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Abstract 

The model of thermionic electron gun was developed. The Dirichlet problem for the cylinder (the 

Wehnelt electrode) restricted by two bottoms, one of them imitates a plane cathode and another imitates 

the equipotential surface, was solved analytically. It allows to study electron optical properties of the 

gun and its behaviour in dependence on Wehnelt potential for different cylinder depths. When the focal 

distance and the crossover size have the minimal value, this mode is called a work one. The crossover 

size and the beam half-angle values in this mode were approximated and the analytical method for 

electron gun calculation was developed. 

 

Introduction 

Guns with a plane cathode are widely used in electron beam lithography devices of high throughput [1-

4]. The most known is Lauer’s model for thermionic guns with a round cathode tip [5], his other model 

for the gun with a plane cathode is less known [6]. But this model has the disadvantages. It is difficult to 

find the emission region size because the uniform field is supposed to be near the plane cathode. As it 

follows from the results in order to get the minimal crossover size one should have Wehnelt potential 

value close to the cut-off potential but it contradicts to the experience. 

 

A new semianalytical model called “Equivalent cylinder” has been developed for the thermionic 

electron gun field [7-9]. 

 

The model consists of the cylinder of length L which is restricted by two bottoms of radius R, the left 

one imitates a plane cathode, the right bottom imitates the equipotential surface with Uw
0 

potential on it. 

The potential on the cylinder generatrix is Uw. The correspondent Dirichlet problem has the two 

solutions: 

U(z,r)=Uw
0

1n

vn(L/R)Mn J0(n r/R) sh(n z/R) + Uw
0k

wk(L/R)I0(k r/L)sin(k z/L), (1) 

where vn(L/R)Mn=2/nJ1(n)sh(nL/R), wk(L/R)=4/π(2k+1)I0((2k+1)πR/L), k=(2k+1)π, n are the roots of 

the equation  J0(n)=0.  J0(nr/R) is the Bessel function of the first kind and zero order (v=0), I0(kr/L) is 

the modified Bessel function of zero order (v=0). The first solution converges badly near the right 

bottom, so it was approximated. The field between the cylinder and an anode with a hole has the length 

L0 (Figure 1). 

 

Paraxial trajectories can be plotted readily by using Runge-Kutta procedure with a constant step. 

Nonparaxial trajectories can be plotted by using the same procedure but it requires much more steps of 

integration. The number of steps can run up to 4000 for the trajectories started with big (more than 45º) 

angles. When the number of steps is insufficient, the outer branches of emittance diagrams have wrong 

shapes for big Uw
0
 values [7].  

 

The space charge influence is supposed to be low. 
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Cathode lens parameters 

The field strength at the cathode decreases with the absolute value of Uw increasing and the crossover 

size as well as the back focal distance behave in more complicated manner than it goes on in the 

Schottky gun [10]. 

 

When the potential on the Wehnelt changes, the focal distance of the cathode lens has a minimum on its 

dependence on Wehnelt potential (Figure 2). This mode is often used in electron beam shaped 

lithography devices so it can be called a work mode. The real crossover is at the bore plane in this mode. 

When the cathode lens image plane goes to infinity, one has a semitelefocus mode; the real crossover 

can be formed in this case. When the asymptotic focal distance goes to infinity, one has a telefocus 

mode. 

 
 

Figure 1. The electron gun model: 1 – cathode, 2 – Wehnelt electrode, 3 – anode, r1 – axial, r2 - field 

paraxial trajectory. 

 

The work mode is restricted by the semitelefocus mode at low Wehnelt potentials (|Uw|) and by the 

telefocus mode at high Wehnelt potentials (|Uw|) when the bias is close to the correspondent cut-off 

value Uc.  

 

(a)  (b)  

Figure 2. Electron gun properties in dependence on reduced Wehnelt potential: (а) the reduced 

crossover size rcr/R, (b) the half-angle R0γ1/R; 1: L/R = 2, 2: L/R = 1.5, 3: L/R = 1, 4: L/R = 0.75; Uw
0 

= 

1 kV. 

 

The semitelefocus mode takes place for the potential value 

Us=(0.68-0.38(L/R)
2
)Uc (2) 

and when 0.75 ≤ L/R ≤ 2, Uw
0 

= 1 kV. 
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The telefocus mode takes place for the potential value 

Ut=(1.01 - 0.015(L/R)
2
)Uc (3) 

and when 0.75 ≤ L/R ≤ 2, Uw
0
 = 1 kV. 

 

The expressions (2) and (3) are empirical ones, they were found from paraxial trajectory calculation for 

the electron start energy u=0.25 eV. For other Uw
0 

values they give only qualitative dependence of the 

correspondent potentials on L/R ratio. Moreover, the dependence (3) can change drastically for other 

start energy values. 

 

(a)  (b)  

(c)  (d)  
Figure 3. Generalized cathode lens properties: (a) the focal distance dependence on Wehnelt potential, 

(b) the half-angle dependence on Wehnelt potential, (c) the axial coordinate of the focal plane Zf, image 

plane Zi and the linear magnification m dependence on Wehnelt potential, (d) the angle of convergence 

θ dependence on Wehnelt potential. 

 

It’s interesting that the work mode takes place at the same ratio Uwp/Uc for different Uw
0
: 

Uwp=(0.875 - 0.38(L/R-0.5)
2
)Uc . (4) 

 

It was found that the minimal focal distance of the cathode lens doesn’t depend on the potential at the 

bore Uw
0
. It can be seen in Figure 3. Therefore, the minimal focal distance in the work mode can be 

approximated by the expression 

f/R = 2.64-1.8 (Uwp/Uc)
2 
= 2.64-1.8 ((0.875-0.38 (L/R-0.5)

2
))

2
. (5) 
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The crossover radius (Figures 2 and 3a) can be written as 

rc=f (u/Uw
0
)
1/2

, (6) 

where u=kT/e, k – Boltzmann’s constant, T – cathode temperature, e – electron charge. The cathode lens 

half-angle (Figure 2b) can be present in such a way  

γ=R0/Rf=γ1R0/R , (7) 

where  γ1 – tangent of r2 trajectory angle at the bore plane (Figure 3b), R0 – emission region radius: 

R0 ≈ (1 - Uwp/Uc)R = (0.125 + 0.38 (L/R - 0.5)
2
) R, (8) 

θ is tangent of r1 trajectory angle at the bore plane (Figure 3c), its values in the work mode are shown in 

Figure 3b for u=0.25 eV.  

 

Influence of the anode space  

The crossover size of the whole gun equals to 

rcr
a
=M

a
 rcr , (9) 

M
a
 – the linear magnification of the anode space. It is supposed that the real crossover is in the bore.  

 

The half-angle of the whole gun equals to 

γ
a 

= m
a
 γ , (10) 

m
a
 – the angular magnification of the anode space. 

 

The potential in the bore is 

Uw
0 

= UaR/πL0 +Uwp . (11) 

Up to this point the ratio Uwp/Uc has been used and it hasn’t needed to calculate Uwp or Uc. Meantime the 

expression (11) requires Uwp and Uc values. The expression for the cut-off potential was got in the work 

[9]: 

𝑈𝑐 =  −
0.216𝑈𝑤

0 (
𝐿
𝑅

)

3
2

exp (
𝜋𝑅
𝐿

)

sinh (
2.4𝐿

𝑅
) 

 = −0.432𝑈𝑤
0 (

𝐿

𝑅
)

3
2

{exp (
2.4𝐿

𝑅
−

𝜋𝑅

𝐿
) − exp (−

2.4𝐿

𝑅
−

𝜋𝑅

𝐿
)} (12) 

 
 

Analytical method of calculation 

Let’s introduce the notations 

x=L/R, y=πL0/R (13) 

and let’s introduce the scale factor 

Rm=R . (14) 

The scale factor shows that the field trajectory coordinates increase Rm times when geometrical sizes 

increase Rm times. 

 

The expression for the crossover size is defined by the following factors: the anode hole factor (the 

linear magnification M
a
=2y

1/2
/(3y

1/2
-1)) [11], the anode space factor 0.9 ≤ M

u 
≤ 2, the factor of the total 

focal distance fg of the whole gun, the immersion factor (Uw
0
/eUa)

1/2
, the scale factor Rm. Then the 

crossover size expression can be written as 
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𝑟𝑐𝑟
𝑎 =

2𝑦

3𝑦1/2 − 1
𝑀𝑢𝑓𝑔 (

𝑘𝑇

𝑒𝑈𝑎
)

1/2

𝑅𝑚

=
2𝑦

3𝑦1/2 − 1
𝑀𝑢{2.64 − [1.18 − 0.5(𝑥 − 0.5)]2} (

𝜋𝐿0

𝑅
)

1/2

(
𝑘𝑇

𝑒𝑈𝑎
)

1/2

𝑅𝑚 

(15) 

The half-angle of the whole gun can be represented as the product of angular magnification of the anode 

hole, the angular magnification of the anode space, the magnitude that is inversely proportional to the 

focal distance, the emission radius R0 and the magnitude that is inversely proportional to the scale factor, 

in result, one has  

γ
a 

={(3y
1/2

-1)/2y}(1/M
u
){2.64-[1.18-0.38(x-0.5)]

2
}

-1
(R/πL0)

1/2
(0.12 +0.38(x-0.5)

2
). (16) 

The axial trajectory angle is found from the product of the angle θ in the real crossover plane and the 

angular magnification m
a
=(1/M

u
)(3y

1/2
-1)/2y [11]. Then 

θ
a 

=m
a
θ =m

a
{kT/eUw

0
}

1/2
/m = {(3y

1/2
-1)/2y

1/2
}(1/M

u
){kT/eUa}

1/2
/m , (17) 

where m is the cathode lens magnification [5]. The beam angle θ
a
 doesn’t depend on the scale factor. 

But the linear magnification of the cathode lens depends on the initial energy kT, this is the property of a 

cathode lens. So (17) approximates the result of the semianalytical calculation only for kT/e=0.25 eV 

and for 150 V ≤ Uw
0
 ≤ 2500 V.  

 

The maximal current density at the gun exit equals  

j0  = jc/(M
a 

M
u
m)

2
= jc/{2y

1.2
/(3y

1/2
-1)}

2
{1.5-0.5x}

2
, (18) 

where  jc – the cathode current density which is described by Richardson-Dushman formula, m – the 

cathode lens linear magnification in the work mode.  

 

The beam generator emittance is defined as the product of the crossover diameter and the total angle of 

the gun: 

 

ε = 4rcr
a
γ

a 
= 4(0.12 +0.38(x-0.5)

2
){kT/eUa}

1/2
. (19) 

So the emittance is proportional to the emission region reduced size. 

 

The asymptotic crossover plane position is 

ZF
a  
 L0 (1 - 4y/(3y

1/2
-1)(y

1/2
+1)) (20) 

for the real crossover displaced in the bore. The asymptotic crossover plane position is measured from 

the cathode.   

 

Conclusions 

It was shown that the gun asymptotic focal distance is minimal when the real crossover is in the Wehnelt 

bore. The real focal distance of the cathode lens for this case doesn’t depend on the potential in the bore. 

It allowed to develop the analytical method of the electron gun.  

 

The results showed a good accordance to the data got from home-made program package written on the 

basis of Charge Density Method [12] but there are two points. The first point revealed that formula (12) 

gives higher values of cut-off potential than it takes place in reality. The second point revealed that the 

anode space could have its linear magnification M
u 

≈ 2. 
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At which extent (different Uw
0
, L) space charge has influence can be a subject for future work. The 

formulae presented here can provide a researcher with the boundary values of the crossover parameters 

for zero space charge case. 

 

In real electron optical lithography systems aberration of the last lens defines the gun emittance. For 

high emission current values the most important among these aberrations are Boersh-Loeffler ones [13], 

they often impose top limit on the emission current (10-100 microamperes as, for instance, in projection 

lithography from [3]) and on the brightness [4]. But some researchers ignore Boersh-Loeffler aberrations 

in its work as it was done in development of Variable Shaped Lithography [1] where emission current 

can reach 300 microamperes. Such cases certainly demand the usage of numerical calculations. 

 

The model can serve as a good benchmark for numerical calculations. 
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