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1. The object of this note is to study the regular coverings of the closed orientable surface
of genus 2.

Let the closed orientable surface Fh of genus h be a covering of F2 and let J and ^ be the
fundamental groups respectively. Then J is a subgroup of ^ of index n = h—\. A covering
is called regular if § is normal in $.

Conversely, let J be a normal subgroup of ^ of finite index. Then there is a uniquely
determined regular covering Fh such that J is the fundamental group of Fh. The covering Fh

is an orientable surface. Since the index n of J in £ is supposed to be finite, Fh is closed, and
its genus is given by n = h — 1.

The fundamental group ^ can be defined by

$ = {a, b, c, d | a b c d a "^"^" 1 **- 1 = 1}.

If we add the relations a=b =c =d, then all relations become trivial, and we obtain the
free cyclic group as a factor group of J. Thus ^ possesses finite factor groups of arbitrary
order. In terms of geometry, every closed orientable surface of genus h ̂  2 does occur as a
regular covering of the surface of genus 2. Every fundamental group § is a normal subgroup
of $.

This simple remark may justify a study of the regular coverings of F2. In the present
paper we shall draw attention to the corresponding finite factor groups of £•

For a finite group which can occur as a factor group of $ the minimal number e of
generators clearly cannot exceed 4. For e = 2, every finite group occurs as a factor group of
5- For e = 3, there are necessary conditions. We shall give the following. Consider a
finite group (5, its lower central series (50 = (8, (Sj = (<S, <5,_i) and the corresponding factors
<£f = <S,-_i/<Sj. A necessary condition that a finite group (5 with minimally 3 generators can
occur as a factor group of ^ is that the second factor <L2 of the lower central series can be
generated by 2 elements. (In general, this factor would have 3 generators.)

For e = 4, there is an analogous condition.
In a second part, we shall continue some considerations which we have begun in the joint

paper [2]. Consider the quaternion algebra 2i over the ring T of rational integers with the
norm

N = x2 + y2-3u2-3v2.

This algebra consists of all matrices

(x + iy 3t( + 3 iv\.
\u — iv x — iy )
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50 JENS MENNICKE

Consider the group II of + 1-units (with norm +1) of 21 and the centre Q = (1, Z),

-i oy
o - 1 /

We shall prove that the factor group of U with respect to the centre § contains ^ as a subgroup
of index 2.

21 has as a homomorphic image the algebra 2lm with the same norm over the residue-class
ring Fm modulo an arbitrary integer m. The group of + 1-units of 2fm contains as a subgroup
of index 1 or 2 the homomorphic image of the group of + 1-units of 21. Thus this homo-
morphism yields a large class of finite factor groups of 5- We shall investigate the structure
of these factor groups.

2. In this section we shall prove the following theorem.

THEOREM 1. A finite factor group of the fundamental group $ cannot have a minimal number
e of generators exceeding 4.

For e = 2, every finite 2-generated group occurs as a factor group of §.
For e = 3 or 4, a necessary condition for a finite group (S to be a factor group of 5 is that

the second factor of the lower central series is at most 2- or ^-generated respectively.

Proof. It is not new that ^ possesses a free factor group of rank 2. Cf. [9].
Add the relations a = d,b = c. Then the relation abcda'1b'1c'id'l = 1 becomes trivial,

and we obtain as a factor group the free group of rank 2. This proves that every 2-generated
finite group is a factor group of $.

The non-trivial part of Theorem 1 is the necessary condition for 3-generated groups.
For convenience, we recall the definition of the lower central series of a group <S.

<80 = <S, <$i = (<S, &,._!) = { x - 1 j r 1 x V | xe<S, y s$,_,}.

The groups (8, are all characteristic in <S, and the factors <£, = <8j_i/<8, are, of course, abelian
groups.

For the proof of the condition for 3-generated groups, we need a lemma.

LEMMA 1. Let <B be a finite 3-generated group such that the second factor £ 2 of the lower
central series has minimally 3 generators. Then <S has the following factor group $>:

Um, V", W1 6 (©", ©"),

k1=u~1v~1uv = (u, v), k2 = (v, w), k3 = (w, «),
fcf = k\ = kl = 1,
ku k2, k3

(©•)

Z(©~) is the centre of S>, p is some prime, and m, n, I are integers such that p \ m , n , I.
The commutator subgroup of ©" lies in the centre and is elementary abelian of order p 3 .
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Proof of Lemma 1. Let u, v, w be generators of the factor group (8* = (8/(82. Assume
that <£j has 2 generators r<g>u JCSJ. Then we have in (S*:

u = fcr'V1,
v = fc W 2 ,
w = fc'W3,

where fc, fc', k" e © J ^ .
In (8* the commutator subgroup lies in the centre. We can apply the commutator

calculus given in [15], p. 80 ff. Applying this calculus, we deduce that

fcx = («, v) = (r, syih-'**,
k2 = (v, w) = (r, s ) ^ - ' ^ ,
k3 = (Vv)u) = (r,s)a3Pl-°"^.

The elements fcj, k2, k3 generate <£2. Our formulae show that <£2 is generated by (r, j),
which contradicts our assumption that <£2 has minimally 3 generators. Hence <£t cannot be
generated by less than 3 elements.

For the following, we need some simple arguments of extension theory. Cf. [15], § 6 ff.
and particularly § 8.

(S* is a central extension of an abelian group with an abelian factor group. Thus (8* can
be denned as follows:

um, v", w' 6 (<5*, <S*),]
fc? = fc2 = fc| = 1, \ ((5*)
kuk2,k3ez(<5*). J

The first relation determines the factor system of the extension, and the second and third
relations say that the normal subgroup is abelian and that the extension is central, i.e. the auto-
morphisms are trivial.

Since <£j cannot be generated by less than 3 elements, we conclude that {m,n,l) = d> 1.
From our assumption on <£2 we conclude that (q, r, s) =d' > 1. The formula u~mv~lumv =
( M , v)m y i e l d s q \ m ; s i m i l a r l y q \ n , r \ l , m , s \ n , l . H e n c e d' \ d.

Now let p be a prime such that p \ d'. Add the relations fcj = fc§ = fc§ = 1 to (<£>*).
This yields the factor group © of (8*:

um,v

kuk2,k2ez{W).

This is the factor group S> required in Lemma 1.
We shall now prove that ff> cannot be a factor group of 5- This will complete the proof

of our necessary condition for finite 3-generated factor groups of 5-
If there is a homomorphism of ^ onto S, then we can write

a-*a' = kuXlvyiwz\
b^b' = fc W2w1 2,
c^c' = fc'W3wzl,
d -> d' = fc"VW4,

wherefc,fc')fc")fc'"6Z((g).
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The group S> has an elementary abelian factor group of order p3 which is denned by
u" =v" = w = 1, k1 = k2 = k3 = 1. The induced homomorphism of 5 on this factor group
of 15 must be onto.

Reduce the elements xh yh zt modulo p and take the matrix

A = (xt yt z,) (* = 1 4).

Then the statement that the above homomorphism must be onto yields that the rank of A must
be precisely 3.

The element R' = a'b'c'd'a'~ib'~lc'~1d'~y lies in the commutator group of©; hence it
can be expressed by means of ku k2, k3:

R' = k\kik\.

Since the commutator group of 3> is elementary abelian of order p3, the relation R' = 1 yields
the equations

a = p = y = 0,

which hold in the prime field of characteristic p.
By means of the above mentioned commutator calculus, it is not too difficult to evaluate

a, p, y explicitly. We obtain:

(-x1 + x3+x4)+y3(xi + x2-x^+y^(x1+x2+x3) = 0,
=0,
= o .

We can pass from xu x2, x3, x4 to x2 + x3 + x4, — xi + x3 + xA, xi+x2 — x4., xt+x2 + x3

by means of a non-singular linear transformation. Hence we can assume that

Then we have

We substitute these terms for yu zt in the matrix A. After elementary transformations of A
we obtain the matrix

A' = 0
x2

x3
XA

0
y2

J4

0

^3

^4

If we substitute yu zt in the third of the three above equations, then we obtain

x'l(x2y3z4+x3yAz2+x4y2z3-xAy3z2-x2yiz3-x3y2zA) = 0.

The term in brackets is exactly the determinant of the last three rows of the matrix A'. Hence
the matrices A and A' have a rank at most 2. This completes the proof of our necessary
condition for 3-generated finite factor groups of 5-
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The condition for 4-generated factor groups is readily proven by the identity

abcda-^-1^1^1 = (a, d)(a, c)(a, b)(b, d)(b, c)(c, d),

which holds in the factor group SI Si of the lower central series.
This completes the proof of Theorem 1.

3. In this section, we shall continue some considerations which we have begun in [2].
Many of the subsequent ideas are due to a collaboration with P. Bergau.

We shall recall briefly some results from [2]. It is convenient to extend the fundamental
group $ to a group p as follows:

A2 = B2 = C2 = D2 = E2 = F2 = 1,1
ABCDEF = 1 . J W)

$ is the subgroup of p of index 2 which consists of all even products of generators.
The group p can be represented as a tessellation group in the hyperbolic plane. Consider

the tessellation {6, 4} with regular hexagons such that 4 hexagons meet at each vertex. Con-
sider the group of hyperbolic motions which is generated by the reflections in the vertices of
this tessellation. This group is isomorphic with p . The generators A, B, C, D, E, F are the
reflections in the vertices of a basic hexagon.

If)

Figure I

In [2] the hyperbolic plane was imbedded into the projective plane by means of the
quadratic form

/fe, S) = -±(x2+y2 + z2) + ±(xy + xz+yz), (1)

and integral coordinates were found for the vertices of the basic hexagon in such a way that
all the vertices of the tessellation were shown to have integral coordinates which satisfy

/ (E,J)=1- (2)
(2) determines the homogeneous coordinates of the vertices up to a common factor +1 .
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It was stated without proof in [2] that all points with integral coordinates which satisfy
(2) are vertices of the tessellation. Since this statement is essential for the subsequent con-
siderations, we shall give a proof here.

The tessellation group p has a fundamental domain consisting of the basic hexagon and
an adjacent hexagon. All points of the hyperbolic plane are congruent to points in the
fundamental domain by means of motions of p .

Suppose that there is a point P with integral coordinates satisfying (2) which is not a
vertex of our tessellation. The motions of p can be represented by orthogonal matrices with
integral elements, so that they map onto itself the set of points with integral coordinates
satisfying (2). Hence, there is no loss of generality in assuming that P lies in the fundamental
domain.

The adjacent hexagon is obtained from the basic hexagon by the side-reflection a with
respect to the line (A, B) (fig. 1). We can write a as an orthogonal matrix with integral
elements:

(7= / I 0 0 \ ,
4 - 1 4

\0 0 1/
which again maps onto itself the set of points with integral coordinates satisfying (2). Hence
we can assume that P lies in the basic hexagon.

Let

'"0
be the coordinates of P. The centre Z of the basic hexagon has the coordinates

The hyperbolic cosine of the distance between two points with coordinates 5, y in the
hyperbolic plane can be expressed by means of the quadratic form (1):

d f(h Y)

Cf. [11], p. 183 and [8]. For the points P, Z this expression reduces to

<* = ̂ f Z (3)
The hyperbolic cosine d = $(ex+e~x) is a monotonic function of the distance x.

The maximum of d in (3) in the basic hexagon is d = ^ 3 , which is attained if P is one of
the vertices. The minimum of dis obviously d=\. Hence we have the inequality

J3^x+y+z<3. (4)

We can write (2) in the form

-±(x+y+z)2+2(xy+xz+yz) = 1. (5)
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We conclude that ±(x+y+z)2 must be an integer. From (4) we obtain

x+y+z = 3.
Eliminating x from (5) by means of the last equation, we obtain a diophantine equation

in y,z:
(3-y-z)(y + z)+yz = 2.

One can readily verify that this equation has but a finite number of solutions which yield
exactly the vertices of the basic hexagon. Hence there are no points with integral coordinates
satisfying (2) which are not vertices of the tessellation.

For our purposes, it will be convenient to introduce another quadratic form instead of (1):

g = r2-3s2-3t2. (6)

The transformation from (1) to (6) is given by
x = 2r+3s-2t>\ r = y+2z
y = r-2t \, s =
z = t J t = z

In Fig. 2 we have given the new coordinates of the vertices of the basic hexagon. We represent
the reflections in the vertices as orthogonal matrices:

A= I 31 48 - 2 4 \ , B= I 7 12 0 \ , C = / I 0 0\
( - 1 6 - 2 5 12 - 4 - 7 0 0 - 1 0
V 8 12 - 7 / V 0 0 - 1 / \ 0 0 -1>

E= I 31 24 - 4 8 \
I - 8 - 7 12
V 16 12 -25>

F= I 49 60 — 60\
( - 2 0 - 2 5 24
V 20 24 -25>
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The full orthogonal group with respect to (6) over the ring of rational integers contains p
as a subgroup of index 12. The corresponding cosets are represented by the reflections in the
mid-points of the sides of the basic hexagon, and by a rotation of 90° about each of the 6
vertices.

In the full orthogonal group, all vertices are congruent. It is not difficult to show that
there are exactly 4 orthogonal matrices with integral elements which leave one vertex fixed.
Hence the above enumeration of cosets of p in the full orthogonal group is complete, and the
index is exactly 12.

We shall now apply, in a slightly modified form, an argument of L. E. Dickson which he
has given in his proof for the exceptional isomorphisms between certain orthogonal groups of
rank 3 and linear homogeneous groups of rank 2 over Galois fields. Since Dickson's argument
is given in detail in [7], § 178, p. 164 ff., it will be sufficient to state our result.

Let a, b, c, d be integers satisfying

a2 + b2-3c2-3d2= 1. (8)

Then the orthogonal group of all matrices

X= Za2 + b2 + 3c2 + 3d2 —6{ad—bc) — 6(ac + bd) \ (9)
( -2{ad+bc) a2-b2-3c2 + 3d2 2(ab+3cd) j
\ -2{ac-bd) 2(-ab + 3cd) a2-b2 + 3c2-3d2/

is isomorphic with the linear homogeneous group of all matrices

7 = fa+bi 3c+3<fi\. (10)
\c—di a — bi )

The adjective " homogeneous " indicates that a, b, c, d are determined up to a common factor
+ 1 . Clearly this does not affect the matrix X.

Not every element of the full orthogonal group can be represented in the form (9), e.g. the
reflection in the mid-point of the segment (A, B), which is given by

T = / 11 18 - 6 \ ,
- 6 - 1 0 3

\ 2 3 - 2 /
cannot be so represented. We must investigate which elements can be expressed in the form (9),
and hence are mapped by the above isomorphism onto elements of the linear homogeneous
group.

The matrices (7) can be expressed by (9), being the matrices of the set (9) corresponding to
the following matrices of the set (10):

A=(Ai 6 + 3A, B=(2i 3\, C = (i 0\,
^2-i -Ai ) \\ -2i) \0 -i)

(11)
D=(2i 3A, E= I Ai 3 + 6A, F = ( Si 6+6A.

^-i -2i) \l-2i -Ai I \2-2i -5i )

Hence all elements of p can be expressed by (9). An elementary calculation yields that the
above mentioned 12 representatives of the cosets of p in the full orthogonal group cannot be
expressed by (9). Hence the subgroup of the full orthogonal group which is mapped onto the
linear homogeneous group is exactly p .
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Obviously (10) is a matrix representation of the quaternion algebra 21 with the norm

N = a2 + b2-3c2-3d2 (12)

over the ring of rational integers. Let II be the group of +1-units of this algebra. Consider
the element

Z= f - l 0\ and § = (1,Z)./-I 0\
I 0 -l)

(13)

The group § lies in the centre of U, and one can easily verify that it is exactly the centre of 11.
Define

(14)

Then we have:

THEOREM 2. Consider the group Uof + l-units (with norm +1) of the quaternion algebra ithw
the norm (12) over the ring of rational integers, and the factor group 1\+ ofU modulo the centre.
U+ is isomorphic to p."

11+ £ p . (15)

This isomorphism is given by (11).

4. Let T be the ring of rational integers, Fm the residue-class ring modulo an arbitrary
integer m, and 2lm the quaternion algebra over Tm with the norm (12). There is a natural
homomorphism of 21 onto 2(m which is induced by T -»Tm. The group of units of 21 is mapped
homomorphically into the group of units of Hm. rv

In this section, we shall investigate this homomorphism,
which, by Theorem 2, induces a homomorphism of p onto a
finite factor group of p .

We shall first treat the case (m, 6) = 1.

THEOREM 3. Let (m, 6) = 1.

(a) The group of + l-units o/2fm is isomorphic to the special
linear group SL(2, mi).

(b) The group of + l-units of 21 is mapped onto SL(2, m).
(c) Define Z as in (13), but over Tm, and g> = (1, Z). The

induced factor group ofp is isomorphic to SL(2, w)/§.
(d)Let pm be the normal subgroup consisting of those elements

of p which are congruent to 1 modulo m, and fm the corres-
ponding subgroup of §. Then the induced homomorphism of 5 is
characterised by Fig. 3:

Figure 3

P/pm s SIL = SL(2,
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Proof. Consider the + 1-units of 2Im:

Y= (a+bi 3c+3di\ with a2+b2-3c2-3d2 = 1 (modw), (16)

\c—di a—bi /

and the elements of SL(2, m):

F = (a P\ with a.d-Py=\ (mod m). (17)
[y 8)

We shall try to establish the isomorphism between the group of + 1-units of 2tm and SL{2, m)
as a linear relation <j)(Y) = Ybetween the coefficients of Y, Yrespectively:

<x\ =(p,j) / a \ (modw). (18)

In order to determine the coefficients ptJ of (18), put

(19)

Moreover, the function </> must satisfy the condition

Y2). (20)

(19) and (20) yield a certain system of equations for the coefficients p.j which can be solved as
follows:

(mod m), (21)
P= -b-p^c+p^d
y= b-
8= a-

+ P? = 3 (modrn). (22)

The congruence (22) can always be solved.
The determinant of (21) is 12 (mod m). Hence, because of (m, 6) = 1, the correspondence

(21) between (16) and (17) is one to one. Hence (21) defines an isomorphism between the
group of + 1-units of 2Im and the group SL(2, m).

We shall now prove that the homomorphism of the group of + 1-units of 21 into the group
SL(2, m) is onto.

SL(2, m) is generated by the elements

U =

It will be sufficient to show that U, V have counterimages which are units in 21.
U has a unit counterimage, by (19). We must investigate the counterimages of V.
Express a, b, c, d in terms of a, /?, y, 8 by means of (21), and put a = y = 8 = 1, /? = 0.
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Then we have

(mod m),

1 + b2
0 - 3c2, - 3d2, = 1 (mod m).

The corresponding equations in integers are

a = l + xm,
b = bo + ym,
c = co + um,
d = do+ vm,

l + bl-3c2,-3dl = l + km. (24)
V has a unit counterimage if there are integers x, y, u, v such that

We obtain from (25)

fc + 2x + 2bo_y-6cow-6doi; + m(x2-l-)>2-3u2-3i;2) = 0.

Split up this equation, obtaining

k + 2x + 2boy - 6cou - 6dov + m w = 0, (26)

x
2 + y2-3u2-3v2 = w. (27)

Put
x = xo-bor+3cos + 3dot,\
y = boxo + r,
u = coxo + s,
v = doxo + t,

where x0, r, s, t are parameters. Substitute (28) in (26) and (27), obtaining

2( l+km)x o +mw=-fc , (29)

fir, s, t) = (1 + bl)r2 + 3(3c2.- l)s2 + 3(3d2-l)t2-6bocors-6bodort + I8codost, (30)

f{r, s, t) = w — (1 + km)xl = N, say. (31)

(29) is a linear diophantine equation in x0, w which can always be solved. (30) is an indefinite
ternary quadratic form. (31) says that this form must represent a certain number N which
comes from a solution of (29). Thus we have reduced the problem of evaluating a unit
counterimage for V to the problem of representing a certain number by a certain ternary
quadratic form.

We can apply the theory of quadratic forms. There is a theorem of A. Meyer [10, p. 189]
which gives sufficient conditions under which there is but one class in the genus of an indefinite
ternary quadratic form.

Let A be the matrix of/, and Q the g.c.d. of the two-rowed minors of A. Then the deter-
minant d of A can be written as d — Q2A, where A is an integer. The form F with the matrix

https://doi.org/10.1017/S2040618500034316 Published online by Cambridge University Press

https://doi.org/10.1017/S2040618500034316


60 JENS MENNICKE

A'1d/Sl is called the reciprocal form of/. A form is called properly primitive if the g.c.d. of
all coefficients is 1 and the coefficients of r2, s2, t2 are all odd.

In our special case we have

3c + b + l)t
+ 18bocors+18bodQrt + I8codost.

Now Meyer's criterion is as follows:
An indefinite ternary quadratic form has but one class in its genus if the following conditions
hold:

(1) the form/and its reciprocal form F are both properly primitive;
(2) the numbers Q, X are relatively prime and neither is divisible by 4.
One can easily verify that in our case one can fulfil these conditions. If b0 is odd, replace

it by bo + m, and similarly for c0, d0, so that b0 = c0 = d0 s 0 modulo 2. Then/and F are
both properly primitive. Cl and X are relatively prime, because the congruence 1 + b2 = 0
modulo 3 has no solutions. Moreover, we have X = 1 + b2 — 3c2 — 3d2 = 1 modulo 4. Thus all
conditions of Meyer's criterion are fulfilled, and we conclude that there is but one class in the
genus of/.

If there is but one class in the genus of an indefinite ternary quadratic form /, then the
number N is represented by/if and only if the congruence

/ = JV(modp"+1) (31a)
is solvable for every prime p \ 2d, where p* is the highest power of/? dividing N or 4N according
asp is odd or even. Cf. [10, p. 186].

From (29), (31) and (24) we deduce that
m2N=\ (mod (1+ton)).

N$0 (mod 2) and (mod 3).
Hence (N, Id) = 1, and /z = 0 for p odd and /i = 2 for p = 2.

For p odd and p ^ 3 the form /(mod p) has rank 2. It is not difficult to see that a binary
quadratic form in the prime field of characteristic p represents all numbers of this field. Hence
(31a) is solvable.

For/? = 3,/reduces to
f = (\ + bl)r2 (mod 3).

Hence (31a) is not solvable only when N= - (1 + b2) (mod 3). One can easily see that the
solution *0, w of (29) can be chosen such that N$ - (1 +b$ (mod 3).

For p — 2, (31a) takes the form

/ == N (mod 8).
We had chosen b0, c0, d0 even. We can even choose b0 = c0 = d0 = 0 (mod 4). Then we have

/ = r2-3j2-3*2(mod8).

The congruence (31a) is not solvable only when iV = - 1 (mod 8). One can readily verify that
the solution x0, w of (29) can be chosen such that N =|= - 1 (mod 8).

Hence (31a) can be solved for all relevant primes. We conclude that / represents the
number JV of (31).

This proves that V has a counterimage which is a unit in 21.
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To prove the third assertion of Theorem 3, we need only remark that (21) maps the element
of 2{m onto the element / - I 0\ of SL(2, m)./-I 0\

I 0 -l)
/-I ON

I 0 -\)
We shall now prove the last part of Theorem 3. The induced factor group of 5 must be

of index either 1 or 2 in SL(2, m)lQ. Consider the generators

U =

(32)

of SL(2, w)/§. They satisfy the relations

l / 2 = w3 = (UW)m= 1.

Assume that SL(2, m)/© has a subgroup of index 2. Then the commutator subgroup is con-
tained in this subgroup. Add the relation

U~lW~1UW = l

to (32). Then we obtain the trivial group as a factor group, which contradicts our assumption
that there is a subgroup of index 2. Hence the induced factor group of ^ is as in Theorem 3,
and our proof of Theorem 3 is complete.

For the remaining cases, it will be convenient to have the following lemma.

LEMMA 2. Let m = mim2 and {mu m2) = 1. Then the group Um of +l-units of 2tm
is the direct product of the corresponding groups for mu m2:

Um 3 Umi x Umi. (33)

Proof. Let Kmi, Km2 be the normal subgroups of those + 1 units of Um which are = 1
modulo mu m2 respectively. Consider an element of llm:

Y= la+bi
\c — di

3c+3di\
a — bi j

with a 2 + b 2 - 3 c 2 - 3 d 2 = 1 (mod in).
Determine a', b', c', d' modulo m such that

a' = a
b' = b
c'=c
d'sd

(mod m2),

a' =
b' =
c' =

(mod mj.

Put

7, = (a' + b'i(a' + b'i
\c'-d'i

3c' + 3d'i\,
a'-b'i ) Figure •
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and determine Y2 by Y2 = Y{~i Y. Then we have Y1 e Kmi, 72 e Km2. Thus we can decompose
every element Y of Um into a product of elements of Kmi, Km2. Obviously the intersection of
Kmi and Km2 is 1, which completes the proof of the lemma.

Next we consider the case m = 3sz, (z, 6) = 1. We shall prove

THEOREM 4. Let m = 3% (z, 6) = 1.

(a) The group U3, of +l-units o/2I3» is an extension of a 2-generated 3-group of order
3 3 s - 1 with a factor group elementary abelian of order 4.

(b) The group of + l-units of 21 is mapped onto the group of + l-units oflXm.
(c) The induced factor group of p is a factor group ofUm with respect to a normal subgroup

of order 2. The induced factor group of $ is of index 2 in the factor group of p .

Proof, (a) Consider the group U3,.
First take s = 1. The congruence

a2 + b2 = l (mod 3)
has only the solutions a = ± 1 , 6 = 0 and a = 0, b = + 1 . Now take s ^ 1. The elements
with a = + 1 , b = 0 (mod 3) form a normal subgroup H = H3,, which is of index 4.

For s = 1, this group is of order 9. Every +l-unit of 2I3s-i can be extended in exactly
33 ways to a + 1-unit of 2l3s. Thus the group H3S has the order 33s"1.

We shall now prove that H is generated by the elements
R= 1-2 3 \ , S= 1-2 3/ \ .

\ 1 -2] \-i -2)

2T3,-i is a factor group of H3S with a kernel K of order 33. This kernel is generated by the
elements

6 1 = / l + 3s-1i 0 \ , Q2=(l 0 \ , Q3=( 1 0\ .

We assert that K is contained in the Frattini subgroup <j>(Xl). H is a/>-group (with p = 3). In
a /j-group, the Frattini subgroup contains the commutator subgroup. Define

\ 3 S " 2

Then we have

\ y-'t l-y-
1 0\, Q.SQ^S-'= ( 1 0\.

31-1. i/ \-y~l V

This proves that K is contained in the commutator group of H, and hence in the Frattini
subgroup <KH).

One can easily verify that for s = 2, XI is generated by R, S. Assume that for s > 2, H3,-i
is generated by KK, SK. Then H3i is generated by R, S, K, and because of K c 0(ZI3.) by R, S.
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b =
c =
d =

-2

0
1
0

(a+bi
\c-di

• (mod 3s),

3c+3di\
a-bi )

a = l

c = O
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The factor group U3,/H is elementary abelian of order 4. Take as generators
T=(i 0\, Z = / - l 0\.

\0 ~i) \ 0 -I)
Then the group U3, is generated by R, S, T, Z. The group Q = (1, Z) is a direct factor.

(b) We shall now prove that for m = 3sz, (z, 6) = 1, the group U of + l-units of 21 is
mapped onto the group Um of + l-units of 2lm.

l\m is a direct product, by Lemma 2. Take as generators for tlm the generators of the direct
factors. For R this would be

with
a = - 2 ] a = l"
h = n », = n

(mod z). (34)

The congruences (34) have a unique solution modulo 3'z. We must show that there is a
+ 1-unit in 21 which has the solution of (34) as its image. The proof is essentially the same as
for Theorem 3, and we can omit it here, as well as the explicit consideration of the other
generators.

(c) In order to prove the last statement of Theorem 4, we first remark that for m = 3' the
induced factor group of p is U3,/§, the subgroup § of U3» being factored out. In order to
obtain the induced factor group of p for m = 3sz, form the direct product according to Lemma
2, and factor out the subgroup § of order 2.

Now take the generators (11) of p. Obviously the products AC, BC, DC, EC, FC
generate the subgroup ^. For all these products we have a = +1, £ =0 (mod 3). Hence this
is valid for all elements of 5- However, it does not hold for the element C of p . So we have
a criterion for £ which is purely arithmetical. This criterion is inherited by the induced
homomorphism modulo m = 3"z. Hence the induced factor group of 5 is of index 2 in the
factor group of p . This completes the proof of Theorem 4.

Notice that in terms of Theorem 3{d) and Fig. 3 the statement that the induced factor
group of 5 is of index 2 in the factor group of p is equivalent to pm cz £•

Last we consider the case m = 2r3sz, [z, 6) = 1. We shall prove

THEOREM 5. Let m = 2r3sz, (z, 6) = 1.
(o) The group \\2r is a 2-group of order I3"'1 for r>\ and 2 3 for r = 1. It has a direct

factor of order 2:
U2P=§2xU2V

For r > 1, U2r has minimally 5 generators, and for r = 1 it has 3 generators.
(b) By Lemma 2 and (a) we have

The group U of + l-units of 21 is mapped onto the subgroup U^ of the group Um of + l-units ofllm.
(c) The induced factor group of p is a factor group of)\*m with respect to a subgroup of order

2, except for m = 2, where the factor group of$is)\\. The induced factor group of $ is of index
2 or 1 in the factor group of p according as s > 0 or s = 0.
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Proof, (a) Consider the groups U2r-
For r ^ 2, these groups are exceptional.
For r = 1, one can easily verify that U2 is elementary abelian of order 23, and generated

by the elements

B= (0 A, C= // 0\, P 1 = /l + i 1 \ .
vi <v \o / / v i l+i-;

For r = 2, the group U4 is elementary abelian of order 25, and generated by the elements

F= I i 2 + 2A, yl = / 0 2 - A , B = 111 - A ,
V2+2i i / \ 2 - / 0 / \1 2iJ

C= /i 0 \ , P2= fl + 2i 0 \ .
\0 -i) \ 0 1 + 2/7

Forr > 2, weshallprovethatn2risoforder23r~1. Consider a solution of the congruence

a'2 + b'2 - 3c'2 - 3d'2 = 1 (mod 2r~»).

Write this congruence as a congruence modulo 2r:

a'2 + b'2 - 3c'2 - 3d'2 = l + k2r~l (mod 2r), fc = 0, 1.

The solutions with k = 0 form a subgroup of index 2. Take a solution modulo 2'"1 with
fc = 0, and put

= c' + u2r _ i r (mod2r),

where x, y, u, v take the values 0, 1 independently. Then a, b, c,disa solution of the congruence
modulo 2P. Thus for every solution modulo 21"' with k = 0 there are 24 solutions modulo 2r.
The solutions modulo 2r~' with k = 1 cannot be extended to solutions modulo 2r.

Assume that the order of tl2,-, is 23r"4. Then the order of ll2r is 23r~*+4~l = 23'"1.
For r > 2, the group U2r is generated by the elements

F=(5i 6 + 6A, A= I Ai 6 + 3A, B = (2i 3\,
\2-2i Si ) \2-i -Ai I U -2i)

C=(i 0 \ ,) , P = / - l + 2r"1 0 \ .
0 -il \ 0 - l + 2'-V

The proof is as in Theorem 4(a), and we can omit it here.
F, A, B, C generate a subgroup U'2r of index 2, and the group § 2 = (1, P) is a direct factor:

U2r = Q2 X l l 2 r .

This statement will follow from the proof of (b).
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(b) We shall prove that P has no counterimage which is a unit in 21. Consider the equations

a= - l + 2r~1+x2r,
b = yY,
c = uY,
d = vY,
a2 + b2-3c2-3d2 = l.

From these equations we deduce that

For r > 2, this equation is not solvable in integers. Hence P has no counterimage which is a
unit in 21. The same result holds for P2 and Pt.

The elements F, A, B, C have unit counterimages in 21. Hence all elements of U^ have
unit counterimages, and the group II of + 1-units of 21 is mapped onto Uj-.

From this it follows, in particular, that the group § 2 = (1, P) is a direct factor in U2,.
For the remaining part of the proof of statement (b), we can proceed as in the proof of Theorem
4(6).

(c) For the first part of the statement (c) and for the second part if s > 0, we can refer to
the proof of Theorem 4 (c).

If s = 0, according to the remark at the end of the proof of Theorem 4 (c) we must show
that pm * $.

Take the module rri = 2r3z, and take a + 1-unit

Y'=(a+bi 3c+3di\
\c—di a—bi )

of ilm. such that

a=\,b = c = d=0 (mod Yz),

a = 0,b = l,c = d=0 (mod 3).

We have Y' e 11^", and hence, by Theorem 5 (b), Y' has a counterimage Y which is a unit in 21.
Now Yis not contained in & by the criterion given in the proof of Theorem 4 (c). But Ye pm

for m = Yz. Hence pm £ 5-

This completes the proof of Theorem 5.
I am indebted to Professor Macbeath for very valuable comments which led to some

augmentations and linguistic improvements.
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