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Abstract. We calculate the endomorphism dga of Franke’s exotic algebraic model
for the K-local stable homotopy category at odd primes. We unravel its original abstract
structure to give explicit generators, differentials and products.

1. Introduction. The stable homotopy category Ho(S) is a large and complex
category. Thus, it becomes natural to break it up. First, we break it into its p-local
parts Ho(S(p)), and then these are broken into smaller, atomic pieces. These pieces are
described by the chromatic localisations Ho(LnS), n ∈ �. (Note that the prime p is
traditionally absent from the notation.) We can think of the stable homotopy category
as a city with a tower block with infinitely many floors for each prime, the first n floors
being described by Ho(LnS) and the nth floor of each tower block being described by
Ho(LK(n)S), where K(n) is the n Morava K-theory.
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Visualising Ho(S) in relation to Ho(LK(n)S):
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The ‘ground floor’, Ho(LK(0)S), is given by rational homotopy theory, which is
the same for all primes. The first and ground floor, Ho(L1S), are governed by p-local
topological K-theory, which is related to vector bundles. The next level, Ho(L2S), is
related to elliptic curves, but is already much more complicated to describe, while the
higher levels are valuable for their structural contribution to the bigger picture rather
than any individual computational merits.

Schwede showed in [19] that the triangulated structure of Ho(S) determines the
entire higher homotopy information of spectra, that is, it determines the underlying
model category up to suitable equivalence. In other words, the stable homotopy
category is rigid. This is particularly interesting because examples of rigidity are
usually hard to find. A natural question to follow is whether the atomic building
blocks Ho(LnS) are also rigid. Franke showed in [10] that for n = 1 and p ≥ 5 this is
false and Ho(LnS) are not rigid by constructing an algebraic counterexample. Note
that the Franke’s result in [10] is formulated for n2 + n < 2p − 2. This version contains
a gap which is pointed out in [13], and partially filled in [14].

The second author showed in [16] that in contrast, in the case of n = 1 and
p = 2, the K-local stable homotopy category Ho(L1S) is rigid. To this day it is rather
mysterious why counterexamples exist for p ≥ 5 but not for p = 2, and what the
situation is like outside of the range covered by Franke and Roitzheim. For p = 3,
there is an equivalence but it seems from [14] that is unknown whether the equivalence
is triangulated.

Franke’s model is algebraic, which means that it is model enriched over the model
category of chain complexes. Therefore, it makes sense to direct the study of exotic
models to algebraic models. For example, is Franke’s model the only algebraic model
for Ho(L1S)? Or are all exotic models for Ho(L1S) algebraic?

By Morita theory, algebraic model categories which have a single compact
generator are determined by an endomorphism dga with homology and Massey
products. To get a grip on those uniqueness questions we have to understand the
endomorphism dgas: if there was a unique endomorphism dga, then there would also
be a unique algebraic model. This has partially been answered in [18], but it does not
seem feasible to approach this by hand due to the rapidly increasing complexity of the
computations.

Thus, in order to work towards a greater understanding of algebraic models,
their uniqueness, and ultimately the stable homotopy category, we are going to look
at the endomorphism dga of Franke’s exotic models. This construction used many
abstract ingredients, such as injective resolutions of E(1)∗E(1)-comodules, Adams
operations, quasi-periodicity and v1-self maps. The goal of this paper is to carefully
unravel these abstractions in order to arrive at the �p-module structure of the dga in
question. We hope that going through and turning the abstract machinery into concrete
numbers will contribute to the greater picture by allowing for direct calculations in
future.

This paper is organised as follows. In Section 2, we recall some background on
endomorphism dgas and the context that we are using them in. In Section 3, we give
a summary of the construction and properties of Franke’s exotic model for Ho(L1S).
In Section 4, we perform first steps to simplify the endomorphism dga of a compact
generator of Franke’s model, showing that some pieces are trivial. In Section 5, we
show how the endomorphism dga can be expressed explicitly in terms of sequences
with coefficients in �p, using work of [6]. In Sections 6 and 7, we use the sequence
representation to do an explicit calculation of the homology of the endomorphism
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dga, verifying that it gives the expected result. We conclude in Section 8 by verifying
that the product and Massey products also give the expected result.

2. Algebraic models. The basic goal is to study the K-local stable homotopy
category at an odd prime p. We assume that the reader is familiar with basic notions
regarding stable model categories and Bousfield localisation, see for example [3]. For
background on K-theory and related topics, see [5]. Recall that K-theory splits into

K =
p−2∨
i=0

�2iE(1),

where E(1) is the Adams summand with E(1)∗ = �(p)[v1, v
−1
1 ], |v1| = 2p − 2. Thus,

LK(p) = LE(1), which is commonly denoted by L1.
To study the K(p)-local stable homotopy category Ho(L1S), we will study the

existence of algebraic model categories: a stable Ch(�)-model category C in the sense
of [7, Appendix A], such that there is an equivalence of triangulated categories

� : Ho(L1S) −→ Ho(C).

If C is an arbitrary stable model category, it can be very hard to understand it, or to
compare L1S with C. The following result [20, Theorem 3.1.1] gives a more concrete way
to approach C. Recall that an object X ∈ Ho(C) is compact if the functor Ho(C)(X,−)
commutes with arbitrary coproducts. X is a generator if the full subcategory of Ho(C)
containing X , which is closed under coproducts and exact triangles is again Ho(C)
itself. Then, we have the following result.

THEOREM 1 (Schwede-Shipley). Let C be a simplicial proper, stable model category
with a compact generator X. Then, there exists a chain of simplicial Quillen equivalences
between C and module spectra over the endomorphism ring spectrum of X,

C � mod- End(X).

Note that the assumption that C is simplicial is not a significant restriction, see for
example [8].

The category Ho(L1S) possesses the sphere L1S0 as a compact generator. Thus, if
� : Ho(L1S) −→ Ho(C) is a triangulated equivalence as above, we can use (a fibrant
and cofibrant replacement of) X = �(L1S0) as a compact generator for Ho(C).

From Theorem 1, we know that the endomorphism ring spectrum End(X) satisfies

π∗(End(X)) ∼= Ho(C)(X, X)∗.

Combining this with our triangulated equivalence, we have

π∗(End(X)) ∼= Ho(C)(X, X)∗ ∼= π∗(L1S0).

Now, if we additionally assume that C is an algebraic category, [9, Proposition 6.3]
gives us the following about the endomorphism spectrum.

THEOREM 2. Let C be an algebraic model category with a fibrant and cofibrant
compact generator X. Then, the endomorphism ring spectrum End(X) is weakly

323

https://doi.org/10.1017/S001708951800023X Published online by Cambridge University Press

https://doi.org/10.1017/S001708951800023X


EUGENIA ELLIS ET AL.

equivalent to the generalised Eilenberg-Mac Lane spectrum of the endomorphism dga
C(X, X).

Moreover, for X ∼= �(L1S0), the endomorphism dga C(X, X) satisfies ([18, Lemma
2.1]):
� H∗(C(X, X)) = Ho(C)(X, X)∗ = π∗(L1S0),
� Under the above, the Massey products of H∗(C(X, X)) coincide with the Toda

brackets of π∗(L1S0).

Thus, we see that in order to understand algebraic models C for L1S it is vital to
understand the endomorphism dga of a compact generator. In the next section, we will
describe a specific algebraic model C that will be the focus of this paper, and also take
a closer look at its compact generator.

3. Franke’s model and its compact generator. In this section, we are going to
give a brief description of the particular algebraic model for Ho(L1S) that we will be
looking at in detail in the subsequent sections. This was developed by Franke [10];
further details are available in [17] (and [14] for the triangulated structure). In what
follows, we will use notation consistent with [17].

To begin, we consider the category B, an abelian category, which is equivalent to
E(1)∗E(1)-comodules that are concentrated in degrees 0 mod 2p − 2. (Note that in [5],
Bousfield denotes this category by B(p)∗.) We can think of E(1)∗E(1)-comodules as
modules over E(1)∗ with an action of the Adams operations. Furthermore, the category
B is equipped with self-equivalences

Tj(p−1) : B −→ B (j ∈ �)

each of which is the identity on the underlying E(1)∗-modules but changes the Adams
operation �k by a factor of kj(p−1).

Now, we consider twisted chain complexes C2p−2(B) on B. An object of C2p−2(B) is
a cochain complex C∗ with Ci ∈ B, together with an isomorphism

αC : T (p−1)(C∗) −→ C∗[2p − 2] = C∗+2p−2.

Morphisms in this category are cochain maps f : C∗ −→ D∗ which are compatible
with those isomorphisms, that is, for which there is a commutative diagram.

T (p−1)(C∗)
αC ��

T (p−1)(f )
��

C∗[2p − 2]

f [2p−2]

��
T (p−1)(D∗)

αD �� D∗[2p − 2].

We can define a model structure on C2p−2(B) as follows.

PROPOSITION 3 (Franke). There is a model structure on C2p−2(B), such that
� weak equivalences are the quasi-isomorphisms,
� cofibrations are the monomorphisms ,
� fibrations are the degree-wise split epimorphisms with strictly injective kernel.
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Here, an object C∗ is said to be strictly injective if it is level-wise injective and for
each acyclic complex D∗, the mapping chain complex HomC2p−2(B)(D∗, C∗)∗ is again
acyclic.

Note that the above model structure is a variant of the standard injective model
structure on chain complexes. There is no projective-type model structure on C2p−2(B),
as B has enough injectives but not enough projectives.

Now, let D2p−2(B) be the homotopy category of a model category of C2p−2(B). This
is the exotic algebraic model we are interested in:

THEOREM 4 (Franke). For p ≥ 5 there is an equivalence of triangulated categories

R : D2p−2(B) −→ Ho(L1S)

which satisfies

2p−3⊕
i=0

Hi(C)[−i] ∼= E(1)∗(R(C)).

Concerning the equivalence R : D2p−2(B) −→ Ho(L1S), the notation R stands
for reconstruction functor. Usually, one would expect an equivalence between two
categories, such as the above to have the category of topological origin as its source
and the algebraic category as its target. But, in this unusual case, the equivalence
reconstructs a topological object from an algebraic one.

This reconstruction can be described as follows. To build a spectrum X from a
chain complex C∗, one first considers the boundaries Bi of C∗(1 ≤ i ≤ 2p − 2) and the
quotients Gi of C∗ by its boundaries. Then, one assigns spectra Xβi and Xγi to the Bi

and Gi, respectively, so that

Gi(X) = E(1)∗(Xγi )[−i] and Bi(X) = E(1)∗(Xβi )[−i].

These spectra are now arranged in a crown-shaped diagram.

Xβ1 ... Xβi−1 Xβi Xβ2p−2

Xγ1

��
��

Xγi−1

����

Xγi

������������
...

��

Xγ2p−2 .

��

Then, the reconstruction spectrum X = R(C∗) is defined to be the homotopy
colimit of the above diagram. Proving that this defines an equivalence of categories as
stated in Theorem 4 is a lengthy progress involving various Adams spectral sequences
and diagram chases. Once it is completed, however, it is not too hard to read off the
following:

LEMMA 5. The cochain complex A∗ := R−1(L1S0) is Ai = Tk(p−1)(E(1)∗) in degrees
i = k(2p − 2), k ∈ � and 0 in all other degrees.

�

4. The endomorphism dga. Recall from Section 2 that in order to understand an
algebraic model, we want to study the endomorphism dga of a compact generator. We
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know that the cochain complex of Lemma 5

A∗ = · · · −→ 0 −→ T−(p−1)E(1)∗ −→ 0 −→ · · ·
· · · −→ 0 −→ E(1)∗ −→ 0 −→ · · ·
· · · −→ 0 −→ T (p−1)E(1)∗ −→ 0 −→ · · ·

is a compact generator for D2p−2(B). Hence, to understand Franke’s model we need to
study the endomorphism dga C∗ of A∗, that is,

C∗ := HomC2p−2(B)(A∗, A∗).

Note that our endomorphism dga is cohomologically graded. By construction,

Ht−s(C∗) = Exts,t
B (E(1)∗, E(1)∗),

which is the E2-term of the E(1)∗-based Adams spectral sequence for π∗(L1S0).
Examining the degrees shows that this spectral collapses, giving an isomorphism
Hn(C∗) = πn(L1S0).

We intend to unravel what C∗ looks like as �(p)-module and obtain a concrete
description of this chain complex. We begin by considering the general form of any
mapping chain complex HomC2p−2(B)(X∗, Y∗) for arbitrary X∗, Y∗ ∈ C2p−2(B). This
satisfies

H∗(HomC2p−2(B))(X∗, Y∗) = D2p−2(B)(X∗, Y∗).

When X∗ and Y∗ are concentrated in one degree up to periodicity, that is,

X∗ =
∏
k∈�

Tk(p−1)X [−k(2p − 2)] and Y∗ =
∏
k∈�

Tk(p−1)Y [−k(2p − 2)]

for some X, Y ∈ B, we have

Hn−i(HomC2p−2(B)(X∗, Y∗)) =
∏

i

Exti,n
B (X, Y ).

We examine what such a morphism in C2p−2(B) looks like when X∗ is cofibrant and Y∗

is fibrant. We will see that all morphisms f ∗ : X∗ −→ Y∗+s are not only determined by
the first f 0, ..., f 2p−3 ∈ B but also solely by the low-degree terms of X∗ and Y∗.

First, by definition of the category C2p−2(B) in Section 3, a morphism satisfies

f ∗+2p−2 ∼= Tp−1(f ∗).

This means that, for example, a map f ∗ : X∗ −→ Y∗ of degree 0 is defined by
morphisms f i : Xi → Y i in B for 0 ≤ i ≤ 2p − 3, and similarly, a map f ∗ of degree
n ∈ � is determined by f i : Xi −→ Y i+n for 0 ≤ i ≤ 2p − 3.

However, we also claim that a morphism of degree n = (2p − 2)r + s, 0 ≤ s ≤
2p − 3 is in fact already defined by a morphism of degree s in B between the lower
degrees of X∗ and Y∗, that is, the low-degree morphisms define the entire mapping
chain complex.
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To see this, consider a morphism of degree 2p − 2, determined by

f 0 : X0 −→ Y 2p−2 ∼= Tp−1(Y 0)

f 1 : X1 −→ Y 2p−1 ∼= Tp−1(Y 1)
...

...

f 2p−3 : X2p−3 −→ Y 4p−5 ∼= Tp−1(Y 2p−3).

Consider the map f 0 in B. Recall that objects in B are themselves graded, and denote
this internal degree by a subscript. Therefore, by definition of Tp−1,

f 0 = f 0
∗ : X0

∗ −→ Y 2p−2
∗ ∼= Tp−1(Y 0)∗ ∼= Y 0

2p−2.

Any morphism in B

F∗ : M∗ −→ N∗

is given by a �(p)-module map satisfying F ◦ �k = �k ◦ F for the Adams operation
�k, k ∈ �(p). Thus, a morphism

F : M∗ −→ Tp−1(N)∗ = N∗+2p−2

is a �(p)-module map

F : M∗ −→ N∗+2p−2

satisfying F(�kx) = kpF(X). Now, we also have [5, Section 4.2],

�k(v1 · y) = kp−1v1 · �k(y) = kpv1y,

which means that F factors as

M∗
G−→ N∗

·v1−→ N∗+2p−2,

where G is a map in B of degree 0, and multiplication by v1 is an isomorphism.
Returning to our map of chain complexes

f 0 : X0 −→ Y 2p−2,

we see that f 0 can be factored as f 0 = v1 · g0, where g0 : X0 −→ Y 0 is a morphism in
B. Similarly, any map

f ∗ : X∗ −→ Y∗ ∈ C2p−2(B)

of degree n = (2p − 2)r + s, 0 ≤ s ≤ 2p − 3 is determined by a map of degree s. Thus,

HomC2p−2(B)(X∗, Y∗)∗ =
∏
n∈�

HomB(X∗, Y∗+n) =
∏

0≤i,s≤2p−3

HomB(Xi, Y i+s).

Note that we have not yet considered the internal grading. The object

HomB(Xi, Y i+s)
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is a graded E(1)∗-module, with the grading coming from the internal grading in B
on Xi = Xi

∗ and Y i+s = Y i+s
∗ . We say that an element in HomB(Xi, Y i+s) has degree

t if it raises the internal degree by t. As we will consider each degree separately,
we use HomB(Xi

∗, Y i+s
∗+t) to denote those morphisms in B that raise degree by t. So

in our notation, this is only a �(p)-module and not an E(1)∗-module. In particular,
HomB(Xi

∗, Y i+s
∗+t) is not a graded object.

Taking this internal degree into account, we define HomC2p−2(B)(X∗, Y∗)∗ to be the
chain complex defined in degree n by

HomC2p−2(B)(X∗, Y∗)n =
∏

n=t−s,
0≤i,s≤2p−3

HomB(Xi
∗−t, Y i+s

∗ ),

that is, as shown earlier, the mapping chain complex is defined only by low-degree
terms of the chain complexes as well as low-degree morphisms. (Recall that we are
assuming that X∗ is cofibrant and Y∗ is fibrant. If this is not the case, cofibrant and
fibrant replacements need to be applied.) The nth differential is given by

dA ◦ f + (−1)n+1f ◦ dB.

The grading is consistent with the equivalence given in Lemma 5

πt−s(L1S0) = Exts,t
B (E(1)∗, E(1)∗) = Ht−s Hom(A∗, A∗),

where A∗ is the compact generator. Explicitly, A∗ is the cochain complex which is
Ai = Tk(p−1)(E(1)∗) in degrees i = k(2p − 2), k ∈ � and 0 in all other degrees.

In order to apply the above discussion to our endomorphism complex, we need to
find a fibrant and cofibrant replacement for A∗. The model structure of Proposition
3 implies that any object in C2p−2(B) is cofibrant, so in fact we only need a fibrant
replacement.

To produce a fibrant replacement, we will use an injective resolution

0 −→ E(1)∗ −→ I0 −→ I1 −→ I2 −→ 0 (1)

of E(1)∗ as an E(1)∗E(1)-comodule. Since A∗ is E(1)∗ repeated periodically using
the self-equivalence T (p−1), we will obtain an injective resolution of A∗ by taking
the injective resolution above and repeating it periodically, again applying the self-
equivalence T (p−1). Since p is odd and the injective dimension of B is 2 (as is the
injective dimension of E(1)∗E(1)-comod) [5, Section 7], the pieces from the injective
resolution do not overlap in the cochain complex.

For the injective resolution in (1), we will use the standard resolution by Adams-
Baird-Ravenel [4]

0 −→ E(1)∗ −→ E(1)∗E(1)
(�r−1)∗−−−−→ E(1)∗E(1)

q−→ E(1)∗ ⊗ � −→ 0, (2)

where r is a unit of the cyclic group (�/p2)×, �r is the rth Adams operation and q is
induced by the map E(1) −→ H� that is a rational homotopy isomorphism in degree
0 and trivial otherwise.
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Note that this resolution I does not consist of injective comodules, but of
relative injective comodules, see [11, Definition 3.1.1], that is, the functor HomB(−, I)
sends split short exact sequences of E(1)∗-modules to short exact sequences. By
definition,

Ext∗B(E(1)∗, E(1)∗) = H∗(HomB(E(1)∗, J)),

where J is an injective resolution of E(1)∗. As J is injective, one also has

HomB(E(1)∗, J) � HomB(J, J).

By [11, Lemma 3.1.4] the above is quasi-isomorphic to HomB(E(1)∗, I) with I our
relative injective resolution. Now, consider the split exact sequence of complexes E(1)∗-
modules

0 −→ E(1)∗ −→ I −→ K −→ 0,

where K is the cokernel of the first map. The sequence is split because the first map is
the unit E(1)∗ −→ E(1)∗E(1) in degree 0, where a split is given by the counit. This K is
bounded above and below as well as acyclic, so it is contractible. Thus, by [11, Lemma
3.3.3], every map K −→ I is chain homotopic to the zero map, so HomB(K, I) � 0
and consequently

HomB(E(1)∗, I) � HomB(I, I) � HomB(J, J),

which is what we are using.
Thus, we create a relative injective replacement equivalent to the fibrant

replacement

(Af ib)∗ =
· · · 0 −→ T−(p−1)I0 −→ T−(p−1)I1 −→ T−(p−1)I2 −→ 0 −→ · · ·
· · · 0 −→ I0 −→ I1 −→ I2 −→ 0 −→ · · ·
· · · 0 −→ T (p−1)I0 −→ T (p−1)I1 −→ T (p−1)I2 −→ 0 −→ · · ·

In other words,

(Af ib) = �I =
∏
k∈�

Tk(p−1)I [−k(2p − 2)]

with

I = (. . . 0 → I0 → I1 → I2 → 0...) ∈ Ch(B)

and [n] denoting the nth suspension.
Returning to the definition of the endomorphism complex C∗, we have that

C∗ := HomC2p−2(B)((Af ib)∗, (Af ib)∗)
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is entirely determined by the terms of the form

HomB(Ij, Ik), where i, j ∈ {0, 1, 2}.
So, we have to calculate nine potential terms:

Cn := HomC2p−2(B)((Af ib)∗, (Af ib)∗)n =
∏

n=t−s,i

HomB((Ii)∗−t, (Ii+s)∗)

= HomB((I0)∗−n, (I0)∗) × HomB((I0)∗−(n−1), (I1)∗) × HomB((I0)∗−(n−2), (I2)∗)

× HomB((I1)∗−(n+1), (I0)∗) × HomB((I1)∗−n, (I1)∗) × HomB((I1)∗−(n−1), (I2)∗)

× HomB((I2)∗−(n+2), (I0)∗) × HomB((I2)∗−(n+1), (I1)∗) × HomB((I2)∗−n, (I2)∗)

and specify the differentials between those terms.
Since the terms appearing in the sequence (2) are either of the form E(1)∗E(1) or E(1)∗ ⊗ �,

the nine terms above can be grouped into four types of the following form:

(I) HomB(E(1)∗−tE(1), E(1)∗E(1))
(II) HomB(E(1)∗−tE(1), E(1)∗ ⊗ �)

(III) HomB(E(1)∗−t ⊗ �, E(1)∗E(1))
(IV) HomB(E(1)∗−t ⊗ �, E(1)∗ ⊗ �)

All of the above are trivial unless t is a multiple of 2p − 2. By [15, Appendix A1], we have the
following natural isomorphism

HomE(1)∗ (M, N) ∼= HomB(M, E(1)∗E(1) ⊗E(1)∗ N) (3)

for M ∈ B and N an E(1)∗-module. Applying this to the terms above yields the following.

Type (I) The isomorphism (3) gives

HomB(E(1)∗−tE(1), E(1)∗E(1)) ∼= HomE(1)∗ (E(1)∗−tE(1), E(1)∗)
∼= Hom�(p) (E(1)0E(1), �(p)(vk

1 )) for t = (2p − 2)k

Type (II) Here, we have to distinguish between t = 0 and t = 0. Let us begin with t = 0. By
[1], E(1)∗E(1) consists of Laurent polynomials living in �[u, u−1, w, w−1] with |u| = |w| = 2p − 2
satisfying certain conditions. (We can think of u and w as ‘two copies of v1’ in terms of the E(1)∗-
action.) Furthermore,

E(1)∗E(1) ⊗ � ∼= �[u, u−1, w,w−1].

Now, let f ∈ HomB(E(1)∗E(1), E∗ ⊗ �). By definition, f is an E(1)∗-module homomorphism,
and also the following diagram has to commute.

E(1)∗E(1)
f ��

	

��

E(1)∗ ⊗ � = �[v1, v
−1
1 ]

ψ

��
E(1)∗E(1) ⊗E(1)∗ E(1)∗E(1)

1⊗f �� E(1)∗E(1) ⊗E(1)∗ E(1)∗ ⊗ � = E(1)∗E(1) ⊗ �.
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For the coactions, we have

	uiwj = uiw2j and ψ(vi
1) = ui,

that is, w is group-like, see for example [2] or [12].
Since f is an E∗-module homomorphism, we have

f (uiwj) = v
i+j
1 f (1).

Putting this information together, we see that the diagram can only commute if j = 0 or f is the
zero map. So, f has to be zero on w, that is, only supported on Laurent polynomials in u. Thus, f
can be considered as an E(1)∗-module homomorphism from E(1)∗ ∼= �(p)[u, u−1] to E(1)∗ ⊗ �.
Thus, we have

HomB(E(1)∗E(1), E(1)∗ ⊗ �) ∼= HomE(1)∗ (E(1)∗, E(1)∗ ⊗ �) ∼= �.

Note that the last isomorphism holds as we are only considering degree-preserving morphisms.
Furthermore, note that the 1 in the last � corresponds to the morphism that sends w to 0 and u
to 1, which is exactly q from the Adams–Baird–Ravenel resolution (1).

Let us now look at the case t = 0:
Analogously to the previous argument,

HomB(E(1)∗E, E(1)∗+t ⊗ �) ∼= HomE(1)∗ (E(1)∗, E(1)∗+t ⊗ �) ∼= �.

As a module over �, this is generated by the function sending w to 0 and u to vs−1
1 for t =

s(2p − 2).

Type (III) Every E(1)∗-module is in particular a �(p)-module, and so every element of (III)
is in particular a �(p)-module homomorphism from � to �(p). Thus, all terms of the form (III)
are zero.

Type (IV) A morphism

f ∈ HomB(E(1)∗ ⊗ �, E(1)∗ ⊗ �)

is entirely determined by f (1) ∈ E(1)0 ⊗ � = �, so for the degree t = 0 we have

HomB(E(1)∗ ⊗ �, E(1)∗ ⊗ �) = �.

For t = 0, a term of Type (IV) is trivial. If t is not a multiple of (2p − 2), this is already clear
for degree reasons. For t = s(2p − 2), s = 0 we have the following. A morphism

f : E(1)∗ ⊗ � −→ E(1)∗+t ⊗ �

in B is an E(1)∗-module homomorphism, which is compatible with Adams operations. The
E(1)∗-module homomorphisms are given by

HomE(1)∗ (E(1)∗ ⊗ �, E(1)∗+t ⊗ �) = �,

which is generated over � by the map that sends 1 to vs
1. The Adams operations are given by

�k(vi
1) = ki(p−1)vs

1, in particular �k(v2
1) = k2(p−1)v2

1 .
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We also know that E(1)∗+t is also isomorphic in B to Ts(p−1)E(1)∗, therefore,

HomB(E(1)∗ ⊗ �, E(1)∗+t ⊗ �) ∼= HomB(E(1)∗ ⊗ �, Ts(p−1)E(1)∗).

Therefore, by definition of T ,

�k(v2
1) = ks(p−1)�k

old (v2
1) = ks(p−1)(k(2p−2)v2

1) = k(s+2)(p−1)v2
1 .

However, this can only be equal to the previously calculated k2(p−1)v2
1 if s = 0, which proves that

for t = 0,

HomB(E(1)∗ ⊗ �, E(1)∗+t ⊗ �) = 0.

Now that we have identified the forms of the terms I–IV in the endomorphism complex, let
us consider the differentials. A differential from Cn to Cn+1 is of the form d ◦ f + (−1)n+1f ◦ d. We
illustrate its individual parts in the diagram given subsequently, where a solid arrow represents a
possible nontrivial d ◦ f and a dashed arrow represents a possible nontrivial f ◦ d. In addition,
each term has been labelled with its type (I–IV).

(I) HomB((I0)∗−n, (I0)∗) HomB((I0)∗−(n+1), (I0)∗) (I)

(I) HomB((I0)∗−(n−1), (I1)∗) HomB((I0)∗−n, (I1)∗) (I)

(II) HomB((I0)∗−(n−2), (I2)∗) → 0 HomB((I0)∗−(n−1), (I2)∗) (II)

(I) HomB((I1)∗−(n+1), (I0)∗) HomB((I1)∗−(n+2), (I0)∗) (I)

(I) HomB((I1)∗−n, (I1)∗) HomB((I1)∗−(n+1), (I1)∗) (I)

(II) HomB((I1)∗−(n−1), (I2)∗) HomB((I1)∗−n, (I2)∗) (II)

(III) HomB((I2)∗−(n+2), (I0)∗) = 0 HomB((I2)∗−(n+3), (I0)∗) = 0 (III)

(III) HomB((I2)∗−(n+1), (I1)∗) = 0 HomB((I2)∗−(n+2), (I1)∗) = 0 (III)

(IV) HomB((I2)∗−n, (I2)∗) HomB((I2)∗−(n+1), (I2)∗) (IV)

For any other values of n, the dga will be zero. Combining this information with the
interpretations of Terms (I–IV), we see that the non-zero terms of the endomorphism dga look

332

https://doi.org/10.1017/S001708951800023X Published online by Cambridge University Press

https://doi.org/10.1017/S001708951800023X


ENDOMORPHISMS OF EXOTIC MODELS

like:

C(2p−2)k−1 C(2p−2)k C(2p−2)k+1 C(2p−2)k+2

HomB(E(1)∗−nE(1), E(1)∗E(1))

HomB(E(1)∗−nE(1), E(1)∗E(1)) HomB(E(1)∗−nE(1), E(1)∗E(1))

HomB(E(1)∗−nE(1), E(1)∗E(1)) HomB(E(1)∗−nE(1), E(1)∗ ⊗ Q)

HomB(E(1)∗−nE(1), E(1)∗ ⊗ Q)

HomB(E(1)∗−n ⊗ Q, E(1)∗ ⊗ Q)

Ψ∗Ψ∗

Ψ∗ q∗Ψ∗

q∗ Ψ∗

q∗

Here, �∗, �∗, q∗ and q∗ refer to (pre)composing with � = (�r − 1) and q from the Adams-
Ravenel-Baird resolution (2).

REMARK 6. When p = 3, degree reasons do not rule out a differential

C(2p−2)k+2 → C(2p−2)k+3.

However, the actual definition of the differential in terms of � and q means that no nontrivial
such differential exists.

5. Reinterpretation as sequences. We now turn to creating an explicit description of
the sequence described in the previous section. As noted above, terms of Type (III) are trivial,
terms of Type (II) give a single copy of �. We here consider the other, not so simple terms of
Type (I).

As mentioned formerly, by [15, Appendix A1],

HomB(E(1)∗−nE(1), E(1)∗E(1)) ∼= HomE(1)∗ (E(1)∗E(1), E(1)∗+n). (4)

Since E(1)∗E(1) is free as an E(1)∗-module [1, Theorem 2.1],

HomE(1)∗ (E(1)∗E(1), E(1)∗+n) � Hom�(p) (E(1)0E(1), �(p)[vk
1 ]), n = (2p − 2)k.
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This dual has been considered in [6], where it is shown that

Hom�(p) (E(1)0E(1), �(p)[vk
1 ]) ∼= E(1)0E(1).

Furthermore, by [6, Theorem 6.2] this can be uniquely expressed as a formal series

E(1)0E(1) ∼= {
∑
n≥0

am�m(�r) | am ∈ �(p)},

see also [21, Proposition 18]. Here, �m is an explicit polynomial in the Adams operation �r

(where r a generator of (�/p2)×) defined as follows: [6, Definition 6.1]:

�0(�r) = 1,

�1(�r) = (�r − 1),

�2(�r) = (�r − 1)(�r − r),

�3(�r) = (�r − 1)(�r − r)(�r − r−1),

�4(�r) = (�r − 1)(�r − r)(�r − r−1)(�r − r2),

�5(�r) = (�r − 1)(�r − r)(�r − r−1)(�r − r2)(�r − r−2),

etc.

This means that we can view the elements of HomB(E(1)∗−nE(1), E(1)∗E(1)) as sequences
of coefficients in p-local integers,

HomB(E(1)∗−nE(1), E(1)∗E(1)) ∼= {(am)m∈� |am ∈ �(p)} = ��
(p).

For simplicity of notation, will denote a sequence (am)m∈� by 〈am〉.

5.1. The formulas on sequences. To get the differential, we need to translate the
following maps over to the sequence representation:

�∗ : ��
(p) −→ ��

(p)

�∗ : ��
(p) −→ ��

(p)

and furthermore,

�∗ : � −→ �

q∗ : ��
(p) −→ �

q∗ : � −→ �.
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The map �∗: We start by considering the map �∗ = (�r − 1)∗ given by composition with the
map �r − 1. Chasing through our equivalences, we have

HomE(1)∗E(1)(E(1)∗E(1), E(1)∗E(1))t
(�r−1)∗ ��

�
��

HomE(1)∗E(1)(E(1)∗E(1), E(1)∗E(1))t

�
��

HomE(1)∗ (E(1)∗E(1), E(1)∗)t
(�r−1)∗ ��

�
��

HomE(1)∗ (E(1)∗E(1), E(1)∗)t

�
��

Hom�(p) (E(1)0E(1), �(p)[vk
1 ]) ��

�
��

Hom�(p) (E(1)0E(1), �(p)[vk
1 ])

�
��

E(1)0E(1)

�
��

�� E(1)0E(1)

�
��

{∑
m≥0

am�m(�r) | am ∈ �(p)} �� {∑
m≥0

am�m(�r) | am ∈ �(p)}

To calculate (�r − 1)∗ we can work on the vk
1 level. Note that when k = 0, �r acts as the

identity, and so (�r − 1)∗ = 0. For k = 0, we know that up to a p-local unit,

(�r − 1)∗(vk
1 ) = (rk(p−1) − 1)vk

1

= pν(k)+1vk
1

Therefore, we can see that (�r − 1)∗ is given by multiplication by pν(k)+1.

The map �∗ on �(p)-sequences: Chasing through the effect of (�r − 1)∗ is slightly more involved.
Starting with the k = 0 case, we see that since the vertical isomorphisms in the last step are ring
isomorphisms, the overall effect on the sequences is multiplication by �1(�r). In all that follows,
we will write �i in place of �i(�r). Then we can calculate:

�0�1 = �1

�m�1 = (�r − 1)(�r − r)(�r − r−1) · · · (�r − rs̃(m))(�r − 1)

�m+1 = (�r − 1)(�r − r)(�r − r−1) · · · (�r − rs̃(m))(�r − rs̃(m+1)),

where

s̃(m) =
{

m
2 m even
1−m

2 m odd .

So then,

�m�1 − �m+1 = (�r − 1)(�r − r)(�r − r−1) · · · (�r − rs̃(m))(rs̃(m+1) − 1)

�m�1 = [rs̃(m+1) − 1]�m + �m+1.
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Therefore,∑
m≥0

am�m�1 = a0�1 +
∑
m≥1

am[rs(m) − 1]�m + �m+1 =
∑
m≥1

(am(rs(m) − 1) + am−1)�m,

where s(m) = s̃(m + 1). Thus, when k = 0, our formula becomes

�∗〈am〉 =
〈

0
a1(rs(1) − 1) + a0

a2(rs(2) − 1) + a1

...
am(rs(m) − 1) + am−1

...

〉
.

When k = 0, then we have n = 0 and thus, must determine how the map �r − 1 behaves on
E(1)∗−nE(1) instead of just E(1)∗E(1). Due to this, we observe what happens on the level of the
generators vi

1. We first note that

(�r − 1)vi
1 = (ri(p−1) − 1)vi

1.

As mentioned above, precomposing with such a map corresponds to multiplication by �1.
Thus, upon shifting to E(1)∗−nE(1) via multiplication by vk

1 , we see that multiplication by �1

would correspond to �r − 1 producing (ri(p−1) − 1)vi+k
1 in E(1)∗−nE(1). However, to truly shift

to working in E(1)∗−nE(1), we observe that

(�r − 1)vi+k
1 = (r(i+k)(p−1) − 1)vi+k

1 .

Due to this difference, precomposition with �r − 1 on E(1)∗−nE(1) when translated to sums
of �m’s must include an additional �0 term. Up to a p-local unit, for any i,

r(i+k)(p−1) − ri(p−1) = pν(k)+1.

Hence, when k = 0, �∗ acts by multiplication by �1 + pν(k)+1�0. By performing a similar
computation to the one above for

∑
m≥0 am�m�1, we obtain

∑
m≥0

am�m(�1 + pν(k)+1�0) = pν(k)+1a0 +
∑
m≥1

am[rs(m) − 1 + pν(k)+1]�m

and thus, when k = 0 our formula becomes

�∗〈am〉 =
〈

pν(k)+1a0

a1(rs(1) − 1 + pν(k)+1) + a0

...
am(rs(m) − 1 + pν(k)+1) + am−1

...

〉
.

The map �∗ on the rational terms:
Let us consider �∗ : � −→ �, that is, the map induced by � on terms of Type (II). We

recall that we have an isomorphism

HomB(E(1)∗E(1), E(1)∗ ⊗ �) ∼= �
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and that the 1 ∈ � on the right hand side corresponds to the map q itself. But, q ◦ � = 0 as they
are part of the resolution (1), thus, the map �∗ above is the zero map.

For t = s(2p − 2), the copy of the rationals

HomB(E(1)∗E(1), E(1)∗+t ⊗ �) ∼= �

is generated by the function that sends w ∈ E(1)∗E(1) to 0 and u ∈ E(1)∗E(1) to vs
1. As

(�r − 1)vs
1 = (r(s)(p−1) − 1)vs

1,

precomposition with � is multiplication by r(s−1)(p−1) − 1, which up to p-local unit is a nontrivial
power of p. (This is also consistent with the case t = 0, where this map is trivial.)

The map q∗: The map

q∗ : HomB(E(1)∗−nE(1), E(1)∗E(1)) −→ HomB(E(1)∗−nE(1), E(1)∗ ⊗ �)

is the map obtained by composing with the map

q : E(1)∗E(1) −→ E(1)∗ ⊗ �

from the Adams–Baird–Ravenel resolution. The map q is induced by the map E(1) → H�

which, on homotopy, is a rational isomorphism in degree 0 and trivial in all other degrees. So,
q∗ is induced by the inclusion �(p) ↪→ � and becomes q∗(〈am〉) = a0. For n = 0, q∗ is trivial.

The map q∗: Lastly we consider the map

q∗ : HomB(E(1)∗ ⊗ �, E(1)∗ ⊗ �) −→ HomB(E(1)∗E(1), E(1)∗ ⊗ �).

We saw that both these terms are isomorphic to one copy of � via the isomorphism f �→ f (1).
So, q∗ sends 1 ∈ � to the element in � corresponding to the composite

E(1)∗E(1)
q−→ E(1)∗ ⊗ �

1−→ E(1)∗ ⊗ �,

which is again q. Thus, q∗ : � −→ � is simply the identity map.

6. The calculation for n = 0. In this section and the next, we are going to use our
explicit representations to calculate the homology of the endomorphism dga C. Note that by
our earlier remarks, we know that this should come out to H∗(C) = π−∗(L1S0) (the change in
sign arises as the dga is cohomologically graded).
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As explained at the end of Section 4, in degrees around 0 our dga looks like

C−1 d−1 �� C0 d0 �� C1 d1 �� C2

��
(p)

�∗

		�
��

��
��

��
(p)

�∗


��������

�∗ 		�
��

��
��

�
��

(p)

q∗

���
��

��
��

�

��
(p)

�∗


�������

q∗
���

��
��

��
�

�

�

�∗


��������

�

q∗

								

Condensing it down we have

0 �� ��
(p)

d−1 �� ��
(p) ⊕ ��

(p) ⊕ �
d0 �� ��

(p) ⊕ �
d1 �� � �� 0

-1 0 1 2

Now, we need to see what each of these maps is on sequences. Using our formulas from
Section 5.1 we get

d−1(〈am〉) = (�∗〈am〉, �∗〈am〉, 0) =

⎛
⎜⎜⎜⎜⎜⎜⎝

〈
0

a1(rs(1) − 1) + a0

...
am(rs(m) − 1) + am−1

...

〉
,

〈
0
0
...
0
...

〉
, 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

d0(〈am〉, 〈bm〉, x) = (�∗〈am〉 − �∗〈bm〉, q∗〈bm〉 − q∗(x))

=

⎛
⎜⎜⎜⎜⎜⎜⎝

〈
0

−b1(rs(1) − 1) − b0

...
−bm(rs(m) − 1) − bm−1

...

〉
, b0 − x

⎞
⎟⎟⎟⎟⎟⎟⎠

,

d1(〈am〉, y) = q∗〈am〉 + �∗(y) = a0.

LEMMA 7. The sequences of maps d−1, d0 and d−1 give a cochain complex.
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Proof. It is easy to see that (d0 ◦ d−1)(am) = d0(�∗(am), 0, 0) = 0 and

(d1 ◦ d0)(〈am〉, 〈bm〉, x) = d1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈
0

−b1(rs(1) − 1) − b0

−b2(rs(2) − 1) − b1

...
−bm(rs(m) − 1) − bm−1

...

〉
, b0 − x

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0.

�
THEOREM 8. Near n = 0:

Hn(C) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if n = −1,

�(p) if n = 0

0 if n = 1,

�/�(p) if n = 2

. ∗ ∗∗

Proof. n = −1: Suppose that 〈am〉 ∈ ker(d−1). Then, we know that

am(rs(m) − 1) + am−1 = 0 for all m ∈ �.

We will show that am = 0 for all m ∈ �. For any given m, choose � > m, such that p(p − 1)|s(�).
Then, rs(�) = 1, and so we know that a�−1 = 0. Then, since for all j ∈ �

aj(rs(j) − 1) = −aj−1,

we see that if aj = 0, then aj−1 = 0 also. So by induction, am = 0 also. So, d−1 is injective and
H−1(C) = 0.

sn = 0: Suppose that (〈am〉, 〈bm〉, x) ∈ ker d0. Then, we know that

⎛
⎜⎜⎜⎜⎜⎜⎝

〈
0

−b1(rs(1) − 1) − b0

...
−bm(rs(m) − 1) − bm−1

...
...

〉
, b0 − x

⎞
⎟⎟⎟⎟⎟⎟⎠

= 0.

Therefore, b0 = x and bm = 0, ∀m ∈ � by the same argument used for n = −1. Then,
(〈am〉, 〈bm〉, x) = (〈am〉, 0)

We claim that

Im d−1 = {d−1〈cm〉 : 〈cm〉 ∈ ��
(p)}

= {(�∗〈cm〉, 〈0〉, 0) : 〈cm〉 ∈ ��
(p)}

= {(〈am〉, 〈0〉, 0) : 〈am〉 ∈ ��
(p), a0 = 0}.

(5)

It is clear that any element in the image must have a0 = 0. Conversely, given 〈am〉 with a0 = 0,
we can produce 〈cm〉, such that d−1(〈cm〉) = (〈am〉, 〈0〉, 0). We produce cm as follows: for any m,
we choose the smallest � > m, such that (p − 1)p|s(�). Then, we need to choose c�−1 satisfying
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c�−1 = a�. Then, we work our way down, observing that if we have chosen cj, we can then find
cj−1 to satisfy

cj(rs(j) − 1) + cj−1 = aj−1.

Inductively, we can get a value for cm.
So, we can find 〈cm〉 such that cm = am(rs(m) − 1) + am−1 and hence, d−1(〈cm〉) =

(〈am〉, 〈0〉, 0). Thus, we see that ker d0/ Im d−1 = �(p) as represented by the value of a0 in
(〈am〉, 〈0〉, 0).

n = 1: Note that ker d1 = (〈am〉, y), such that a0 = 0. We can see in our claim above, given in
equations (5), that there exists 〈bm〉 = 〈−cm〉 ∈ ��

(p) such that

〈am〉 = �∗(〈cm〉) = −�∗(〈bm〉).

Then,

d0(〈0〉, 〈bm〉, b0 − y) = (〈am〉, y).

As ker d1 = Im d0, we get H1(C) = 0.

n = 2: Finally, we know that ker d2 = �. Clearly, Im d1 = �(p) . So,

H2(C) = �/�(p).

�

7. The homology calculation for n = 0. Looking back on our description of the
endomorphism dga at the end of Section 4, we see that in terms of our sequence representations,
we have

C(2p−2)k−1 �� C(2p−2)k �� C(2p−2)k+1 �� C(2p−2)k+2

��
(p)

�∗

��
















��
(p)

�∗
�������������

�∗
��
















��

(p)

q∗=0

����
���

���
���

�

��
(p)

�∗
�������������

q∗=0
����

��
��

��
��

� �

�

�∗
∼=

��

0

q∗

��
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Condensing down our earlier diagram, we are looking at

0 �� ��
(p)

d(2p−2)k−1 �� ��
(p) ⊕ ��

(p)
d(2p−2)k �� ��

(p) ⊕ �
d(2p−2)k+1 �� � �� 0

(2p-2)k-1 (2p-2)k (2p-2)k+1 (2p-2)k+2

(6)

where

d (2p−2)k−1(〈am〉) = (�∗〈am〉, �∗〈am〉)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

〈
pν(k)+1a0

a1(rs(1) − 1 + pν(k)+1) + a0

...
am(rs(m) − 1 + pν(k)+1) + am−1

...

〉
,

〈
pν(k)+1a0

pν(k)+1a1

...
pν(k)+1am

...

〉
⎞
⎟⎟⎟⎟⎟⎟⎠

d (2p−2)k(〈am〉, 〈bm〉) = (�∗〈am〉 − �∗〈bm〉, 0)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

〈
pν(k)+1a0 − pν(k)+1b0

pν(k)+1a1 − b1(rs(1) − 1 + pν(k)+1) − b0

...
pν(k)+1am − bm(rs(m) − 1 + pν(k)+1) − bm−1

...

〉
, 0

⎞
⎟⎟⎟⎟⎟⎟⎠

and

d (2p−2)k+1(〈am〉, b) = pν(k)+1b).

We start by verifying the following:

LEMMA 9. The sequence of modules and maps described in (6) is a cochain complex.
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Proof. We show that d (2p−2)k(d (2p−2)k−1〈am〉) = 0 for any sequence 〈am〉, where am ∈ �(p):

�∗(�∗〈am〉) = �∗

⎛
⎜⎜⎜⎜⎜⎜⎝

〈
pν(k)+1a0

a1(rs(1) − 1 + pν(k)+1) + a0

...
am(rs(m) − 1 + pν(k)+1) + am−1

...

〉
⎞
⎟⎟⎟⎟⎟⎟⎠

=
〈

p2ν(k)+1a0

pν(k)+1a1(rs(1) − 1 + pν(k)+1) + pν(k)+1a0

...
pν(k)+1am(rs(m) − 1 + pν(k)+1) + pν(k)+1am−1

...

〉

= �∗

⎛
⎜⎜⎜⎜⎜⎜⎝

〈
pν(k)+1a0

pν(k)+1a1

...
pν(k)+1am

...

〉
⎞
⎟⎟⎟⎟⎟⎟⎠

= �∗(�∗〈am〉).

Then,

d (2p−2)k(d (2p−2)k−1〈am〉) = �∗(�∗〈am〉) − �∗(�∗〈am〉) = 0.

Also,

d (2p−2)k+1 ◦ d (2p−2)k(〈am〉, 〈bm〉) = d (2p−2)k+1(pν(k)+1a0 − pν(k)+1b0, 0) = 0

as required.
�

It had been immediately clear that the isomorphism �∗ = pν(k)+1 : � −→ � does not
contribute anything to the chain complex, so we will omit it from here onwards.

Before verifying that the cohomology is as expected, we examine the kernel of d (2p−2)k more
closely.

LEMMA 10. For all (〈am〉, 〈bm〉) ∈ ker d (2p−2)k, pν(k)+1|bm for all m ∈ �.

Proof. If (〈am〉, 〈bm〉) is in the kernel, we know that

pν(k)+1a0 = pν(k)+1b0

and

pν(k)+1am = (rs(m) − 1 + pν(k)+1)bm + bm−1 for all m ≥ 1.

Since r ∈ (�/p2)×, we know rs(m) − 1 = 0 whenever s(m) is a multiple of p(p − 1). Now, fix m ∈ �

and we will show that pν(k)+1|bm. Let � ∈ �, � > m, such that rs(�) − 1 = 0. Then,

pν(k)+1a� = pν(k)+1b� + b�−1

and thus, pν(k)+1|b�−1. Then, since

pν(k)+1aq = (rs(q) − 1 + pν(k)+1)bq + bq−1,
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it is clear that if pν(k)+1|bq then also pν(k)+1|bq−1 for any q ≥ 1. Thus, since pν(k)+1|b� and � > m,
pν(k)+1|bm by induction. �

THEOREM 11. When k = 0,

Hn(C) =
{

�/pν(k)+1 if n = (2p − 2)k + 1.

0 else

Proof. From the complex, it is immediate that Ht(C) = 0 for all t that are not congruent
to −1, 0 or 1 modulo 2p − 2.

n = (2 p − 2)k − 1: Suppose 〈am〉 is in ker d (2p−2)k−1. Then, pν(k)+1am = 0 for all m ≥ 0, and so
am = 0 for all m ≥ 0. Thus, ker d (2p−2)k−1 = 0 and so H (2p−2)k−1(C) = 0.

n = (2 p − 2)k: Let (〈am〉, 〈bm〉) ∈ ker d (2p−2)k. This means

pν(k)+1a0 = pν(k)+1b0, so a0 = b0,

and

pν(k)+1am = (rs(m) − 1 + pν(k)+1)bm + bm−1 for all m ≥ 1.

By Lemma 10 we know pν(k)+1|bm for all m, and so we may write

bm = pν(k)+1cm for some cm ∈ �(p).

Thus, a0 = b0 = pν(k)+1c0, and for m ≥ 1 we may write

am = (rs(m) − 1 + pν(k)+1)cm + cm−1.

Thus, we see that all elements of the kernel are of the form

d (2p−2)k−1(〈cm〉) =

⎛
⎜⎜⎜⎜⎜⎜⎝

〈
pν(k)+1c0

(rs(m) − 1 + pν(k)+1)c1 + c0

...
(rs(m) − 1 + pν(k)+1)cm + cm−1

...

〉
,

〈
pν(k)+1c0

pν(k)+1c1

...
pν(k)+1cm

...

〉
⎞
⎟⎟⎟⎟⎟⎟⎠

.

Thus, ker d (2p−2)k = Im d (2p−2)k−1 and H (2p−2)k(C) = 0.

n = (2 p − 2)k + 1: For any (〈am〉, 〈bm〉 ∈ ��
(p) ⊕ ��

(p), we have

d (2p−2)k(〈am〉, 〈bm〉) =
〈

pν(k)+1(a0 − b0)
pν(k)+1a1 − (rs(1) − 1 + pν(k)+1)b1 − b0

...
pν(k)+1am − (rs(m) − 1 + pν(k)+1)bm − bm−1

...

〉
.

So, if 〈cm〉 ∈ ��
(p) is in Im d (2p−2)k, then c0 is clearly divisible by pν(k)+1. We will show that the

converse is also true: if pν(k)+1|c0, then there exist sequences 〈am〉, 〈bm〉 ∈ ��
(p), such that

d (2p−2)k(〈am〉, 〈bm〉) = 〈cm〉.
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Given any b0, we may always select a0, so that pν(k)+1(a0 − b0) = c0. We will show that we
can find am, bm, and bm−1 so that

pν(k)+1am − (rs(m) − 1 + pν(k)+1)bm − bm−1 = cm

compatibly for all m ≥ 1. As in the proof of Lemma 10, for any fixed m ∈ �, we may choose the
smallest value � > m, such that rs(�) − 1 = 0. Then, if we take a� = b� and b�−1 = −c�, we have

pν(k)+1a� − (rs(�) − 1 + pν(k)+1)b� − b�−1 = c�.

Now suppose we have defined aq, bq, and bq−1, so that

pν(k)+1aq − (rs(q) − 1 + pν(k)+1)bq − bq−1 = cq.

If we then let aq−1 = bq−1 and bq−2 = (rs(q−1) − 1)bq−1 − cq−1 we will obtain

pν(k)+1aq−1 − (rs(q−1) − 1 + pν(k)+1)bq−1 − bq−2 = cq−1.

Again, inducting downwards from � shows that we can find values for am, bm for any m such that
d (2p−2)k(〈am〉, 〈bm〉) = 〈cm〉. �

8. Products and Massey products. In this section we discuss the multiplicative structure
of C, showing that it induces an injective multiplication H−(2p−2)k+1(C) ⊗ H (2p−2)k+1(C) → H2(C)
and that C has the appropriate Massey products.

8.1. Products. In this section we will prove the following:

PROPOSITION 12. The multiplication C−(2p−2)k+1 ⊗ C(2p−2)k+1 → C2 induces multiplication
H−(2p−2)k+1(C) ⊗ H (2p−2)k+1(C) → H2(C) given by

�/pν(k)+1 ⊗ �/pν(k)+1 �� �/�(p)

a ⊗ b � �� a
pν(k)+1

b
pν(k)+1

This will immediately give the following:

COROLLARY 13. The multiplication H−(2p−2)k+1(C) ⊗ H (2p−2)k+1(C) → H2(C) is injective.

In order to prove Proposition 12, we examine the multiplication on C∗. The multiplication
C−(2p−2)k+1 ⊗ C(2p−2)k+1 → C2 is of the form

HomB(E(1)∗−nE(1), E(1)∗E(1)) ⊗ HomB(E(1)∗+nE(1), E(1)∗E(1))

��
HomB(E(1)∗E(1), E(1)∗ ⊗ �)

given by the composition of morphisms in B.
To obtain the product in HomB(E(1)∗E(1), E(1)∗ ⊗ �), we compose with q.
We translate this into a product on our sequence representations.
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LEMMA 14. For sequences 〈am〉 and 〈bm〉 representing
∑

m≥0 am�m and
∑

n≥0 bn�n in E(1)tE(1)
and E(1)sE(1), respectively, where t = (2p − 2)k and s = (2p − 2)�,∑

m≥0

am�m ·
∑
n≥0

bn�n =
∑

m+n=i

ambn�m�npN(i+k,m)−N(i,m)+N(i+�,n)−N(i,n),

where N(i, k) are integers that depend on i and k.

Proof. Recall that when n = (2p − 2)k, we obtain the sequences using the equivalence

HomB(E(1)∗−nE(1), E(1)∗E(1)) ∼= E(1)nE(1) = E(1)0E(1) · vk
1

So, we consider

E(1)tE(1) ⊗ E(1)sE(1) �� E(1)s+tE(1)

E(1)0E(1) · vk
1 ⊗ E(1)0E(1) · v�

1
�� E(1)0E(1) · vk+�

1

for the product of elements from Ct and Cs where t = (2p − 2)k and s = (2p − 2)�. Since
E(1)0E(1) = {∑m≥0 am�m}, where �m = �m(�r − 1), we need to understand how

∑
m≥0 am�m

acts on vi
1.

If t = 0, then∑
m≥0

am�m · vi
1 =

∑
m≥0

am(ri(p−1) − 1)(ri(p−1) − r) · · · (ri(p−1) − rs(m))vi
1

=
∑
m≥0

ampN(i,m)vi
1,

where N(i, m) is some integer depending on i and m. If t = (2p − 2)k for k = 0,∑
m≥0

am�m · vi
1 = (

∑
m≥0

am�m · vi+k
1 )v−k

1

=
∑
m≥0

am(ri(p−1) − 1)(ri(p−1) − r) · · · (ri(p−1) − rs(m))vi
1

=
∑
m≥0

ampN(i+k,m)vi
1.

Applying this to the sum yields the product described in the lemma.
�

COROLLARY 15. The index zero term in the sequence 〈am〉 · 〈bn〉 is a0b0.

Proof. From the definition we see that N(i, 0) = 0 for any i, since v0
1 = 1. Since the only

way for �m�n = �0 is to have m = n = 0, this proves the claim. �
Proof of Proposition 12. We saw in the homology computation of Theorems 8 and 11

that the homology in H (2p−2)k+1(C) and H2(C) is represented by the value of the index zero term
in the sequences. Thus, to compute a product

H−(2p−2)k+1(C) ⊗ H (2p−2)k+1(C) → H2(C)

we need only consider the multiplication

C−(2p−2)k+1 ⊗ C(2p−2)k+1 → C2
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on the index zero terms of sequences. By Corollary 15, if 〈an〉 · 〈bn〉 = 〈cn〉 then c0 = a0b0.
Therefore, if we pick any

a ∈ H−(2p−2)k+1(C) = �/pν(k)+1 and b ∈ H (2p−2)k+1(C) = �/pν(k)+1,

we know multiplying them will yield the product in the quotient in H2(C) = �/�(p). Explicitly,
we first consider a and b as a

pν(k)+1 ∈ �/�(p) and b
pν(k)+1 ∈ �/�(p), respectively, in �/�(p) and then

multiply these representatives together. �

8.2. Massey products. Here, we calculate the Massey products.

PROPOSITION 16. Suppose that γk denotes an element of the cohomology

H (2p−2)k+1(C) ∼= �/pν(k)+1

such that pγk = 0. Then, the γk’s satisfy the following Massey product relation:

〈γi, p, γj〉 = γi+j

and the indeterminacy of this product is zero.

Proof. We will compute the product directly using the definition of Massey product. The
cohomology class γk must be a multiple of pν(k), and we can represent it by the cycle

a =
〈 pν(k)+1a0

0
0
...

〉
,

where a0 is some value such that ν(a0) = 0. Choosing the analogous representative for γj gives
the following cycles, a, b, and c, representing γi, p, and γj, respectively:

a =
〈 pν(k)+1a0

0
0
...

〉
b = p c =

〈 pν(k)+1c0

0
0
...

〉
,

where ν(a0) = ν(c0) = 0.
Now, we choose

u =
〈 a0

0
0
...

〉
and v =

〈 −c0

0
0
...

〉
,

where |u| = (2p − 2)i and |v| = (2p − 2)j. We can compute

d (2p−2)i(u) =
〈 pν(i)+1a0

0
0
...

〉
= pa = (−1)1+|a|a · b
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and

d (2p−2)j(v) =
〈 −pν(j)+1c0

0
0
...

〉
= −pc = (−1)1+|b|b · c.

Therefore, the Massey product 〈γi, p, γj〉 can be computed as [(−1)1+|u|u · c + (−1)1+|a|a · v].
This gives us

−
〈 a0

0
0
...

〉
·
〈 pν(k)+1c0

0
0
...

〉
+

〈 pν(k)+1a0

0
0
...

〉
·
〈 −c0

0
0
...

〉
,

which yields

〈 −2a0c0(pν(i) + pν(j))
0
0
...

〉

by our description of the multiplication in Section 8.1.
Now we can rewrite pν(i) + pν(j) as

pν(i) + pν(j) = pmin(ν(i),ν(j))(1 + pmax(ν(i),ν(j))−min(ν(i),ν(j))).

If i = j then ν(i + j) = min(ν(i), ν(j)) so pν(i)+ν(j) = pν(i+j)m, where ν(m) = 0. If i = j then ν(i +
j) = ν(2i) = ν(2) + ν(i) = ν(i). Thus, in this case pν(i)+ν(j) = 2pν(i) = 2pν(i+j).

Thus,

(−1)1+|u|u · c + (−1)1+|a|a · v =
〈 −2a0c0m(pν(i+j))

0
0
...

〉
,

where m is some value such that ν(m) = 0. Thus, we also have ν(2a0c0m) = 0 so this is an element
of H (2p−2)(i+j)+1(C) of order p which represents γi+j.

Finally, we note that the indeterminacy of the product is

γiH (2p−2)j(C) ⊕ γjH (2p−2)i(C),

which is zero because the cohomology in each of those degrees is zero. �
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