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Energy and nitrogen intake, expenditure and retention at 32° in
growing fowl given diets with a wide range of energy and protein
contents

BY M.G. MACLEOD
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Midlothian EH25 9PS

(Received 9 February 1989 — Accepted 7 May 1991)

Heat production (HP) and the intake and retention of energy and nitrogen were measured in growing
broiler fowl kept at 32° and given diets with metabolizable energy contents from 8 to 15 MJ/kg and crude
protein (N x6:25; CP) contents of 130 and 210 g/kg. The temperature of 32° was chosen for
comparison with earlier measurements at 20° to minimize heat produced for the maintenance of body
temperature. The effects of diet composition were observed when the same birds were taken from 20 to
32°. The tendency for energy intake to increase with dietary energy concentration was less at 32 than
at 20°. The lower heat increments measured for the high-fat diets did not, therefore, confer an increased
ability to sustain higher energy intake at 32°. HP was about 17 % lower at 32 than at 20°; the change
in HP between 20 and 32° was not significantly influenced by diet composition. The absence of significant
effects of diet composition on HP, combined with the significant trend in energy intake, produced
significant differences (related both to dietary energy and dietary protein concentrations) in total energy
retention and in the partition of retained energy between protein and fat. As at 20°, variation in energy
retention and in the composition of retained energy were the main responses to variation in dietary CP
concentration and energy intake; a significantly higher energy cost of unit protein accretion on the low-
CP diets was insufficient to produce an elevation in total HP because the higher unit energy cost was
balanced by a lower absolute rate of protein accretion.

Energy metabolism: Nitrogen metabolism: Environmental temperature: Fowl

The metabolic rate and energy intake of the growing fowl decrease almost linearly over a
wide range as ambient temperature increases, without firm evidence of a zone of minimal
metabolic rate below 35°. This is true of both acclimated and unacclimated birds, whether
fed or fasted (Farrell & Swain, 1977 a, b). In a previous experiment (MacLeod, 1990), the
energy metabolism responses of chickens, kept at 20°, to a wide range of dietary energy
concentrations coupled with two widely differing dietary protein concentrations to produce
an extreme range of protein:energy ratios were investigated. Because of the effects of
ambient temperature on energy expenditure and requirements, however, it is predictable
that responses of heat production (HP) and body composition to dietary protein:energy
ratio will also be sensitive to temperature. The birds previously kept at 20° were, therefore,
studied also at 32° on the same diets. Direct statistical comparisons of 20 and 32° means
must, therefore, be viewed with caution, since the birds were slightly older when exposed
to 32° and had been exposed to the diets and experimental conditions for a longer period.
A formal statistical comparison of the effects of diet is possible, however, between the
within-bird changes produced by the increase in temperature from 20 to 32°.

The three main questions to be investigated by study at 32° were: (1) do the lower heat
increments found at 20° for the high-fat diets alleviate the reduction of food intake
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produced by temperature increase? The basis of this hypothesis is that there should be less
metabolic heat for the bird to dissipate per unit food energy consumed; (2) if relative
hyperphagia occurs, as at 20°, is there any evidence for the existence of regulatory diet-
induced thermogenesis? It is probable that the expression of such a response would be
modified by ambient temperature; (3) how is the partition of body energy deposition
between fat and protein affected by environmentally-induced changes in food intake and
HP?

MATERIALS AND METHODS

The experiment immediately followed that of MacLeod (1990), using the same birds and
diets. Many of the procedures were unchanged.

Three target metabolizable energy (ME) concentrations (8, 13 and 15 MJ/kg) were
formulated at each of two crude protein (nitrogen x 6:25; CP) concentrations (130 and
210 g/kg) (see Tables 1 and 2 of MacLeod, 1990). For each CP concentration there were
two diets at 8 MJ/kg, which differed in that one had only cellulose (of wood origin; CEPO,
Sweden) as a diluent, while the other had a mixture of cellulose with mineral sand; this
comparison was to test for limitation of intake by volume. At each CP concentration, there
were also two diets at 13 MJ/kg, which differed in whether the energy was added to the base
diet as starch or as maize oil. The remaining diet at each CP concentration (15 MJ/kg) was
formulated by adding 200 g maize oil/kg to the base mix.

Temperature treatments

One hundred female broiler chicks from a commercial line were fed ad lib. from 21 d old on
one of the ten diets described previously. They were maintained, in pairs, at 20° until 36 d
of age (MacLeod, 1990), when ambient temperature was acutely increased to 32°. Energy
and N intakes and losses were measured in paired birds from day 4 to day 6 at 32°. Fasting
heat production (HP,) and endogenous faecal and urinary energy and N losses were
measured on day 8 after an initial day of fasting. The lighting pattern was 23 h light-1 h
dark, giving an approximation to a commercial lighting cycle.

Experimental design and statistical analysis
The experiment was performed as a randomized block design with five time blocks. The ten
diets were assigned randomly within each block. There were, therefore, five replicates of
each diet. The total of 100 birds gave ten (as five pairs) on each diet. The main between-
diet comparison was of the within-bird changes produced by the increase in temperature
from 20 to 32°. The 32° means were also compared. Both analyses were by two-way analysis
of variance.
Energy and N metabolism measurements

HP was measured by means of indirect calorimetry. Daily excreta collections were made
over 3 d during feeding and over the second day of fasting. Freeze-dried food and excreta
samples were analysed for energy and N. Details of methods and of calculation of true
metabolizable energy (TME), total energy retention (R,), N retention (R,), energy retained
as CP (R, ,), energy retained as fat (R, ) and fat retention were given by MacLeod (1990).

RESULTS AND DISCUSSION
Intakes
As at 20° (MacLeod, 1990) there was a significant effect of dietary energy concentration on
TME intake (I,,,) (P < 0:001), although there was less of a tendency at 32° for I, to
increase with energy concentration (Table 1) (the gradient of the relationship between
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daily energy intake and dietary TME concentration at 32° was about 50 kJ per bird for
every MJ/kg increase in TME compared with 80 kJ per bird for every MJ/kg at 20°). This
led to a significant (P < 0-001) effect of dietary energy concentration on the decrease in
intake between 20 and 32°. There were strong correlations between decrease in intake (1.,
20° — Iy 32°) and both Ip,q, 20° (r0-769; df34; P < 0:001) and dietary energy
metabolizability (L. z/1,, where I is gross energy intake) measured at 20° (r 0-575; df 34;
P < 0-001). An increase in metabolizability of L1 and H1 (the two highest-fibre diets) at 32°
contributed to this effect. The cause of the increased metabolizability is not known.
Contrary to the hypothesis (see p. 195) that the lower heat increment of a high-fat diet would
permit greater intake at high temperatures, the tendency for high fat content to increase
energy intake was, therefore, less at 32 than at 20°. There was no indication of higher
energy intake on added-fat diets L4 and H4 than on the iso-energetic added-carbohydrate
diets L3 and H3. The high energetic efficiency of fat deposition indicated by a low heat
increment (Tasaki & Kushima, 1979) did not, therefore, give the hypothesized benefits at
32°. Perception by the bird of the absolute intake of energy, therefore, seems to have been
more important, in terms of control, than the heat increment associated with its
metabolism. There was a significant effect of protein concentration on food intake at 32°
which did not occur at 20°, but this was not associated with a difference in efficiency of
utilization (k) or the complementary heat increment.

As at 20°, control of energy intake took priority over control of N intake. In relative
terms, therefore N intake decreased on both dietary CP levels by about the same amount
(25%) as the decrease in energy intake between temperatures. N intake (Table 6), therefore,
decreased by a significantly greater (P < 0-001) absolute amount on the high-protein diets.

The food intake results give support to experiments which have failed to show significant
advantages of a high-fat diet in terms of enhanced heat tolerance or have shown that a high-
fat diet fed at high ambient temperatures confers no food intake advantage beyond that
found in cooler conditions (Persons et al. 1967; Kubena et al. 1972, 1973 ; Dale & Fuller,
1979).

Energy expenditure

There was no significant effect of diet treatment on HP when the effect of the greater body-
weight of the birds on the high-protein diets was removed by scaling on kg body-weight®?®
(Table 2). HP was 17% lower at 32 than at 20°; the difference between 20 and 32°
measurements was not significantly affected by either dietary energy or dietary protein
(Table 2). HP, and the differences between HP, at 20 and 32° were also unaffected by diet,
but HP, decreased proportionally more (30 %) than fed HP. This indicated a greater heat
increment at 32°, which led to a significant (P < 0-05) decrease in k for maintenance and
growth (k,, ) at 32° (Table 3). Unlike the case at 20°, maintenance energy requirement was
significantly (P < 0-001) affected by dietary protein content, being about 8 % greater on the
higher-protein diets. Despite this, there was no significant dietary effect on the 20-32°
change in maintenance requirement (Table 3).

The range of I, at 32° was 1-4-2-4 times [, at maintenance (a 1-7-fold increase, as
at 20°; MacLeod, 1990). As at 20°, however, neither the large range of intakes as functions
of maintenance energy requirement nor the large differences in dietary CP, stimulated a
response in HP which could be interpreted as regulatory. Even when the possible masking
effect of cold-induced thermogenesis was reduced by elevating ambient temperature from
20 to 32°, there was, therefore, no indication of regulatory diet-induced thermogenesis.
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The absence of significant diet composition effects on HP, combined with significant effects
on 1., . resulted in significant differences in R, related both to dietary energy and CP
(P < 0-001) (Table 4). Changes in retention between 32 and 20° were also significantly
influenced by both dietary energy (P < 0-01) and CP (P < 0-05); R, from L diets decreased
by 32% and R, from H diets by 46 %. There was also a significant interaction between
energy and CP. The greater part of the reduction in R, was in the form of fat. Fat
deposition decreased by 37 % on the L diets and 60% on the H diets between 20 and 32°.
The mean proportion of total energy retained as fat was 0-53 at 32° compared with 0-61 at
20°. Protein energy retention decreased by 19 and 28% on L and H diets respectively
between 20 and 32°. These decreases were of similar magnitude to those measured in TME
and N intakes. The larger decreases in R, as fat occurred because HP at 32° decreased less
than [, while protein deposition rate decreased in proportion to I;,. HP was, therefore,
sustained at the expense of fat deposition. (If HP and I, had decreased at the same rate
while protein deposition as a fraction of CP intake had remained constant, no change in
composition of body energy gain would have resulted. If HP had decreased more rapidly
than I, while protein deposition had been maintained, the birds would have become fatter
at 32°. Any change in gross efficiency of N retention as temperature increased would also
influence composition of gain.)

Gross TME retention efficiencies at 32° and the 20-32° differences were significantly
affected by both CP and energy characteristics of the diet; retention was about 20% lower
on the H diets than on the L diets {P < 0-05).

Multiple regression analysis was used, as in MacLeod (1990), to compare the partial
energetic efficiencies and costs of protein (k, and 1/k, respectively) and fat (k, and 1/k,
respectively) synthesis. Regressions were calculated for all five L diets, all five H diets and
for all ten diets combined. The equations are shown, with coefficients equal to 1/k, and
1/k,. respectively. Standard errors of coefficients and constants are in parentheses next to
the corresponding mean. The proportion of variation accounted for by the regression (#2)
appears in parentheses after each equation:

L diets (df 24): I, = 410 (SE 16:5)+2:47 R, , (SE 0-24) +0-91 R, ,. (SE 0:007) (2 0-99),
H diets (df 24): Ly, = 417 (S8 18:5)+ 199 R,, , (£ 0-12) 4092 R, , (SE 0:07) (* 0:99),
all diets (df 49): I, = 453 (SE 114)+2:06 R, ,, (SE 0:02)+096 R, , (SE 0:04) (> 0-99).

k, was, therefore, 0-40 (i.e. 1/2-47) on low-protein diets and 0-50 on high-protein diets;
combining both sets of diets gave 0-49. k, was greater than 1 in all cases, possibly for the
reasons given by Roux et al. (1976) and mentioned by MacLeod (1990). The energy cost
of protein deposition was significantly higher on the low-protein diets, reinforcing the
statistically insignificant trend at 20° (MacLeod, 1990) and agreeing with the results of
Coyer et al. (1987). The higher energy cost of unit protein accretion on the L diets, although
insufficient to produce a rise in total HP, would help to account for the similarity between
k.., values on the L and H diets at both 20 and 32°. It is difficult to explain why lower
dietary CP should be associated with an increase in cost of unit protein aceretion. A higher
rate of protein degradation and resynthesis (turnover) would be a possible mechanism, but
it seems likely that protein turnover would be increased rather than decreased by the H diet
(Millward et al. 1975). On the L diets, there may be a greater need for the interconversion
of amino acids to maximize deposition of body protein, but interconversions of amino acids
are more often exergonic than endergonic (Schulz, 1978), so this effect is unlikely to lead
to a net increase in energy cost. As Coyer et al. (1987) suggested, there may be an increase
in a component of HP which is statistically but not mechanistically linked to rate of protein
accretion; in the case of rats, Coyer et al. (1987) proposed that the component may have
been catecholamine-mediated diet-induced thermogenesis. Any such effect in the present
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Table 4. Effects of diet on energy retention, gross energetic efficiency of growing fowl and
on the differences between these measurements at 32 and 20°

Energy retention Gross TME efficiency

32-20° difference
kJ/bird  kJ/kg WO (kJ/kg W7

Diet* per d per d per d) 32° 32-20° difference
L1 440 565 — 184 043 —0-02
L2 218 278 —295 0-25 —0-14
L3 478 554 —238 0-46 —0-01
L4 578 633 -30 0-46 0-00
L5 612 615 —533 046 —012
Hi 351 405 112 035 —0-01
H2 187 194 —268 0-18 —0-18
H3 278 298 —529 024 —021
H4 429 494 - 584 0-40 —-0-14
HS 618 627 -261 0-48 —0-03
sem (individual treatment; 2 §) 524 577 67-5 0-042 0-037
LsD (df 8; P < 0-05) 1208 1331 1573 0097 0086
L diets mean 465 539 -256 0-41 —0-06
H diets mean 373 404 —351 0-33 —012
Statistical significance of:

Protein level effect H v. L: P < 001 < 0001 < 0-05 < 001 < 005

Energy concentration/source: P < 0001 < 0001 < 001 < 0001 < 0-05

Interaction: P NS NS < 0-001 NS < 001

L1-LS, low-protein diets; HI-HS, high-protein diets; TME, true metabolizable energy; NS, not significant ; LSD,
least significant difference; W®, metabolic body size (body-weight®7?”),
* For details of composition, see MacLeod (1990).

experiment was insufficient to cause a significant increase in total HP or a significant
decrease in k,, ., since the higher unit cost of protein accretion on the L diets was balanced
by the lower absolute quantity of protein retained. This resulted in the mean total energy
cost of protein accretion (including the chemical energy of retained protein) being higher
on the H diets (490 v. 454 kJ/kg body-weight®”® per d). Changes in fat deposition
(Table 5) rather than energy expenditure, therefore, constituted the major sink for ‘excess’
energy intake.

RN

Gross (R, /1, where I, is N intake) and partial (AR, /AI,) efficiencies of N retention, and
N maintenance requirement (Table 6), were all significantly influenced (P < 0-001) by
dietary energy characteristics, but only N maintenance requirement was significantly
affected by dietary CP (P < 0-001). N maintenance requirement was also significantly
correlated with CP: TME ratio (r 0749 ; df 34; P < 0:001). Gross N retention efficiency
was, predictably, negatively correlated with N maintenance requirement (» —0-548; df 34;
P < 0-001) and positively correlated with partial efficiency of N retention (r 0:940; df 34;
P < 0-001). N maintenance requirement per unit metabolic body size (body-weight®"®)
decreased between 20 and 32° by 39 % on L diets and 19 % on H diets, but this did not lead
to a significant increase in gross efficiency because of the decrease in total N intake.

Losses of fat and protein during fasting
Total endogenous energy loss (Table 7) consists mainly of HP,; both its absolute
magnitude and decrease with temperature rise, therefore, corresponded closely with the
HP, results and were not significantly affected by either dietary energy or N when adjusted
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for body-weight. Absolute energy loss as fat increased significantly with dietary energy
concentration. CP concentration had significant effects on energy lost as protein (P <
0-001) and on proportion of energy lost as fat (P < 0-001). The influence of previous diet
on losses during fasting may be due either to the preferential catabolism of nutrients which
are most available during feeding or to the differences in body composition resulting from
diet.

Conclusions

Contrary to the initial hypothesis, the lower heat increment associated with high-fat diets
conferred relatively less of an advantage of higher intake at 32 than at 20°. Although there
was a wide range of energy intakes as multiples of maintenance energy requirement, there
was no indication that variation in HP was used as a mechanism for control of energy
retention; as at 20°, variations in energy retention and body composition remained the
main responses to variations in dietary CP concentration and CP:ME ratio. A higher
energy cost per unit protein accretion (1/k,) on the low-CP diets was insufficient to produce
an elevation of total HP; the higher unit energy cost was balanced by the lower absolute
rate of protein accretion. A smaller proportion of energy was retained as fat at 32 than at
20° because, while protein accretion rate decreased in proportion to I, HP decreased less
than [, leaving HP to be sustained at the expense of fat deposition.

Mr T. R. Jewitt and Mrs J. E. M. Anderson provided able technical assistance throughout
the study. Mr D. Waddington advised on experimental design and Mrs P. Collings assisted
with data analysis. The department’s Analytical Chemistry Group did the nitrogen and fat
analyses.
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