ( 0 u (r), x (t0) = x 0 

y f =Hixi + \ h i = 1, k 

where u(t) satisfies Equation (12) and x 0 is, in general, unknown. The symbol * in 
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Hi = (dG/dXi)* and A(t) = (dF/dXt)* indicates that the quantities are evaluated using 
the modeled motion. 

Assuming that the observation noise is distributed with zero mean and known 
variance, i.e., £ [ v j = 0 and £[v i v] r ] = R,> the best linear unbiased minimum variance 
estimator for the state, Hk9 at time tk given the observation yi9 i= 1 , k can be deter
mined by a repeated application of a sequential algorithm similar to that given by 
Equations (7) and (8). 

Assume that the first k— 1 observations have been processed to obtain Hk^1 and 
P f c _! and then given the observation yk, consider the problem of determining the best 
estimate of Hk. The algorithm for computing ± k is obtained as follows: 

(1) Integrate the modeled or reference trajectory from tk_x to tk9 using the equations 

S = F ( X , t ) , *k-i =***_!. 0 6 ) 

(2) Propagate the estimate and associated covariance obtained at th_x forward to 
tk using the relation 

x = A ( r ) x , *(tk-i) = *k-i 

P = A ( r ) P + P A r ( r ) + Q, Pit,.,) = P , ^ . (17) 

(3) Evaluate the weighting matrix Kk using the relation 

K ^ P . H ^ H . P ^ + R , ] - 1 (18) 

where Rk = E[\k vfc

T] and Hk = (dG/dXk)*. 
(4) Given yk = Yk — G(X*, tk)9 evaluate kk and Pk using the relation 

%k = xk + Kfc [y f c — H f cx f c] 
P t = [ I - K , H , ] P , . 

(5) Then given an observation yk + i , return to step (1) and repeat the process. 
Initial values of x 0 = 0 and P 0 set equal to a large symmetric positive definite matrix 

can be used as starting values for the algorithm. The advantages of using the algorithm 
described by Equations (16) through (19) over the usual minimum variance estimate 
are the following: 

(1) The effects of the unmodeled errors in the equations of motion for the system 
can be included in a convenient manner. 

(2) The effects of the linearization can be minimized by rectifying the modeled 
trajectory at each observation point to include the knowledge gained by processing 
the data at that time, i.e. by selecting the initial condition for the integration indicated 
in step (1) as = X * _ t +*»- ! • 

(3) The history of unmodeled acceleration, z(t), is determined as a direct output of 
the estimation process. Additional analysis should yield the source of the unmodeled 
acceleration and this information can be used to improve the basic dynamical model. 
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An additional advantage associated with utilizing the approach described in the 
previous discussion lies in the more realistic description of the observation-state re
lationship. The expressions for the range and range-rate observations for the problem 
described by Equation (9) are 

e = [ ( r - r s ) - ( r - r , ) ] * + i;ff 

£ = ^ [ ( ' - r s ) - ( r - r s ) ] + ^ (20) 

where ve and v*Q are noise components in the observation. If the position and velocity 
of the satellite, r and f, and the tracking station, r s and fs, respectively are expressed 
in rectangular cartesian coordinates, then the coordinates of the tracking station in 
the inertial coordinate systems can be expressed in terms of the tracking station in the 
Earth-fixed coordinate system by the following relations: 

= ST(69 if*, <j>) 
coyzSi - cozySi 

= sT(e, tfr, 4>) > = sT(e, tfr, 4>) 
_ 

(21) 

where ST(99 \j/9 (j>) is the usual transformation matrix for transforming relations in the 
body fixed coordinate system to the inertial coordinate system. Through Equations 
(20), the effects of the Earth 's angular velocity are related directly to the observations. 
As a consequence, the range-rate observation should be sensitive, in a direct manner, 
to changes in the angular velocity. Furthermore, since the coordinates of the tracking 
station are functions of the Euler angles, (0, ij/9 </>), and since the differential equations 
describing these quantities depend on the angular velocity, it is anticipated that the 
observations of range also will be sensitive to the angular velocity changes. 

In summary, the utilization of a dynamical model for the Earth's rotation gives an 
improved means of reducing the observations to obtain the polar motion. Such a 
procedure allows observations made at different points in time to be related in a 
dynamically consistent manner. The Earth's motion is best modeled as a non-linear 
dynamical system influenced by random and/or unmodeled accelerations. The usual 
least squares or minimum variance algorithms which process the observations in 
batch form are subject to errors caused by unmodeled forces However, the method 
presented in this summary can be used to estimate the motion of the Earth's pole as 
well as the unmodeled forces influencing the Earth's motion. The algorithm described 
in this summary has been programmed for use on the Control Data Corporation 
6400/6600 at The University of Texas at Austin. Numerical results obtained during 
further study will be presented at a later date. 
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