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C-NODAL SURFACES OF ORDER THREE
TIBOR BISZTRICZKY

The problem of describing a surface of order three can be said to
originate in the mid-nineteenth century when A. Cayley discovered that
a non-ruled cubic (algebraic surface of order three) may contain up to
twenty-seven lines. Besides a classification of cubics, not much progress
was made on the problem until A. Marchaud introduced his theory of
synthetic surfaces of order three in [9]. While his theory resulted in a
partial classification of a now larger class of surfaces, it was too general
to permit a global description. In [1], we added a differentiability condi-
tion to Marchaud’s definition. This resulted in a partial classification and
description of surfaces of order three with exactly one singular point in
[2]-[5]. In the present paper, we examine C-nodal surfaces and thus
complete this survey.

A surface F of order three is C-nodal if it is non-ruled, contains exactly
one non-differentiable point » and the set of tangents of F at v is a non-
degenerate cone of order two; that is, v is the vertex of the cone and any
plane, not passing through v, intersects the cone in an oval.

The classification (2.4) is based upon the configuration of lines in a
surface. In each of the subsequent sections, we describe a class of surfaces
with a fixed number /(v) of lines of F through v. In particular, we deter-
mine the distribution of the three types of differentiable points not lying
on any line of the surface. In 3.3, 4.6, 5.10 and 6.13, we present a summary
of the results in that section and an algebraic example.

1. Surfaces of order three. Let P? be the real projective three-space.
We denote the planes, lines and points of P? by the letters o, 8, . . .,
L, M,...and p,q, ... respectively. For a collection of flatse, L, 2, ...,
(@, L, p, . ..) denote the flat of P? spanned by them. For a set.# in P3,
(M) denotes the flat of P? spanned by the points of 4.

1.1 A (plane) curve T is the union of a finite collection of sets C) (M)
where the C\’s are continuous maps from a line M = {m, m/, ...} into
a plane a.

Let C = C\. Theline 7, = lim (C(m), C(m’)), asm’ % m tends to m,
is the tangent of C at m. Let C be differentiable; that is, T, exists and
T, N C(M)| < o for every m € M. We introduce (cf. [1], 1.3.3) the
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characteristic of C at m and the multiplicity with which a line L C «
meets C at m. Then Cis of order n if n is the supremum of the number of
points of M, counting multiplicities, mapped into collinear points by C.

If Cis of order two [three], we denote C(M) by S![Fs!]. We note that
Stis a Jordan curve. For an exposition on Fy!, we refer to [1], 1.4 and [8],
pp. 1-7. If C(M) is a line [point], we consider C to have order one [two].

T is of order k if k is the supremum of the number of points of T,
counting order on each C,, lying on any line notin T'. If 2 = 1, then T is
a (straight) line. If & = 2, then T is an S! or an isolated point or a pair of
distinct lines. If 2 = 3, then T is (i) an F;* or (ii) the disjoint union of
an Fi* and an S’ or a point or (iii) the union of a line and a I of order
two. We denote a T of order three satisfying (i) or (ii) by F.

1.2 A surface of order three, F, in P? is a compact, connected set such
that every intersection of F with a plane is a curve of order < 3 and some
plane section is an F.

Let F be a surface of order three, p € F. Let a be a plane through p.
Then p is regular in Fla M F)if there is a line V in P¥[a] such thatp € N
and |N M F| = 3. Otherwise, p is irregular in Fla M F]. An F has at most
one irregular point and such a point is a cusp, double point or isolated
point of some a M F ([1],1.4).

A line T is a tangent of F at p if T is the tangent of some C\ at m;
p = G(m) C G(M) C F. Let 7(p) be the set of tangents of F at p.
Then p is differentiable if p is regular (in F) and 7(p) is a plane 7 (p);
otherwise, p is singular.

We assume that every regular p is differentiable and 7(p) depends
continuously on p.

We denote by I(p)[/(p, @)], the number of lines of Fla M F] passing
through p and by I(a), the number of lines of « M F. Clearly /(a) < 3.
If # C Fis not a point, we put

M) = |{L C PYL C.M)|.

Let p be differentiable. Then p € T° C = (p) implies that either T C F
or | F| £ 2. Thus I(p) = I(p, n(p)) and p is irregular in x(p) M F.
If I(p) = 0, then p is an isolated point, cusp or double point of = (p) N F
and we call p elliptic, parabolic or hyperbolic respectively. Let E, I and H
denote the set of elliptic, parabolic and hyperbolic points of Frespectively.

Let v be irregular (singular) in F. If F is non-ruled; that is, [(F) < oo,
thenv € T C 7(v) if and only if eitherv € 7" C For T N F = {v}.
Moreover, 7(v) is a plane or a union of two distinct planes or a cone of
order two; cf. [10].

1.3 Let %/ be a closed, connected subset of an .S! or an F,!. If the end
points of .7 are distinct [equal], then &7 is a subarc [subcurve].
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Let p be differentiable. Let 27 (p) be the set of all subarcs % of order
two such that p € & € w(p); {1, 2} C.Z(p). Then . and &5 are
p-compatible if there is a 8 C P¥\{p} and an open neighbourhood U(p)
of p in P?® such that U(p) N (&, U &,) is contained in a closed half-
space of P3 bounded by = (p) and 8; otherwise, &/ and .97, are p-incom-
patible.

A pair of subarcs & and &/’ are compatible [incompatible] if there is
ap € N’ such that {7, "} C A (p) and .,/ are p-compatible
[p-incompatible] ([1], 2.5.3).

Let &/ be a subarc or a subcurve, either of order two; a = (&).
We define

e() = {p € o\|p lies on a tangent of &7 at 7 for some r € o7}

and (%) = a\e(). We note thata = (&) UL U e() and = S!
implies that ¢(S') is the open disk in (S') bounded by S.

14 Let L C Fand 7 € F\L such that (L, 7) M F consists of L and an
St. We denote this S' by S'(L, 7).

Let p, ¢, » and s be collinear points; |{p, ¢, 7, s}| = 4. We say that
b, q separates r, s if neither segment of (p, ¢) bounded by p and ¢ contains
both 7 and s; otherwise, p, g does not separate r, s. In an obvious manner,
we extend these definitions to points on a subcurve; concurrent, coplanar
lines and planes through a given line.

Let {p, ¢, r} C ., |{p, q, r}| = 3 and & a subcurve. We denote by
& (p, q,r) the subarc of .27 bounded by p and g and containing 7.

Let.%, = {1,2, ..., n}, na positive integer.

Finally we note that when the meaning of a topological statement is
clear, we do not-indicate the topology (usually relative) involved.

1.5 By way of preparation for the classification and the descriptions,
we list the following results.

1. Let F be non-ruled. Then i(p) = 6 for any point p € F ([11]).

2. If p; and p, are irregular in F, then (p;, p2) C F ([1], 2.2.6).

3. Let « M F be of order two. Thena M\ F = L\U L', L # L' and
either L' C w(p) for every regular p € L or L C w(q) for every regular
g € L' ([1], 2.2.3).

4. Let&/ C a be a limit of subcurves or subarcs %7 of order two. Then
[ILNZ| # 3foreach L C « ([1],2.4.4).

5. Let palan] be a sequence of points [planes] converging to plal;
pr € ay for each A.

a) If « M Fis not of order two or « M F does not contain an isolated
point, then lim (ex N F) = a M F ([1], 2.4.3).

b) If p) is a cusp [isolated point] of ey M F for each A, then I(p) =
implies that p is cusp [isolated point or cusp] of « M Fand a« M F
L U S"implies that L N S' = {p} ([1], 2.4.6 and 2.4.9).

0

https://doi.org/10.4153/CJM-1983-006-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1983-006-9

C-NODAL SURFACES 71

6. If p is regular in F and isolated in « M F, then p is elliptic and
a = x(p) (1], 2.3.7).

7. Let./’ C F such that%/’ € &/ (r) for each 7 € &/’. Let L be a line
such that L ¢ (&/’) and for each » € &', there is an.%/, € &7 (r) with
L C («,). If &, depends continuously on 7, then .2/’ and &7, are either
compatible for all » € &/’ or incompatible for all » € .&7" ([1], 2.5.8).

8. Let 7 be regular and {7, %’} C ./ (r) such that

r € int (&) Nint (') and r € e() N e).

Then.o/ and.2/’ are incompatible and if [(r) = 0, 7 is hyperbolic ([5], 2.5).

9. Let p be regular in F, I(p) = 0. Then (i) p € E if and only if & and
&/" are compatible for {&/, .o/} C & (p) and (ii) p € H if and only if there
exist incompatible.2/ and.%&/" in. % (p) such that p € int (&) N int (")
([1], 2.5.5 and 2.5.7).

10. Every surface of order three contains a line ([7]).

11. Let G be an open region in F such that « M\ G = @ for some «,
bd (F\G) = bd (G), (bd (G)) is a plane and each r € G is regular. Then
GMNE #0 ([6],3.7).

12. Let F be non-ruled. Then H @, H and E are open and

I =1{p € HN E|l(p) = 0 and p is regular}

is nowhere dense in F ([6], 3.8 and 3.9).

In view of 12: if we wish to describe an open region X C F such that
I(r) = Oforeachr € X, we need only determineif X N E # @or X C H.
fXNE #0and X  E, then X M H @ usually follows by 1.5.5 b)
applied to bd (X).

1.6 Let F be a non-ruled surface of order three containing exactly one
irregular point v. In 1.2, we noted the possibilities for 7(v). We have
already examined the case where 7(2) is a plane ([3]) and the case where
7(v) is a pair of planes ([4] and [5]). In this paper, we assume that 7(v)
is a nondegenerate cone of order two.

We note that a cone of order two may degenerate into a line. If
7(®) = Nand NN F = {9}, we call v a peak and F a surface with a peak;
cf. {2]. We claim that these are the only non-ruled surfaces of order three
containing exactly one irregular point »; that is, if 7(v) is a line N, then
NN F = {v}.

Suppose N C F and let N C 8. From 1.2, v € L # N implies that
|IL M F| = 2. Hence either 3N\ F = N\U N’ wherev ¢ N or N F
consists of NV and an S! such that N N S' = {v}. Let p € N\{v}. Since
7w (p) exists, N C =(p) and p is irregular in 7(p) M F, the preceding
implies 7(p) N\ F = N\U N, where N\ N, = {p}. Then N, = N, for
p % g in N\{v} yields that F contains infinitely many lines. Since F is
non-ruled, this is a contradiction.
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2. C-nodal surfaces.

2.0 Let F be a surface of order three. A point v € F is a C-node if v
isirregular in F and 7(v) is a nondegenerate cone of order two with vertex
v. Fis C-nodal if F is non-ruled and has a C-node as its only irregular
point.

Henceforth F is C-nodal with the C-node v. We denote 7(v) by K.
From 1.5.1,0 < I(v) < 6.

From the definition of K, K is the common boundary of two disjoint
open regions of F. It is clear that exactly one of these regions contains a
line not meeting K. We denote this region by ext (K) and put int (K)
= P¥ext (K). Hence

P? =int (K) U K U ext (K).

Since K is of order two, any plane through » meets K in at most two
lines. We note that K is not necessarily differentiable (n.n.d.) and hence
v € aimplies thata M K is a (n.n.d.) curve of order two; that is, any line
L C ameetsa M K in at most two points but [L M K| = 1 does not imply
that L is a tangent of K.

2.1. LEMMA. Let B be a plane through v.
1. If B M K consists of a pair of lines N1 and N, then
1) (ViU N2) N\ F = {v} implies that v is the double point of 3 M F,

ii) N1 \U Ny C F implies that B8 (M F consists of three non-concurrent
lines and

i) N; C Fand N; N\ F = {v} implies that 8 (M F consists of N, and S!
such that |N, N S = 2and N; N\ S' = {v}; {1,7} € L.

2. If BM K consists of a line N, then

1) NN\ F = {v} implies that v is the cusp of 3 M F and

i1) N C Fimpliesthat BN F = N\U S' where N N S' = {v}.

3. If BM K = {v}, then v is the isolated point of B M F.

Proof. Since v € L ¢ K implies that |L M F| = 2, the assertions
1,21) and 3 are immediate.

IfBMNK =N C F, theneither N F=NUS, NNS' = {v},or
BN F=NWUN'’ N ¢ N' In the latter case, 8 = w(p) for p € N\{v} by
1.5.2 and 1.5.3. Since /(v) < 6, there isan N’ C K such that NV N\ F =
{v}. By 1 iii),

(N,NYNF=NUS

and N M S! consists of v and say ' # v. Then 7w (p') = (N, N') # 8,
a contradiction.

2.2 If v is the double pointof BN F,then N F = ¥ U, UL,
where. N (U 5) = (v}, N5 = {v, p}, p is the inflection point
of BN F, {1, s} CH(p)and.Z isa subcurve of order two. We call.¥
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the loop of 8 M F. We note that any tangent of £ \{v} meets &/, U &,
and no tangent of (&7, \U.27;)\{v} meets.% .

Ifvisthecuspof BN F,then 8N F =& U ', & N’ = (v, p},
 is the inflection point of 8N Fand {&/,7"} C. (p).

2.3LEMMA. 1. If (L\UL) K =@, then LN L' 5 0.
2.1(v) = 0,2,4o0r6.
Proof. 1. Since (L,v) Y F = L\U {v} andv ¢ L', we have LM L' = §.
2.i) Let KN F = Mand M C 8. From 2.1, 8N\ F = M U S' such
thatv € SLIf BN K = M, then M N S' = {v} and we put 8 = B, and
St=SLUHBNK # M, then M N\ S = {v, p}, v & p and we put
B8 = B, and S' = S,.
By 1.5.4 and 1.5.5, lim 8, = B, implies that
lim S, = 5.4 lim 2(S,Y) = #(S,Y) and lim e(S,!) = e(S,}).
Then lim 8, = 8, and M M S,! = {v} yield that
lim (M N i(S,)) = 0.
Letg € M\{v}. Then M M S,! = {v, ¢} and v and q are the end points

of the disjoint open segments M M (S,}) and M M e(S,'). By the
preceding,

MM (SH) CMMNiS,) foreach p € M N e(S,h).
Hence as p tends to v in M M e(S,'),
M M i(S,) Clim (M N i(S,Y)).

This is a contradiction and thus /(v) # 1.

iiLet KM F = M, \JU My \J M, I(v) = 3. By 2.1, there is a line
L;; C{(M; M;) "\ Fsuch thatv ¢ L;;,7 # jin.%;. Clearly L;s, L3 and
Ly3 are mutually disjoint.

Let p € Ms\{v}. Then

ap = (Li2p) #= (M1, M>),
ap, M K is a (n.n.d.) curve of order two and
(0p VYK) N F = {Lis N\ My, Lis N\ Ms, p}.

As Lis M (M3 \J Lis\J Las) = 0, 1(p) = 1for p € M;\{v} implies that
ap M F = L\J S'such that K M S* = {p}. Put S* = S, Since S,! and
a, M K are both curves of order two, it is clear that either S,! C int (K)
or S, C ext (K). As S,! depends continuously on p € M;\{v}, either
S,t Cint (K) forall p € Ms\{v} or S,! C ext (K) forall p € M;\{v}. It
is easy to check that this is impossible and thus [(v) = 3.

iii) Let KNF=UM,i¢€.%s5andl(v) = 5. Then

<M1,Mj>mF= MZUM]UL”

https://doi.org/10.4153/CJM-1983-006-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1983-006-9

74 TIBOR BISZTRICZKY

where v ¢ Ly, ¢ # jin %5 We note that L;; N Ly, # @ if and only if
{i,7} N {k, 1} =@andfork ¢ {1,7}, My \L;; = 0.

Since L13 N <L12, L34> = ﬂ, L13 M (le U L34) =0 1mp11es that there
is a third line L* C (Lis, L3s) M F. Clearly L* is not an L;; and L* N
Lis = ﬂ, 1 6 5’4. Fmally M5 N (L12 ) L34) = ﬂ y1€1d5 that L* N M5
# @, L* # M;and thus (M;, L*) M K = M;. This contradicts 2.1.2 ii)
and hence I(v) # 5.

2.4 THEOREM. Let F be C-nodal with the C-node v. Then F is one of the
following types: (1) I(v) = 0and 1 £ I(F) £ 3, (2) l(v) = 2and 4 < I(F)
=<5 3)Iw) =4andl(F) = 11l and (4) l(v) = 6and I(F) = 21.

Proof. (1) If I(v) = 0, then 2.3.1 implies that the lines of F are co-
planar and hence /(F) < 3. By 1.5.10, I(F) = 1.
(2) If I(v) = 2, then I(F) = 3 from 2.1. Let

KﬂF=M1UM2 and v6§L12C(M1,Mz)ﬂF.

From 2.1, any other line of F is disjoint from K and thus meets L;.. By
2.3.1, such lines are coplanar and thus /(F) < 5. For the proof that I(F)
= 4 or 5, we refer to 4.2.

B)Let KN F=\UMy,1 € .%sand l(v) = 4. Then there is a line
Ly C (M, M;)N Fsuchthatv ¢ Lyjfort #jinsand L;; M Ly, = 0
if and only if {7, j} M {k, I} = @. We note that these ten lines are the only
lines of F meeting K.

As in the proof of 2.3 iii), there is a line Lo C (L;2, L3s) M F such that
Ly K = @. Suppose L; C Fsuch that L; # Loand L; N K = @. By
2.3.1, (Lo, L;) is a plane and hence K M (L, U L;) = @ implies there is
aline Ly C (Lo, L1) M Fsuch that Ly N\ M; 5 @, 1 € ¥4 Then either
I({Ls,v)) 2 40rv € Lyand I(v) = 5, a contradiction.

@) Let KNF=\UM;1€%sandl(v) = 6. Again

<M1,M1>mF=M,;UMjUL”, ﬂeLij(’I: #j)

and L;; M Ly, # @ if and only if {7, j} M {k, I} = 0. These twenty-one
lines are the only lines of F meeting K.

Let L C Fsuch that L Y K = @. Then L N (M,;, M;) ¥ @ and
LN (M;\UM;) =@implythat LM L;; # 0,7 % jin%s. But L N Ly,
#Z 0 # LN L34, L55 C <L12, L34> A F and l((le, L34>) =3 1mply that
L is one of Lys, L34 or Lse, a contradiction.

3. Fwith [(») = 0.
3.0 Let F be C-nodal with the C-node v, [(v) = 0. We recall that
P? = int (K) U K U ext (K)

and every line meets ext (K). Let F; = int (K) M Fand F, = ext (K)
M F. Then KN F = {v} implies that F = F; U F, \U {v}.
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Letv € N C g such that N\{s} C int (K). Then 8 N K is a pair of
distinct lines V; and N, and from 2.1, v is the double pointof 8 N\ F =
£ U, U 5. Since Ny and N, are the tangents of 8N F at v, we obtain
that either.¥ C int (K) and %/, U&7, C ext (K) or¥ C ext (K) and
& Uy Cint (K). Itis well known that every line of 8 meets &/, U/,
and hence

$=BF\F‘1 and M1UM2=BHF2

3.1 THEOREM. 1. Every point of Fi1s elliptic.
2. Every line of Fis contained in F,.

Proof. Clearly 1 implies 2.

Letr € Fi. Thenr # v, l(v) = 0 and 1.5.2 imply that v ¢ =(r) and
7(r) M Kis a curve of order two. As7 € F;, Cint (K)and K N\ F = {v},
we obtain that

reci(zx(r) YK), (#(r) YK)NF =@ and I(r) =0.
It is immediate that #(r) M Fis disconnected and thus7 € E.

3.2 Since F; C E, we need only examine F, to describe F completely.
With slight modifications and F; and v identified, the examination of F,
is a reiteration of the study of ‘surfaces of order three with a peak’ in [2].

3.3 SUMMARY. Let F be C-nodal with the C-node v, l(v) = 0. Then
F = F] U {'I]} v F2

where Fy = F; \U {v}, every point of F is elliptic and one of the following
holds:

1. I(F2) = 1 and every point p € Fowithl(p) = 01s hyperbolic.

2. I(Fs) = 20r3and Fo = Fy \U F,* where L

1) Fo and Fo* are disjoint regions with 1(q) > 0 for g € Fo' (M Fy¥,

il) Fo' is open, v € Fo and every point of Fo' is hyperbolic, and

iii) Fo* is closed, contains elliptic, parabolic and hyperbolic points and
L(Fo*) = I(Fy) = I(F).

Let P? be suitably coordinatized. The surface in P? defined by
.’)C03 - (x12 + XQ2 — x02)x3 = 0

satisfies 3.3.1 with » = (0,0,0,1), line L = xy = x3 = 0 and K =
x12 4+ %22 — x0% = 0. The surface defined by

x0% + x0x,% — (x12 + x5% — xoz)xs =0

satisfies 3.3.2 withv = (0,0,0,1),lines L; = xo = x3 = 0, Ly = x0 — %3
=xy+ 22, =0, L; = x9 — x3 = x93 — 212xy = 0and K = x,% + x,?
— x0%> = 0. We refer to Figure 1 for a representation of F satisfying 3.3.2.
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FI1GURE 1

4. F with i(v) = 2.

4.0 Let F be C-nodal with C-node v, l(v) = 2and K N\ F = M, \U M,.
Then (M1, M2) M F contains a line L2, v ¢ Ly2 and (cf. the proof of 2.4)
there are at most two other lines in F, neither of which meets K. We note
that for p € Lip\K, 7(p) M K is a (n.n.d.) curve of order two meeting F
at exactly My M Lys and Ms M Lys. Therefore I(p) = 1forall p € Ly
N int (K).

4.1 LEMMA. 1. Let p € Lz N int (K). Then l(x(p)) = 1.

2. Let p € Ly2\K such that w(p) M F = L1s \J St Then p € int (K)
if and only if S* C int (K).

3. There exists a po € Lio M int (K) and a p1 € Lia M ext (K) such that
T(Po) f\ F = W(Pl) f\ F = L12.

4. Let v be the double point of BN F = £ \J 4 1\J s Then & C
int (K) if and only if o1 \J &y C ext (K) if and only if 8 M Ly C
ext (K).

Proof. 1. If I(x(p)) > 1, then l(p) = 1 and p irregular in F imply that
I(x(p)) =2.Letw(p) NF =L, \JL,p ¢ L.By1.53,L C =(p) yields
that

LCa(LieNM)YNF=M\UM;\U L,

a contradiction.
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2. This is immediate since p € L1s N\ S'and S' N K = 0.

3. Clearly 1.5.5 and I({M., M3)) = 3 imply that there exist p’ close
to say M, M L, in both L;z M int (K) and L2 N ext (K) such that
w(p') M F consists of Lz and S'. Now 1.5.5 and 2 yield 3.

4. Apply 2 and 3.

4.2 THEOREM. There exist lines Ly and Ly in F such that
(LU L)NK = 0.

Proof. Let v be the double pointof 8N\ F =¥ U/, Uy, M Ly
= {p} Cint (K). Then®/, U, C int (K) and.¥ C ext (K) by 4.1.4.
From 2.2, there exists an 7 € £\ {v} such that p € = (#) and thus p € e(¥).
Let p* € Lissuch that (p*,7) N\ K = @. Then p* € ext (K),a = (v, p*, 7)
isa plane,a M K = {9} and v is the isolated point of & M F.

Let H, and H, be the closed half-planes of 8 determined by (7, v) and
(7, p). Then (7, v) N.¥ = {#,v} and (7, p) N¥ = {7} yield that.¥, =
HiNY and.¥, = Hy N.¥ are subarcs such that

fluagg:f and $1ﬂ$2={v,r’}.

Letp € N C Bsuchthat [ NN.Y| = 2.Thenv ¢ Nand [ NN.Z | = 1,
1 € %, Since the lines of F not meeting K are coplanar by 2.3.1, we
obtain that, except for at most one plane, (L2, N) M F consists of L.
and a curve Sy! of order two such that Sy' V.Y, = NN.YL, 1 € Lo
Let NN (v, 7) = n. Clearly n € (&) and thus p € e(¥) implies that
b, n separates N N .%;, N N ¥;. Finally we note that lim N = (p, v)
implies that lim » = v and in particular lim (p*, n) = (p*, v).

Let N = (p, n) be arbitrarily close to (p, v). Since v is the isolated
point of @« M F, (p*, n) arbitrarily close to (p*, v) implies that

P* n) N\ F = {p*}.

Then [{p*, n) M Sy'| = 1 and the preceding yield that n € e(Sy!) and
P € 1(Sy!). Asp € e(Z) and |.¥ N Sy!| = 2, we obtain that

e(Z)NeSy) =90

and thus.? and Sy are incompatible by 1.5.8.
If I({L12, N)) > 1 for some N C B through p, then 4.2. Hence we may
assume thatp € N C Band [N N.¥| = 2imply that

<L12, N> f\ F = Lm U SNX.

Then the preceding and 1.5.7 yield that € 7(Sy!) for all such N. Since
p € =(7), we obtain that

(ng,f)f\F=L12U{f} or
(ng, f) f\ F = le U Sl
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where p € e(S') or I(7) > 0. Clearly, each of the first two cases contradicts
the continuity of the plane sections of F through L;; and thus I(7) > 0.
(If I(7) = 1, then either L; = Lyor Li M Ly 5 {7].)

43 Letint (K) Y F = Frand ext (K) N F = F;. Then KN F =
M, \U M,implies that

F_1=F1UM1UM2, Fz—_—FzUM[UMz,
LIUL:;,CFz, F1HF2=M1UM2 and
F=F\UF\JUM\JUM,.

By 4.1.3, there is a po € F; such that 7w(po) M F = L;; and thus
Fi\L,; consists of two open disjoint regions, say F;; and Fi,. Clearly

F1 = Fuu F12U (Fllez) and an F12 = (Fllez)U{U}

If Ly # Ly, let 221 and &, be the open half-spaces of P?* determined by
(Ly, v) and (Ls, v). We assume that K\{v} C £ and let #, N\ Fy, = Fy,
92 n Fz = Fzz. Then

bd (Foy) = M, \J M, UL, UL, and bd (Fs) = L, \J L,.
If L, = L, = L,let Fo; = F,\L and Fs; = 0. In either case,
Fy = Fo1\U Fas \U L, \JU L.
4.4 THEOREM. F\, N E # Bandv € Fi; N E,i € Ps.

Proof. Let N C K such that NN\ F = {v}. Since K is a cone of order
two, there is a plane y through N such that y M K = N and v is the
limit of a sequence of planes 8, such that v is the double point of By M F =
LA\ I 10 U A 5y for each \. Since v N Lz C ext (K), we may assume
that

By M Ly C ext (K) for each A.

Then.?y C Fu1\JU F1;\U {v} for each \ by 4.1.4. Finally as Fi; N Fi3 = 0,
we may assume that

F\ C Fiu \J {v} for each \.
From 2.1, visthecuspof y N F = &/, Uy C ext (K) U {v}. Hence
lim B = v, 1.5.5 a) and 1.5.4 imply that
lim (&7,0 Uy =4, UL, and lim&, = {v}.

We note that Fi; is a bounded open region satisfying 1.5.11. Thus for
each A, % is the boundary of an open region Fy;(¥») C Fi, satisfying
1.5.11. Since lim .\ = {9} implies that lim F;;(¥») = {v}, we obtain
thatv € F;; M E

The preceding argument is symmetric in Fy; and Fy, .
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4.5 THEOREM. 1. If Foy 5% @, then Fse M E # 0.

2. Everyr € Fyy suchthatl(r) = 01s hyperbolic.

Proof. 1. We recall that Fis # @ implies that Ly 5% Lo. If Ly M Lo M L2
= @, then Fe;\Li; clearly consists of two open, disjoint triangular regions
satisfying 1.5.11.

If |[Li N\ Ly N\ Lys| = 1, then bd (Fss) = L, \U L, yields that, for
r € Fa, l(r) = 0and (Lys, ) M Fa; consists of either the isolated point »
(hence r € E) or an S! disjoint from L;s. In the latter case, 4.1.3 and the
continuity of the plane section of F; through L, imply that there is an
7' € Fi such that

(le, T/) N F = L12 U {f’}.

2. Letr € Fy,I(r) = 0. Since (v, p, r)isa plane for p € L N int (K),
we may assume thatr € 8 = (v, p, 7); cf. the proof of 4.2. Then {r, 7} C
Z.Sincel(r) = 0and p € (), eitherr = 7or

<L12, T) f\ F = L12 U SNI
where N = (p,7), INNZ| = 2andr € ¥ NSy

If F22 = ﬂ, thenL1 = L2 = Land (ng,L>f\ F= L12UL. AS[) e ‘ll'(f),
1.5.3 implies that L N.¥ = {7} and » # 7. If Fa; 5 0, thenv € Fy\Foe
implies that Fy; M .% is the subarc containing v and bounded by L; N\.¥
and L, N.Z. Clearly

[, " YNZ]| =2 for? € (FaNZL)\|v}

and thus p € «(7) implies that 7 € Fys N\.¥ and r 7. It now readily
follows from the proof of 4.2 that ¥ and Sy! are incompatible and thus
r € H by 1.5.9.

4.6 SUMMARY. Let Fbe C-nodal with 1(v) = 2. Then
F=Fu\UF\JUFu\UFuUMVUMN\ILJL\U Ly,
where
KNF=M\J M, Ly C (M, Ma), Li\JL)NC=40

and the F;'s are open, disjoint regions described in 4.3 such that
1) Fu1, F12 and a non-empty Fay contain elliptic points,
i) everyr € Foy suchthatl(r) = 01is hyperbolic and
l]l) F22 =0 1fand only ’l:le = Lg.

We refer to Figure 2 for a representation of F. The surface in P?3
defined by

Xo(x12 + x22) + x3(xe® + x1x2) = 0

satisfies 4.6 with M; = xo = x; = 0, My = x0 = %3 = 0, L12 = %9 = X3
= 0, Ll = X3 = —2960 = 21/2(36'1 - x2), Lg = X3 = '—29(30 = 21/2(902 - xl)
and K = %o + x1x2 = 0.
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FIGURE 2

5. F with [(v) = 4 and I(F) = 11.

5.0 Let F be C-nodal with the C-node v, I{(F) = I(») + 7 = 11. Let
KNF=\UM,;,i¢c %, Then (cf. the proof of 2.4(3)) the other lines
Of F are le, L13, L14, Lg;;, L24, L34 and Lo. Since L(] N K = ﬂ, LU C
(M, M;)implies that Lo M\ L,;isa point g,;; % # jin %

We assume that the line (M, M3) N (M,, M4) C int (K) U {v}. As
K is a cone of order two, this implies that (M, M;) separates K into two
disjoint regions, one of which contains M.\{v} and the other M,\{v}.
More simply, M, M; separates M., M4 in K. Then

{po} = L13M Loy Cint (K) and
(L12 m L34) U (L14 f\ L23) C ext (K)

Let 2, and &, be the closed half-spaces of P?® determined by (M, M;)
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and (M,, M,). Then
(M, M3) N\ {(M,, M) C int (K) U {o}
implies that say
LiyN\Lyy CPy and LisN Lyy C Ps.
Then
1. 21N (L4 \J Lyg) = int (K) N (L1s\J Lyg)  and
2. Py N (Ly1a\J Lys) = int (K) N (L2 \J Ly,).

Finally L, C ext (K) yields that
3. {412, q34} C @1 and {QM, Q23} C @2-

Let 2, and 2, be the closed half-spaces of P3determined by (Lo, v) and
<L0, L13, L24>. We assume that <L(), L14, L23> C Ql. Then M], M3 sepa-
rates M,, M, in K and the continuity of the plane sections of F through
say M, imply that M, M Ly, {v} separates M, M Lys, M; M L4 and thus
<L0, L]2, L34> C Qz. Clearly <L14, L23> [<L12, L34>] decomposes Ql [QQ]
into two closed ‘‘quarter-spaces’, say £;; and £, [Z,; and Zy,]. We
assume that Z;1 N 2y, = (Lo, v) and hence 21, N\ Ly = (L3, Lay).

Finally let 2, = 2, N\ 2, {1, 4, k} €%, Then

Py = int (K) Uext (K) = U2,
implies that
F= (FNext (K) U (J(FNint () NP ), 4,5, k) S S

51Let8 C 2, 1(B) =0andi € .%, Then (v, po) C B and from 2.1,
v is the double point of

BﬂF=$ﬂUM1,ﬂUMm.

Since T(Po) N F = L13 U L24 U Lo and Lo C ext (K), ,3 N W([)o) meets
both int (K) M F and ext (K) M F. Thus

Fp Cint (K) and 45U A 25 Cext (K)

asin 4.1.4.

As (Lo, v) N L5 = {v} and (L3, L2s) N\ L = {po}, this implies that
eitherg,g C Ql and%lﬂ Udglﬁ C QQ Ol‘gﬂ C Qz and&/m Udg'ﬁ C
2,. Then continuity of 8 N F for 8 C &£, clearly yields that either
Fs C @y forallsuchp C P or s C 2, forall suchg C P,

52 LEMMA. 1. Let BN\ F = L\ J A 15U A sp (v, po) C B. Then
B C Piifandonlyif L C 2.
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2. Let ﬁl = (7.1, Po, le M L34> and 62 = (7), Po, L14 f\ L23>. Then v ’I;S
the double point of B; N\ Fand 3, N F C 2, N 2,;, {1,j} = F».

P?’OOf. 1. Sinceﬁ,ﬂ@ C int (K), <L14, L23> C Ql and <L12, L34> C Qz,
the result follows from 5.0.1 and 5.0.2.

2. Clearly v is the double point of 8, N\ F = ¥ U &/, U %, and
{q} = lef\ L34 C ﬂlimplies thatBl C@l,g C Ql andq E Ml Udz
C ;. Since w(q) = {(Lys, L34, Lo), either ¢ € Loand ¢ = q12 = ¢as is the
inflection point of &/, \U &7 or ¢ ¢ Lo and 81 M Loy C 7(q). In either
case, bd (Zy;) = (Lo, v) U (Lys, Lss) and &7, U &, a curve of order
three readily yield that.o?, \U.27y C Zs,.

By a similar argument we obtain that 8. N F C £, U Z,,.

5.3 LEMMA. Let Lo C o # (Lo, v),l(a) = 1.
1. a M F consists of Lo and a curve S, of order two.
2. Iflima = (L, L) [{(Lo, v)], then

lim St = L, U Lo}, L= {i, 5,k 1}

3. Ifa C Qll U sz, thena ﬂ ('0, po) C ’l:(Sal).
4. Ifa C 21,\J Dy, then {q13, 24} C 1(Sat).
5. Ifa C ng [Qzl], theni(Sal) contains Lo M g@l [Lo ﬂ@zl

Proof. 1. This is immediate since Lo N\ K = @ and a N M; # 0 for
1 € %4 We note thata N\ M, C S.Y, g5 € Sty @ M My and a N M;
separate a M (v, po) and {¢13} and o M Ms, « N M, separates a M
(v, po), {qa4}-

2. Since
<L”, Lk1> m F = Li]' U Lkl U L[),
(Lc,v>f’\ F=L\J {7)},‘2) ¢ Lo

and v € M, for i € &, the result follows by 1.5.4 and 1.5.5 a).

3. Leta C £, Since v ¢ Lo, 2 implies that Ly M S! = @ for « suffi-
ciently close to (Ly, v). Since S,! depends continuously on « C £, and
q13 € S.!, we obtain that g3 € Ly C e(S,!) fora C £, From the proof
of 1, it follows that

a M (@, po)y C 1(Sa).

4. Let « € 2, {4, j} = 2 From 5.2.2, v is the double point of
BNFC 2,U 2,.Hencea € Z,U 2,,implies that

aM By F) = B;MN L.
But
aN(B;,NF)=8,N(NF)=8;MN (LIS
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yields that [(8; N &) N S,!| £ 1. Thus
(W, p0) Ve CB;Na Ce(S') and  {gus gza} Ci(Sh).
5. Since
bd (Z12) = (L, Las) \J (L1gy, L2z) and
bd (Z221) = (Lis, L2s) \J (Lys, Lys),
the result follows by 4, 2 and 5.0.3.

54Letz+j =1 (mod 2),.%s = {4, 7, k, I}. Then L,; is met by M,
M, Ly, and Lo in ext (K). Let #,; and & ;;* be the closed half-spaces
of P3 determined by (M,, M;) and (L, L;;). We assume that = (¢’) C
R ,; for some ¢ € L;; Nint (K).

5.5 LEmMA. Let Ly; C v, l(y) = 1,7+ j = 1 (mod 2) and &, =
{1,7, k, 1}.

1. v M\ Fconsists of L;;and a curve S, of order two.

2. Iflimy = (M, M;) [{Lo, Ly:)], then

lim Syl = Mi U M][LO U Lkl]'
3. If y C A, then
L,-,»m (MiUMjULklULO) Ce(S.,l).

Proof. 1. This is immediate since y N M, #08 # v\ M,

2. cf. the proof of 5.3.2.

3. Lety = w(g), § € Ly M int (K). From 5.0, [(§) = 1 and thus
) =1L,y F=L;;\US;,q € Stand SN (M, \U M;) = @. Since
SitMNK =3\U (M;\J M,) and S5 and ¥ N K are both curves of order
two, we obtain that either

LU f\Syl = {q} or ‘(Li]' M int (K)) N 571| = 2.

It is easy to check that both cases occur and hence we assume that
L,;; N\ S3' = {G}, Then
0

LU C e(Syl).

Let v = (5,!) range between ¥ and (M, M;). Then S,' depending
continuously on ¥,

L,,ﬂSyl = {q} C lnt (K),
Ly Mext (K) Ce(Syh)

and 2 imply that
|(Li; Nint (K)) NS =2
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(thusy = = (¢) forg € L;;Nint (K) N S,!) and
Lij f\ ext (K) C e(S‘yl).

Finally w(¢') C % ;;forsomeq € L;,;Nint (K)andbd (Z ;) = (M, M,)
\U (Lo, Ly,) imply thaty C % ;.

Let v = (S,!) range between ¥ and (Lo, L;). Then the preceding and
v C A ,;imply thaty C X, v # 7(q) forany ¢ € L,;; M int (K) and
thus

L;;Nint (K) NS, = 0.
Then S,! depending continuously on v and 2 readily imply that either
L,-,-msyl = ﬂ or Liijoyl C Lij*r

the open segment of L;; M ext (X) bounded by Lo M L;;and Ly, M Ly,
and L;\L;* C e(S,!). Clearly, I(g) = 1 for each ¢ € L,;* and thus 3.

5.6 We recall that
F=(FNext (K))U (N (FNint (K) NP )

where . = P, M 2 and {4, 4, B} .9, In this subsection we analyse
FNint (K) and in 5.7, F N ext (K).

Let 8 C £, 1(8) = 0 and.¥, = {1, j}. From 5.1 and 5.2, v is the
double point of BN F =¥ U, UL,

ngt(K)m?,ﬂQi and
M}Udg Cext (K)ﬂylmg,.
Thus we obtain that
1. l(?’) > OfOl‘T E leﬂt (K) f'\ (.@121U<@122 U@211U?212).

Leti = 1. Then. = g Nint (K) NP, N Z,, 5.0.1 and 5.0.2 imply
that

gﬂ(LmULM):ﬂ and fﬂLH ?—‘-ﬂ #ff'\ng

As 2, = 21, U Zpand 21, N Dy = (Lysy Los), v € Zy1and p, € D1,
yield that (cf. 1.4)

L =L@, L N L, po) VL (0, L N Ly, po)
= (2uNL)VU (2:NY)

where
I2uNY =L (& N Li,v,.¥ N\ Ly) and
21N =L (L N Ly, p0,L N Lys).
Since bd (£21) = (M, M3)\J {M,, M) and Lis N Lys C ext (K) NP,
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the preceding readily implies that
2. Ff\ lrlt (K) nﬁlll = 614 Ucza

where G4 and Gs; are non-empty, open triangular regions such that
I(r) = 0for7 € Gia\J Gz, Gia N Goz = {9} and say

bd (614) CM1UM4UL14 and bd (Gza) CM2UM3UL23.

The preceding argument is symmetric in &, and &, and thus,
3. FN\int (K) 0?222 = Gn U 634

where G2 and G;4 are non-empty, open triangular regions such that
I(r) = 0forr € Gi2\J Gay, GiaMN Gy = {v} and say

bd (Glz) CM1UM2UL12 and bd (634) CM3UM4UL34.

We note that there are similar decompositions for both F M int (X)
N P1and F N int (K) N P,. Since we do not need them, we simply
let

4. Ff\ int (K) f\ (ﬁllzuﬁnl) = F

5.7 Asin 5.0, we obtain that Lo, L, and L34 [Lo, L14 and L] are either
concurrent or determine (cf. Figure 3) an open triangular region
G: [G:] in ext (K). We note that G; C &, G, satisfies 1.5.11 and hence
G:NE =0;i €L

Let G, = 0 [G: = 0] if Lo, Ly and L34 [Lo, L1s and Lo;] are concurrent
and, in any case, put

F* = (ext (K) N\ F)\(G1 Y G>).
From the proof of 5.2.2, we recall that
B:N\ (ext (K) \F) C 2, {i,j} =%

Hence 8; N\ G; C B; M ext (K) M Fand Il(r) = 0forr € G,imply that
G, C Qn and G, C th

5.8 THEOREM. F M int (K) = Glz \V 614 U 623 ) 634 U F where
1.Gyi;NVE #@andv € Gi; N E for each G;; and
2. every r € F such that l(r) = 0 is hyperbolic.

Proof. 1. cf. the proof of 4.4.
2. Let 7o € F, I(ry) = 0. By 5.6.4,

n€Piu=P:N2,;,5 = {ij}
Then v is the double point of (v, po, 70) N F = ¥ U &, U & and
{po, 70} CF Cint K)NP . NZ2D,.
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Let (v, po) C B C £, 1(8) = 0. Again v is the double point of 8 N F
= gﬁ Uﬂl,ﬂ U%ng but

gﬂcint (K)ngjmgj.
Since {7, po} =¥ NYL%,
2N 2; = (Lo, v)\J (Lo, po)

implies that e(Z) M e(¥s) = B and thus.¥ and ¥4 are incompatible

by 1.5.8.
Since {po, 7o} C¥& N Z,,, it is clear that I(r') = 0 for each 7' in the
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interior of the subarc./ C.¥ N £, bounded by p, and 7,. Let
ﬂl = <11, :8 N LOv rl>y 7, E M\{PO]

Since 3 M Ly C ext (K) and 7’ € int (K), (') = 0and 2.1 yield thatvis
the double pointof ' N\ F = ¥ U U, foreach?’. Aslim 7’ = p,
implies that lim 8’ = 8, 1.5.4 and 1.5.5 a) yield that lim ¥’ = ¥5. Then
Fs Cint (K),&¥s and & pe-incompatible and 1.5.7 imply that &’ C
int (K) and ¢’ and & are 7’-incompatible for each 7 € &\ {p,}. Hence
ro €./ C H by 1.5.9 ii).

5.9 THEOREM. Let r € F* such that l(r) = 0. Then r is hyperbolic.
Proof. Since P3 = 1 \U P,, we assume that r € &, say. Then
B = (v, por) TP,
v is the double point of 8N\ F =¥ U, UL, and
red Uty Cext (K) N\ 2,
From 5.7, we note that
BNG CH 1 JZy and BN Gy = 0.
Let a = (Lo, 7). By 5.3.1,
aMNF=LUS,!

where 7 € S,! and either « C Zys0r a C L.
l) o C 922.
Then a M (v, po) C 1(S,') by 5.3.3. Clearly

aM (v, po) Ce(1) \Je(s)

and thus if € int (&) for i € %5, then S,! and &7, satisfy 1.5.8 and
r € H.
Let 7* be the inflection point of &7, \U.2/,. Then

ANy = {v, r¥}.

If 8 = B1and G, = @, then r* = g2 = ¢34 (cf. the proof of 5.2.2) and
r* = r. Let B # B or G; # 0. Then either

[(Lo, L2, L3s) N (1 U y)| = 3
or
[(Lo, L1z, L3s) = (1 \JZ3)| = 2
and
(Lo, L2, L3s) = w(r') for some v’ € o/, U,
As., and %7, are curves of order two, this implies that both.%/, and &7,
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meet (Lo, L1a, Lss). It is easy to check that r* € &7, N ./, yields that
either 7* € Dy orr* € G1 C Dy, Thusr* # 7.
11) a C Qzl.
Then
{414, Q23} CLiN :@2 C i(Sal)
by 5.0.3 and 5.3.5. Let y1 = (L14, 7) and y2 = (Las, 7). Then
Y1 NF = L14 N S“l and Y2 NF = Lz:; U 5231

where 7 € 51,1 M Sas! by 5.5.1. We claim that either v; C Z1s0r vo C X o3
and thus either ¢4 € ¢(S14!) or g2z € e(S23!) by 5.5.3. Then 1.5.8 yields
thatr € H.
Let BN Ly = {ro and BN Ly; = {ry}, 4 # jin ¥4 Then

{714, 723} C¥ Cint (K) and {ro, 712, 734} cCH VAL,
by 5.0.1 and 5.0.2. From 5.4, 8 N %14 [8 M P »3) is the closed half-plane
of B, determined by (ris, v) and (r14, 723, 7o) [{r23, v) and (ras, 714, 70)],
containing 8 M w(r14) [8 M w(r25)]. Since {714, 723} C L, 2.2 yields that
both 8N 7 (r1s) and BN\ 7w (7r23) meet ;U 7 s and thus Z 1. N (&7, U ,)
and Xy N (', U s) are subarcs of &, \U 275 bounded by v and 7,.
Then either

%140652/1\.}%2):%24(\(%1\]‘%2) or

r 6%1\)%2 = (%Hf\ (%1U«M2))U (%23[\ (M]chyg))

C ‘%14 U %23-

Since each point of (%/; \U.95)\{v} lies on the tangent of exactly one
point of Z\{v}, ro € 8 M w(po) and po € £ imply that a subarc of &7, \U
& 5, bounded by v and o, is met by the tangents of exactly one subarc of
%, bounded by v and p,. From 5.6,

L =L (v, 114, po) I L (v, 193, po)
and hence
RN (A ) N\ Rz = {v, 10}
The preceding argument is symmetric in &, and £,.
5.10 SUMMARY. Let F be a C-nodal surface satisfying 5.0. Then
F=Gi:\UG\UGyu\UGyu\ UG UG U FU F*

where G;, G\, I and F* are described in 5.6 and 5.7, every r € F\U F*
such that I(r) = 0 1is hyperbolic,v € G;; N\ E and G\ N\ E # @ if Gy %~ 0.

The surface in P? defined by

xo(x12 - xzz) + xs(x02 + x1x2) =0
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satisfies 5.10 with M, =xo =%, =0, M, =xp = x2 = 0, M3 = xy
=x1+x2==0,M4 —=—x0+x1=x1+x2=0,}512 = X9 = X3

—

I
ocoooxr

Liz=xo—%1=%—% +x3=0,Lis =xo+ %1 =% — X2 — X3
Loz =%0+x2=%1 — %2 — %3 =0,L0s =%¢9— X3 =%1 — X2+ 2x3 =0,
Lyu=x1+2=%x3=0,Lo=x; —x2 = x3 =0and K = x¢® + x1%2 =

6. Fwith [(v) = 6and /(F) = 21.Let A = ¢ + j (mod 6), ¢ # j in .
Then X € Fsand ¥ = {1,7 + 1,...,7 + 5}. For the sake of generality,
we also assume that.%s = {1, 7, &, I, m, n}.

6.0 Let F be C-nodal with the C-node v, I(F) = I(v) + 15 = 21. Let
KNF=\UM,1¢ % Theother fifteen lines of Fare L;;,7 # jin s,
with the properties listed in the proof of 2.4 (4). We note that L;; C «a
and I(a) = 3 imply thatais (M, M;), (Li1, L)y {Limy Lin) o (Lin, Lin)-

We label the lines of F through v cyclically; that is, M;, M, separates
(cf. 5.0) M, from each of M 3, M sand M5, 7 € ¥ Then

1. no line of F meets int (K) M L; i1,

2. exactly L1, 443, Lig1,i04 and Ly 45 meet int (K) M L;, ;40 and

3. exactly Li+1'1+4, L1+1,i+5, Li+2,i+4 and L,-+2_i+5 meet int (K) N Li,i+3-

6.1 In this subsection, we determine the configuration of the twenty-one
lines of F.

Let a be a plane through M, 1 € %. From 2.1, eithera N K = M or
a = 7(p) for some p € M\{v}. Since w(p) depends continuously on
p € M \{v} and the lines of F through v are labelled cyclically, we obtain
that M \{v} meets L; ;1» in the sequence

1. Li,i+ly Li,i+2y Li,1+31 Li,i+4y Lz‘,i+5;

thatis, M; M L;, M; M L; . separates M; M\ L1, {v}.

We can determine (as in 5.0) for any L, the separation of the planes a
through L;; with I(a) = 3. For example, (¢, j) = (1, 4) implies that
<M1, M4>, <L25, Lse) separates <L23, L55>, <L26, L35>.

Finally we wish to determine the sequence in which L,; meets the lines
of F. Since

Ly = L1+4.(i+4)+2 and L5 = Livs (4541,

we need only consider the intersection points of L; 11, Ls, 42 and Ly, 43,
1 € ¥¢. We note that it is not always possible to determine a precise
sequence and in such cases we indicate the uncertainty by (). From 6.0,
we obtain that lines of F meet

2. Ly 441 in the sequence

Mt.M1+1; Li+2,i+3y Li+2,i+4y (Li+3,i+4y Li+2,i+5)y Li+3,i+5y Li+4,i+5;
3. L, 42 in the sequence

M{y Li+l.i+5) Li+l,i+4y Li+l,i+3r Mi+21 Li+3,i+4r Li+3,i+5y Li+4,i+5;
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4. L; 143 in the sequence
Mi, Li+1,i+51 (L1+1,i+4v L1+2.i+5)1 Li+2.i+47 Mt+3y (Li+1.i+29 Li+4.1+5)-

We observe that as each uncertainty involves only a pair of points, it
does not affect the configuration; cf. Figure 4.

6 5

FIGURE 4
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6.2 By 6.0.3 and 6.1.4, L4, Lss and Lsg are either concurrent or deter-
mine an open triangular region Go in int (K) M F. It is easy to check that
a non-empty Gy satisfies 1.5.11 and hence contains elliptic points.

If Gy = 0,let A = L1, M Lys M Lyg = {po}. If Go = 0,let A = bd (Go)
and po € Go. Let (v, po) C B, 1(8) = 0. Then p, € int (K) and 2.1 yield
that v is the double pointof 3N\ F = ¥ U, UL ».

If A = {po}, then clearly p, is the inflection point of 8 N F, po € &,
U &5 Cint (K) (cf. 3.0) and.¥ C ext (K).If A = bd (Gy), then

PO € Go and A C int (K) N <L14y L25y L36>

imply that either |8 M A] = 3or 8 M A = {p, ¢} where p # g and
(Ly4y Lgs, Lss) is either w(p) or w(q). Since ¥ is of order two, either case
implies that

po €A UL, Cint (K) and ¥ C ext (K).

In view of the preceding and for the sake of simplicity, we assume in
our arguments that A = {po}.

6.3 LEMMA. Let (v, po) C B, I(8) = 0. Then v is the double point of
BNF=YS Ut JA,y, py e JUZy Cint (K)and¥L C ext (K).

6.4 Let &, be the closed half-space of P? determined by (M1, Mi14)
and (M s, M5) such that

<M1M1+3>m&@t = (”;P())v 1€

Then P8 = 2, U P, U P;and int (P,) Nint () = Bfori #=j.
Let Z,and # * be the closed half-spaces of P3 determined by

a0 = (L, Los, Lyg) and (M, Mi3), 1 € Fs.

Let 8 C #, I(8) = 0 and i € %, Then v is the double point of
BN F =% U UL s, pyis the inflection point of &, U.o7, C int (K)
and.¥ C ext (K) by 6.3. Since (v, po) supports both.¥ and.o7, \U.%/, at
v, (v, po) cuts &, U &, at po (cf. [1],1.3.1) and ay N.&¥ = @, we obtain
that either i) &/, Uy, C #,and¥ C R *orii) ULy, C R ,*and
L C A, j €S The continuity of 8 N F for 8 C £, implies that
either i) holds for all such 8 or ii) holds for all such 8. Let

l.dludgcﬁi and gc%,*,z6y3
Then by the preceding,
2.2 Nint (K)YNFCR;, and P, Next (KYNFCRX*icLs.

We now examine the relationship among &, #; and & ;*,j € ¥ 5\{i}.
Let L C agsuch that LM K = @and |[L N F| = 3. Then I({L, v)) = 0,
v is the isolated point of (L, v) N\ F = F' U {9} and F' C ext (K). We

https://doi.org/10.4153/CJM-1983-006-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1983-006-9

92 TIBOR BISZTRICZKY

note that
Ft = (P, N\FY\U (PN F) U (s N\ ),
P.NP,NF CL

and L cuts F! at each point of intersection. By 2, &, N\ F! C Z ;* and
thus

PNF CR,

Then by ii),
3.2, Nint (KYNFCA#* and
P.Next KYNFCR, jecL\il

As in 6.1, we note that ao, (M; My 3) separates (Lir1,ip2, Liys, 145),
(Lit1.i45 Liya,144). From the definition of £, we observe that

4. @i M (Li+1,1+2 \ Li+4.i+5) = Ht_(_K—) M (Li+l,i+2 v Lt+4.t+5)-
Then 8 M L;; # @ and 2 imply that
5. (Liy1.ev2) Ligsa, i35y C A, and
(L1, i45) Lio,iva) CR ¥, 1€ L

Let Z,1 and X1 [# n* and X ;»*] be the closed quarter-spaces of
R (X *] determined by (L1, i2) Livs,irs) [{Lir1, 05 Live,ira)], € La
We assume that

RuaNRu* = (Miy Miyys) and BN\ Hp* =a0, 16Ls

Then 6.1.1 implies that iii) int (#Z,4) M M, is an open line-segment,
bounded by v and M; M L; ;+1, and not intersected by any other line of F;
j€L\i, 1+ 3} and 1 € ¥,

Finally, let £; and £ ;* be the closed half-spaces of P3 determined by
(Mj, M7'+1> and <Mj, Mj+5> such that

DN (M2 \J Mys\J M) = {v}, j€Ps.

6.5 LEMMA. LetLi,,-.,.g C o, l(a) = land1 € yg.

1. a M Fconsists of L, 13 and a curve S,* of order two.

2. If lim o = (Ljy, L) (M Miys)], then im S, = Ly \J Ly,
(MU M3, % = {4,714+ 3,7, &k, I, m}.

3. Ifa C R, then L s M int (K) C1(Sa).

4. Ifa C R o then Ly 3N int (K) C e(Sat).

5. If o C A w*, then L3 N ext (K) C 1(S.t) and po € e(S.Y).

6. Ifa C A n* then L; 13 M ext (K) C e(Ss!) and po € 1(Sy?).

Proof. 1 and 2 are immediate. It is easy to check that S,! Y K = «
N (M1+1 VY M1+2 V) Mi+4 U Mi+5)1 2, and 6.1.4 1mply 3 to 6.
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6.6 LEMMA. Let M; C v C £, l(y) = landj € S Then v N F
consists of My and a curve S, of order two, v € M; M S, and
M;N Ly Ce(Sy), k€FL6\}

Proof. Clearly y YK = M;ory N\ K = M;\JU N where NN K = {v}
and thusy N\ F = M,;\U S, from 2.1. We note that y N\ K = M, yields
that M; N\ St = {v} and M; C e(S,}).

Since K is a (n.n.d.) cone, there exist planes v; and v: in £, such that
the closest subspace £,/ C Z,, bounded by v; and v, contains all y
with 'yﬂK = Mj. If Y1 = Y2 then le = Yi1.

Let v tend to vi[vy2] in 2\ <Z,. Then

lim S,! = S,.1[Sy,!] and lim (M, N S,!) = {v}.

Thus M\{v} C e(Sy,!) N e(S,,') implies that M; N Ly C e(S,!) for
v sufficiently close to vi[y2] and & € #6\{j}. Since S,' depends continu-
ouslyon vy, M; N L,  S,!implies the lemma.

6.7 Let 1 € ¥3and ¥ * = F6\{1,7 + 3}. From 6.4.2,
P.Nint EYNFCHi=RuI X
and thus
P, Nint (K) N\ F = F/ UF,

where
Fi'=‘@im%11mint(K)mF and
Fi=2,NA2Nint (K) N F.
Clearly both F/ and F; are non-empty. From 6.1 and 6.4,
bd (F,) = (ﬁl M (L1002 \J Ligs,iy5))
U (int (K) N (L1, 604\ Liye, i45))
U @R (Y M)), jeL&
and
bd (F!) = (Z: N\ (Lig1,i02\J Liya,irs)) I (BN (U My)),
JEL A
From 6.0.1 and 6.4. iii), the six line segments in bd (F,") determine two
triangles with the common point v such that
int (Fil) = Gi v Gil,
G;and G/ are open triangular regions, say
bd (Gi) = ((@i N Li+l,i+2) U (%il N (MH—I U Mi+2))v
bd (Gi') = (‘@i M Li+4,i+5) (¥ (%“ M (M1+4 U Mi+5)) and
G:N G/ = {v}.
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6.8 THEOREM. For i € ¥,
P.Nint K)N\F=G;, UG/ \UF,

where
1.GGNE #0 #G/ NEandv € (GiNE) N (G/ NE) and
2. everyr € Fysuchthatl(r) = 01s hyperbolic.

Proof. 1. Letr € G;\JU G/ and (v, r) C 4. Clearly both G, and G/
satisfy 1.5.11 and thus I(r) = [(8) = 0. We choose 6 so that

8 M (Lipr,42 Y Lija,i5) Cext (K).

Then r € int (K) and 2.1 imply that v is the double point of § N F
=YV, U and bd (G;) U bd (G/) C int (K) implies that

5N (bd (G5) U bd (G)) = {v}.

Since every line of  meets.%/; \U.2/,, we obtain that
r e CG UG U (o).

We now argue as in the proof of 4.4.

2. Letr € Fy,I(r) = 0. Thenr € X2 and 6.5.4 imply that po € e(S,?),
a = (L s 7). Let 8 = (v, po, ). Then I(r) = 0 and 6.3 yield that v is
the double pointof BN F =¥ U/, UL yand r € &/, U ;. Since
L NAy = {v, po}, r €, say. LetZy C ., be a subarc such that
r € int (1), po € ' and S,) Ny = {r}. As, is of order two,

po € i 1\{po}) Ci(Y).

It is immediate that r € e(%/i') M e(S,!) and thus » N H by 1.5.8.
We refer to Figure 5 for a representation of

int ) \NF=\U (G, UG/ UF), i€

6.9 Henceforth, we assume thati € 3 = {4,7, k},7 =1+ 1 (mod 3)
and 2 = 7 4+ 2 (mod 3). As in 6.2, 6.0.3 and 6.1.4 imply that L, .3,
Liy1,142 and L4 445 are either concurrent or determine an open, tri-
angular region G;* C ext (K) M F satisfying 1.5.11. In the former case,
we set Gt* = 0.

From 6.4, L; ;13 C?, N\ P;and thusG* C P;\UPrand G*N P,

= {J since

(Livt,i0n Liga,ps) CENE X G C Ry and GFNAR* =0,
Finally

PNext KYNFCRA*=R*IRp* and a¢ C A 2X\X n*
imply that G;*\U Gi* C X »*.
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FIGURE 5

From 6.4, 2 and 3,
P.Next KYNFCR*NR,N R,
Let
F*=P. N (B IR\ B J 2,U D) Next (B) N F
and

F,-=(@,~ﬂ(ﬂn*f\%ﬂm%mmgi*ngﬂ.g*)f\ext(K)ﬂF.
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Then
@,f\ext(K)f\F=F1*UFi and
SEE)NF=U (FFUFY), ics

6.10 THEOREM. For i € s, everyr € F* such thatl(r) = 01is hyperbolic

Proof. Let r € F* I(r) = 0and 8 = (v, po, 7). Then v is the double
pointof SN F =L UA, ULy, po € UL, Cint (K),r € & C
ext (K) and po € e(&).

If?’ € %“*Uﬂjlug?kl, then

po € 1(S'(Li,u4s, 7)) \J 1S (L, 5480 7)) \J 1(S (L k43, 7))

by 6.5, 5 and 3. As in the proof of 6.8.2, po € (%) implies that r € H.
Ifr e %il*U@jIU%kl, then

r € !%i2* N (QQ U Qi+3).
From 6.6.5 and 6.6,
Ly s M (MY M) Ci(S'(Ly,igs 7))

and

MO\ Liig Ce(SH (M, 7)) or Mg M Lyips Ce(SH(Miys, 7).
Then

r @ e(S*(Li, i3 7)) M e(SH(My 1))

or

r € e(S" (L, 7)) M e(S"(Miys, 7)),

and 7 € H by 1.5.8.
Since G* \U G* # @ implies that (G;*\U G*) N E # 0,

(Gj* U Gk*) f\ Fi* = .

6.11 Letr € Z?;Next (K) N\ F,I(r) = 0and 8 = (v, po, 7). Then v is
the double point of 8 N\ F = Ly U, UL, and

7€$5=Bm%1*m%]n%kmext(K)nF.

Let 8N L, be the point 7,,,, {m, n} C.Fe Thenls CRF*NR; N\ X,
and 6.4 imply that

T ib1, 145 ¥ it2, 44 Tit2,i43 (= 7’j+1,1+2)y Vi, i4+5y Vitdyi4dy Vi o4l

are the only 7,, in %5 and

1. {Po} = <ri+1,i+5y Ti+2,i+4> N <7'i,i+5, 7’i+2,z~+3> M (7’1,1+11 7’i+3,i+4)-
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We note that 7, = ry, if {m, n} N {)\, u} # @ and from the definition of
P, there exists a 8* C £ ;such that 1(8*) = 0 and

_ I
Vitl, 145 = Vit2,i44 = 77

Let 7., # ny in%s. We denote by £s(m, n; \, u) the subarc of £\ {v}
bounded by 7,,, and 7\,. Hence v ¢ Zs(m, n; A\, u). From 1 and 7* = 71,45
= 712,144, We obtain that

2.1 € L, i+ 51+ 2,0 +3)NLpuli, i+ 1;1+ 3,7+ 4).
Let » € F;. Then
r € RFNRHppN\NRio N\ 2L F*N D5,
Since bd (Z 2*) = a0 \J (Lit1,145 Live,ixa), 7 € X 2* implies that
B.r e LG+ 1,i4+ 51+ 2,7+ 4).
Similarly r € & ;2 N\ Xy implies that
4.7 € Lsli, i+ 504+ 2,i+3) NLali,i+ 1;4+ 3,4+ 4).

From the definition of £ ;* and £, we obtain that 8 N\ K C 2%,
2 * N %y is the subarc of £, bounded by 7, 411 and 7,45, containing
v and

2, NYs =L, 1+ 1;4,1+ 5).
Similarly
D NLy = Lo+ 2,0+ 3:4+ 3,4 + 4).
Hence
5.7 Le(l i+ 154,14+ 5) UL%(GE + 2,1+ 34+ 3,1 + 4).
Finally, the cyclical labelling in 6.0 implies that
6. 7ip1.005 € Lp(4, 1+ 1;4,74+ 5) and
Povoivs € Lp(t + 2,14 3,14 3,1+ 4).
The preceding readily yields that

r €L, i+ 514+ 2,1+3) CLG+ 1,0+ 51+2,i+4)
CZs(t,i+ 1,1+ 3,1+ 4)
or
r €L, i+ 1;i+3,i+4) CEi+ 1,0+ 514+ 2,1+ 4)
CLs(, i+ 5,1+ 2,1+ 3).
More precisely, 7, and r € F, are contained in Z4\{v] C £,in the
sequence

7. Viitly Vitd,i45y Vi, 4450 ¥y Vit 2, i43y V142,044 ¥ i4+3, 144
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or

8 T itsy Vi1, 450 T i41y 1y Viks, by P42, 044 T2, 143
6.12 THEOREM. 2 ;N (G*\U Gy*) = {r € F|l(r) = 0}, %5 = {1, ], k}.
Proof. From 6.9 and 6.10,

PN (G*\UGX) C{r € Fli(r) = 0}.
Let? € I, 1(#') = 0and 8’ = (v, po, 7). Then v is the double point of

BNF=%"Ud/ UL, and the sequence in L'\{v} is say 6.11.7:

Q) Ti, bl ikl ek Ti,ids 7o Vit 6k8) T2, iy T i3, ik
If 2, N\ G* =@, then

Li s N Liys,ips  int () and

Tii4s 7 Tipa, s for all B C 2, such that [(8) = 0.

Since {74,145, 7ip2,043) CL' (¢ + 1,7+ 5,4+ 2,7 + 4), 6.11.2 and the
continuity of &5 for § C &, imply that this is a contradiction.

Let7 € &, N G*and B = (v, po, 7). Again, v is the double point of
BNF=%5Ux,U, Then I(r) = 0 for

r€ G G* CF, and
bd (G*) C Lit1,i04\Y Liirs \J Ly igs
imply that the sequence in Z5\{v} is 6.11.7:
D) 74 b1y Pit1,i45r T4, i450 Py P ik2,i43) “it2,i4dy 7 i43, i4de

By the continuity of £ for 8 C £, a) and b) imply that 7’ € G,*.
From 6.12,

G*\UG* UGy C F,U F, U F.
It is immediate that #; C F/*if int (¥;) = @ and thus
ext KYNF=VU(G*UF*, 1%,
6.13 SUMMARY. Let F be a C-nodal surface satisfying 6.0. Then
where
1. Go,G;, G/, G* F;and F* aredefined in 6.2, 6.7 and 6.9,
2. everyr € F;\J F;* suchthatl(r) = 01s hyperbolic,

B.vEGNEIG #0and G = G,or G/, and
4. GNE #0if G #0and G = Gyor G;*.

We refer to Figure 6 for a representation of a C-nodal surface with
twenty-one lines. The surface in P? defined by

xo(4x1 + x2) (%1 + x2) + x3(x0% + x1x2) = 0
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FIGURE 6

satisfies 6.13 with M, = x¢ = x1 = 0, M2 = x,
=%+ %1 =0, My = %1 + %2 = %0 + %2 =
+2x1=0,MsE4x1+x2=
+ x; =401 + x2 — x3 =0, Ly =

LlsExo+2x1=2x1+2x2—x3=0,l,16Ex0—2x1=
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xo——2x1=0,L125x0=x3=0,L13Exo
= xy — x; = 421 + %3 + x3 = 0,
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+x3=0,Lo3 =x0— %2 =4w1 + %2+ x3 =0, Loy = %0 + %2 = 41
+x2—x3=0,L2552x0~x2=2x1+2x2+x3=0,L26E2x0+x2
=2x1+2x2——x3=0,L34Ex1+x2=x3=0,L35Ex3+9xo=3xo
+ 2x; — %y = 0, Lgg = %9 + %3 = %9 + 21 + %2 = 0, Lys = %0 + %3
= %9 — 2% — %2 = 0, Ly = x3 + 9% = 3x0 — 2%y + x2 = 0, Lss = 4x;
+ x2 = x3 = 0and K = x0? + x1x2 = 0.

REFERENCES

. T. Bisztriczky, Surfaces of order three with a peak. I, J. of Geometry 11 (1978), 55-83.

Surfaces of order three with a peak. II, J. of Geometry 11 (1978), 110-138.

Uniplanar surfaces of order three, Geometriae Dedicata 8 (1979), 259-277.

Biplanar surfaces of order three, Can. J. Math. 31 (1979), 396-418.

Biplanar surfaces of order three. II, Can. J. Math. 32 (1980), 839-866.

On surfaces of order three, Can. Math. Bull. 22 (1979), 351-355.

On the lines of a surface of order three, Math. Ann. 243 (1979), 191-195.

. O. Haupt and H. Kiinneth, Geometrische Ordnungen (Springer, Berlin, Heidelberg,
New York, 1967).

9. A. Marchaud, Sur les surfaces du troisiéme ordre de la géométrie finie, J. Math. Pure

Appl. 18 (1939), 323-362.

R

10. Sur les propriétés différentielles du premier ordre des surfaces simples de Jordan
et quelques applications, Ann. Ec. Norm. Sup. 63 (1947), 81-108.

11. Sur les courbes et surfaces du troisiéme ordre en géométrie finie, Bull. Cl. Sci.
Acad. Roy. Belgique 49 (1963), 555-575.

Unaversity of Calgary,

Calgary, Alberta

https://doi.org/10.4153/CJM-1983-006-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1983-006-9

