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Abstract. We study the dynamics of continuous maps of the circle with periodic
points. We show that the centre is the closure of the periodic points and that the
depth of the centre is at most two. We also characterize the property that every
power is transitive in terms of transitivity of a single power and some periodic data.

1. Introduction
In this paper, we study the dynamics of continuous maps of the circle to itself. We
prove analogues of results for maps of the interval due to A. N. Sarkovskii and to
M. Barge and J. Martin.

In [8], Sarkovskii showed that for maps of the interval, the centre is the closure
of the periodic points, and that the depth of the centre is at most two. The analogous
result for maps of the circle is:

THEOREM A. For continuous maps of the circle with periodic points, the centre is the
closure of the periodic points, and the depth of the centre is at most two.

For continuous maps of the circle without periodic points, the centre and its depth
are easily determined from the description of such maps given by J. Auslander and
Y. Katznelson [1], see § 3.

In [2], [3], Barge and Martin proved results which yield the equivalence of (l)-(4)
in the following theorem.

THEOREM B (Barge & Martin). Let f: I -» / be a continuous map of a compat interval
to itself. Then the following statements are equivalent.

(1) f is transitive and has a point of odd period greater than one.
(2) f2 is transitive.
(3) / " is transitive for every n>0.
(4) f is topologically mixing.

Furthermore, if f is piecewise monotone, then the following statement is equivalent to
the rest.

(5) For every interval J ^ I, there is an n such that / " ( / ) = /.

We complete the proof of theorem B by showing that (3) implies (5) if/ is piecewise
monotone, and we prove the following analogue of theorem B for maps of the circle.
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2 E. M. Coven and I. Mulvey

THEOREM C. Letf:S->S be a continuous map of the circle to itself. Then the following
statements are equivalent.

(1) There is an m such that f" is transitive and has a fixed point and a point of
odd period greater than one.

(2) There is an m such that f2m is transitive and fm has a fixed point.
(3) / " is transitive for every n>0 and f has periodic points.
(4) f is topologically mixing.

Furthermore, if f is piecewise monotone, then the following statement is equivalent to
the rest.

(5) For every interval J c S, there is an n such that f(J) = S.

The authors thank Louis Block for stimulating remarks about the centre, which
resulted in a much-improved § 3 of this paper.

2. Preliminaries
Throughout this paper/: X -* X will denote a continuous map of a compact metric
space to itself; f° is the identity map, and for every n >0, f"+1 =f" °f. (We reserve
the lower-case letters i, j , k, m and n for non-negative integers.)

A set E c X is invariant if / ( £ ) £ E, E" and E denote the interior and closure
of E, and the orbit of x e X is Orb (x) = {/"(*) | n > 0}.

A point x e X is periodic if there is an n > 0 such that f(x) = x. The least such
n is called the period of x. A point of period one is called a fixed point, x is
non-wandering if for every neighbourhood U of x, there is an n > 0 such that
Unf~"(U)^0. We denote the periodic and non-wandering points of /by P(f)
and Sl(f).

The centre of/ denoted C(/), is defined as follows. Let Clo = X, Cla =fl(/|ft«_,)
for successor ordinals a, and Cla = Pl,3<a dp for limit ordinals a. There is a least
(necessarily countable) ordinal S such that fts =ft5+1 = . . . . The centre of/ is Q,s
and 5 is called the depth of the centre.

A map f:X-*X is called transitive if any (and hence all) of the following
equivalent conditions holds.

(1) For every pair U, V of non-empty open sets, there is an n such that f~"{U) n

(2) The only closed invariant set K with K° ̂  0 is K = X.
(3) If E°*0, then\Jn^or(E) = X.
(4) / is onto and there is a point with a dense orbit.

/ is called topologically mixing if for every pair U, V of non-empty open sets, there
is an TV such that /""(U) n W 0 for every n > N.

Since we shall be concerned with transitivity for powers of a map, the following
lemmas will be useful. They are probably folk-results. In any case, we omit the
straightforward proofs.

LEMMA 2.1. Letn> 2. Iff: X -> X is transitive butf" is not, then there is a closed set
K T* X with K° # 0 and a divisor m > 1 of n (m = n is possible) such that
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(1) fm(K) =
(2)
(3)

LEMMA 2.2. Iff"1 andf" are transitive, then so isf"n.

We will show in § 3 that for a transitive map of the circle with periodic points, the
periodic points are dense. Thus for any such map / and for any n > 0, / " has dense
periodic points, although / " need not be transitive.

LEMMA 2.3. If the periodic points of f are dense, then for every connected set E with
£ ° # 0 , Un>o/"(£) has finitely many components. These components have non-empty
interior and are permuted by f.

If X is either a compact interval / or the circle S, then by an interval J c X we
mean a non-degenerate, proper sub-interval of X.

Each continuous f:S^>S can be lifted to (countably many) continuous maps
F: R -*U satisfying f°ir=iT°F, where IT : U -»• 5 = R/Z is the canonical projection.
Whenever / has a lift F such that F ( / ) c / for some compact interval / = [0,1],
this happens for maps of degree zero and for certain maps of degree ±1, we will
abuse notation and write F and ir in place of F \ I and IT | /. Note that in this case,
F is a map of the interval and / is a factor of F.

3. The centre and its depth: theorem A
A. N. Sarkovskii [8] showed that for maps of the interval, the centre is the closure
of the periodic points, and that the depth of the centre is at most two. (For proofs
in English, see [6] or [9].) Theorem A, proved in this section, is the analogous result
for maps of the circle.

We say that an interval / c 5 is one-way (with respect to f:S->S) if whenever
x, y, fm{x), f"(y)eJ and the circle is oriented so that if [x,fm(x)]cj, then

LEMMA 3.1. If J is a one-way open interval, then JnCl(f\fi(f)) = 0 .

Proof. As in [6] or [9], one shows that if xe / n f i ( / ) , then f(x)i£J for every
n > 0, and the result follows. •

LEMMA 3.2. Let J be an interval which contains no periodic points. If Ukao/ k (^) is
not the whole circle, then J is one-way.

Proof, (a la Coppel [6]). Fix z £ Uk^ofk(J)- Suppose that x, fm(x) e J and that the
circle is oriented so that [x,/m(x)]c J.

Claim: fkm(x)e [fm(x), z) for every k>0.

If not, let k be the least positive integer for which the claim fails. Thus fc>2 and
/("-1)m(x)e[/m(jc),z). Since z^/<fc-1)m[x,/m(x)], it follows that [x,/m(x)]u
/(*~1)m[x,/m(x)] is an interval and/(lc"1)m maps x and/™(x) in opposite directions
in this interval. Therefore /(ft"1)m has a fixed point in [x, /m(x)]c/ . Since this is
impossible, the claim is proved.
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Now suppose that y, f(y)eJ and that [y,f(y)] is not a subset of /. Then
U"i.y), y] £ J and the argument above shows that fk"(y) G (z,f(y)] for every fc> 0.
It follows that fmn(x)e[fm(x),z), fmn(y)e(z,fn(y)], and x*y. Let K be the
subinterval of / whose endpoints are x and y. Then zf£fmn(K) and so K u/™"(K)
is an interval. But /m" moves the endpoints of /C in opposite directions in this
interval, and hence fm" has a fixed point in K. This contradicts the assumption that
there are no periodic points in /. •

LEMMA 3.3. Iff has non-zero degree andf(x) # x, then there are disjoint open intervals
Jand K such that xeJ =f(K).

We omit the straightforward proof.

THEOREM A. For continuous maps of the circle with periodic points, the centre is the
closure of the periodic points and the depth of the centre is at most two.

Proof. Iff has degree zero, let F: /-> / be a lift of/ to a map of a compact interval
/ 2 [0,1]. The projection map IT : / -* S is finite-to-one, hence ir[P(F)] = P(f) and
[5, proposition 3], ir[n(F)]=fl(/). By Sarkovskii's result, Q.(F\il(F)) = P(F),
hence n(/|n(/)) = P(7).

Suppose then that/has non-zero degree. It suffices to show that ft(/| H(/)) c P(f).
Suppose x£P(f). We may assume that for every open interval J containing x,
Uk>ofk(J) is the whole circle, for otherwise by lemmas 3.1 and 3.2, xiil(f\n(f))
and the proof is complete.

Let E be the orbit of a periodic point, and let n be the number of points in E.
Since/'(x) 7s x for 1 < I < M , there is an open interval K containing x such that
Knf'(K) = 0 for l < / < n . Applying lemma 3.3 to /", there are disjoint open
intervals Jo and /„ such that xe Jn=f(J0). Without loss of generality, /„ c K and
there are no periodic points in /„. Let Jt =f(Jo), l s i < n - l . Then the collection
J0,...,Jn is pairwise disjoint. Let y be any point in a component of S - (Jo u • • • u /„)
which doesn't meet E. There is an i such that / '(/„) n E ^ 0 and an m such that
yef"{Jn). Since/' is onto, we can choose m a /. Thus/""(./„) contains y and meets
E, and hence /„ /""-covers [4] at least one of the intervals Jo,---, Jn- It follows that
Jn /''-covers itself for some k^m. But then Jn contains a periodic point. •

By embedding the appropriate maps of the interval in the circle, one may construct
examples of maps of the circle with periodic points whose centres have depths zero,
one, and two.

A map of the circle without periodic points is either topologically conjugate to
an irrational rotation or is much like a Denjoy homeomorphism: there is a unique
minimal (Cantor) set M such that for each component J of 5 - M, fk(J) n / = 0 for
every k > 0 [1]. In the first case, the centre is the whole circle and its depth is zero,
and in the second case, the centre is the minimal set M and its depth is one.

COROLLARY 3.4. For transitive maps of the circle with periodic points, the periodic
points are dense.

This follows from theorem A and the fact that, in general, for transitive maps every
point is non-wandering and hence the centre is the whole space.
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4. Transitivity for maps of the interval: theorem B
In this section we complete the proof of theorem B and derive some consequences
of it.

THEOREM B (Barge & Martin). Letf: I^lbe a continuous map of a compact interval
to itself. Then the following statements are equivalent.

(1) f is transitive and has a point of odd period greater than one.
(2) f2 is transitive.
(3) / " is transitive for every n>0.
(4) / is topologically mixing.

Furthermore, if f is piecewise monotone, then the following statement is equivalent to
the rest.

(5) For every interval Js I, there is an n such thatf"(J) = /.

We remark that (l)-(4) hold but (5) does not for the map in [3, example 5].
The implications (5)=£(4)=»(3)=>(2) are immediate consequences of the

definitions, (2)=»(1) is theorem 13 of [3], (1)=»(2)=>(3) is lemma 2 of [2], and
(3)=2>(4) is part of the proof of theorem 6 of [3].

To complete the proof of theorem B it suffices to show:

LEMMA 4.1. Letf.I^I be piecewise monotone. Iff" is transitive for every n > 0, then
for every interval Js I, there is an n such that / " ( / ) = /.

Proof. If there is an interval K c J° such that f2(K) = /, then the conclusion of the
lemma holds. For if J s / is an interval, by [3, theorem 6] there is an n such that
f"(J)=>K. Hence fn+2(J) = I.

So we suppose that/2(.K) ¥• I for every interval K c I". Without loss of generality
/ = [0,1]. Since / is onto, either /"'(()) s{0,1} or f~\l)c{0,1}. It follows that
either /~2(0) = {0} or /"2( l ) = {1}. We assume the former.

Let t be the smallest turning point of/2. Then/2 has no fixed points in (0, t) and
f2(x) > x for every x e (0, /). (If not, then /2(x) < x for every x e (0, t), and hence
[0, t] is /-invariant.) But f\t, 1] c [s, 1] for some 5 > 0. Thus f[t, 1] c [s, 1] for
every n > 0, contradicting the assumption that f2 is transitive. •

A standard compactness argument shows that the integer n = n(J) in the lemma
depends only on the length of /.

A piecewise monotone map / : / - » / is called strongly transitive [7] if for every
interval / c /, there is an n such that {J"k=of

k{J) = I.

LEMMA 4.2. Every transitive, piecewise monotone map of the interval is strongly
transitive.

Proof. Let / : / - » / be such a map.
If/2 is transitive, then/ is strongly transitive by theorem B.
If/2 is not transitive, then by [3, lemma 2], I = K KJ L where K and L are closed

intervals with one point in common, f(K) = L and f(L) = K, and / 2 | K and f2\L
are transitive. It is easy to see that (f2\K)2 and (/2|L)2 are transitive. Now let / c /
be an interval. We may assume that Jc.K. By theorem B applied to f2\K, there is
an n such that f(J) = K. Then f( J) uf2n+1(J) = I. •
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COROLLARY 4.3. Every transitive, piecewise monotone map f of the interval is topologi-
cally conjugate to a piecewise linear map whose linear pieces have slopes ±/3 (where
log fi is the topological entropy off).

Proof. Strongly transitive maps have this property [7, theorem 5]. •

5. Transitivity for maps of the circle: theorem C

THEOREM 5.1. Iffis a transitive map of the circle which has a fixed point, thenf" is
transitive for every odd n > 0.

Proof. Suppose not and let n > 3 be the least odd integer such that/" is not transitive.
Let K and m be as in lemma 2.1. Then m = n, for otherwise fm is not transitive.

Let J be a component of K with J" * 0 . By corollary 3.4, the periodic points of
/ and hence of/" are dense, and so by lemma 2.3, J*-VJk^of

k"U) has finitely
many components; these components are intervals and they are permuted by /".
Since /"(/*) = J*, it follows that

J* u / ( /*) u • • • u/"~'( J*) = S,

and

L/V*) nf(J*)T = 0

whenever 0 ̂  i, j < n — 1,
Let p be a fixed point and let L be the component of J* which contains p. Then

peLnf(L)n- • • n/"" l(L). Since n>3 , we must have [ / i (L)n / ' (L) ] o #0 for
some ij with 0 < i, j < n - 1 . But then [/'(/*) n / ( / * ) ] " # 0 , which is not the case.

•
We remark that the same proof shows that if / is a transitive map of the interval,
then / " is transitive for every odd n > 0.

LEMMA 5.2 (cf [3, theorem 6]). If f has periodic points andf" is transitive for every
n>0, then for every interval J c J , {Jks0 [fk(J)]° misses at most one point. If such
a point exists, then it is a fixed point.

Proof. To show that U [fk(J)Y misses at most one point, it suffices to show that
for every x ̂  y, the union contains either x or y.

We may assume that x, y i. J°, for otherwise there is nothing to prove. Let K be
the open interval with endpoints x and y which is disjoint from /". By corollary
3.4, the periodic points are dense, so there is a periodic point peJ". Let n be the
period of p. Since / " is transitive, there is a A: such that f~kn(K)nJ°^0. Thus
/*"(/) is an interval which contains peJ" and meets K. It follows that [/""(i)]"
contains either x or y.

Now suppose that U [fk(J)Y misses z. If z is not a fixed point, then there is an
open interval K such that z e K and f~\K) n K = 0. As in the proof of [3, theorem
6], there is an N such that /" (7)2 S-K for every n>AT. Since S-K=>f~l(K),
we hzvefN+\J) contains both K and S - K Thus/N+1(/) = S, which is impossible.

•
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THEOREM C. Letf:S-*S be a continuous map of the circle to itself. Then the following
statements are equivalent.

(1) There is an m such that f" is transitive and has a fixed point and a point of
odd period greater than one.

(2) There is an m such that f2m is transitive and f" has a fixed point.
(3) / " is transitive for every n > 0 and f has periodic points.
(4) / is topologically mixing.

Furthermore, iffis piecewise monotone, then the following statement is equivalent to
the rest.

(5) For every interval J c S, there is an n such that f"(J) = S.

Before proceeding with the proof we make two remarks. First, it is easy to construct
maps of the circle for which the conditions of the theorem hold but which have no
fixed points. Thus the unspecified m in (1) and (2) is necessary. Second, (l)-(4)
hold but (5) does not for the map obtained by identifying the endpoints in the map
of the interval in [3, example 5].

Proof. We show (1)=>(2)=>(3)=>(4), (3)=»(5) i f / is piecewise monotone, and
(4)=>(1). (5)=>(4) follows from the definition of topological mixing.

(1)=>(2). It suffices to assume that m = 1 and show that f2 is transitive.
Suppose that f2 is not transitive. By lemma 2.1, there is a closed set K ^ S such

that K" # 0,f(K) = K, K u f(K) = S, and [K nf(K)]° = 0 . Let L be a component
of K with L ° # 0 and let I* = \JnzOfn(L). By corollary 3.4 and lemma 2.3, L*
has finitely many components, each is a closed interval, and they are permuted by
f2. Thus L*u/(L*) is the whole circle, and/cyclically permutes the intervals which
are the components of L* and/(L*) - otherwise/ isn't transitive.

Suppose that L* has k components. Then so does/(L*) and the components of
L* and f(L*) alternate around the circle. Let p be a point with odd period n > 1.
Since [L*n/(L*)]° = 0 and f(L*) = L*, it follows that peL*nf(L*). Since /
cyclically permutes the components of L* and f(L*), f2k maps each of the two
components containing p to itself, and hence/2k(p) = p. Thus 2k is a multiple of
n, and since n is odd, k is a multiple of n. On the other hand, f2n maps these two
components to themselves, so 2M is a multiple of 2k, i.e. n is a multiple of k.
Therefore n = k. But then the two points in L* nf(L*) adjacent to p (one on each
side of p) both have period 2k. But this is impossible, since L* nf(L*) is invariant
and contains exactly 2k points.

(2)=»(3). Let g=/ m . By theorem 5.1, g" is transitive for every odd n>0, and so
by lemma 2.2, g" is transitive for every n > 0. Thus f is transitive for every n > 0.

(3)=^(4) and (3)=»(5) if/ is piecewise monotone. Suppose first that there is an
interval J and an M > 0 such that Uk>0[fkn(J)Y is not the whole circle. Then by
lemma 5.2, this union misses exactly one point, which is a fixed point of /". It
follows that f has a lift F:U^U such that F[0, l ] c [0,1]. The same conclusion
holds (with n = 1) if there is no interval K such that/(K) = S. In either case, as in
§ 2 we write F in place of F|[0,1]. For every fc>0, fkn lifts to Fk :[0, l]-»[0,1]
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and dense orbits lift to dense orbits. Therefore Fk is transitive for every k> 0. Then
by theorem B, F is topologically mixing, and hence so is /". But then / is topologically
mixing as well. If, in addition, / is piecewise monotone, then so (by definition) is
F, and again by theorem B, (5) holds for F, and hence also for/" and /

So we assume that for every interval J and for every n > 0, [Jks.o [fk"(J)]° is the
whole circle and that there is an interval K such that f{K) = S. We show that for
every interval /, there is an n such that/"(/) = S. Replacing J by a smaller interval,
we may assume that either J nK = 0 or Jc K.

Suppose that J n K =0. Choose periodic points p and q, one in each component
of S-{JKJ K). There is an n such that/"(/) contains both p and q. Hence/"(J)
contains either / or K. If f(J)^J, then {[fkn(J)]"} is an increasing sequence of
open sets whose union is the whole circle. By compactness, fkn{J) = S for some fc.
If / " ( / ) 2 K, then fn+\J) = S.

Suppose that J s K. Choose distinct periodic points p and q in S - K. Again there
is an n such that/"(/) contains both p and q. Thus/"(i) contains either K or / ' ,
the closed interval with endpoints p and q which is disjoint from K. As above, there
is an m such that fm{J') = S. If/"(./) 3 K, then fn+l{J) = S, and if/"(/) 2 / ' , then

r+mu)=s.
(4)=>(1). It suffices to show that / has a non-periodic, non-wandering point with
a finite orbit. For then by [5, theorem B+], / has points with periods n < m where
m/n is not a power of 2, and hence there is a k such that/1"1 has a fixed point and
a point of odd period greater than one.

A transitive map of the circle without periodic points is topologically conjugate
to an irrational rotation [1] and hence is not topologically mixing. Thus / has
periodic points. By corollary 3.4, the periodic points are dense and so every point
is non-wandering. Let p be a point with period greater than one (if all the periodic
points were fixed, then / would be the identity map) and let J be an interval. We
may assume that / n O r b (p) = 0 . Since ^Jk>0[fk(J)Y misses at most one point,
which must be a fixed point of/ this union must contain p. Thus J contains the
desired non-periodic, non-wandering point with a finite orbit. •
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