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SUBALGEBRAS OF FREE RESTRICTED LIE ALGEBRAS

R.M. BRYANT, L.G. KOVACS AND RALPH STOHR

A theorem independently due to A.I. Shirshov and E. Witt asserts that every subal-
gebra of a free Lie algebra (over a field) is free. The main step in Shirshov's proof
is a little known but rather remarkable result: if a set of homogeneous elements in a
free Lie algebra has the property that no element of it is contained in the subalgebra
generated by the other elements, then this subset is a free generating set for the sub-
algebra it generates. Witt also proved that every subalgebra of a free restricted Lie
algebra is free. Later G.P. Kukin gave a proof of this theorem in which he adapted
Shirshov's argument. The main step is similar, but it has come to light that its proof
contains substantial gaps. Here we give a corrected proof of this main step in order
to justify its applications elsewhere.

1. INTRODUCTION

The Shirshov-Witt Theorem [9, 11] asserts that every subalgebra of a free Lie
algebra (over a field) is free. Witt [11] also gave a similar result for restricted Lie algebras
(over fields of positive characteristic), and of course there are some even better known
results of the same kind in other branches of algebra, particularly for free groups and free
Abelian groups. Shirshov's proof in [9] started with an easy application of a method of
Kurosh to show that each subalgebra of a free Lie algebra has a generating set S which is
reduced in the following sense: for each s 6 S the leading term of s (that is, the highest
degree homogeneous component of s) does not belong to the subalgebra generated by the
leading terms of the other elements of S. The second and main step of the proof was to
show that every reduced subset of a free Lie algebra is independent in the sense that it is
a free generating set for the subalgebra it generates. This step was not proclaimed as a
lemma or theorem in its own right and has not become well-known like the Shirshov-Witt
Theorem, but it is a remarkable result with, as far as we are aware, no non-trivial parallels
in other branches of algebra. It may have contributed to this lack of recognition that [9]
is still only available in the original Russian and that books presenting the Shirshov-Witt
Theorem have chosen proofs which do not involve this step.

One might try to modify the definition of a reduced set to say that a set S is irre-

dundant if no element of 5 belongs to the subalgebra generated by the other elements.
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Shirshov's main step yields that every irredundant set of homogeneous elements is inde-
pendent. However, the homogeneity condition cannot be removed. For example, in the
Lie algebra L freely generated by x and y, let

— J T T -I- \il r l 71 4- \\il T I

Then it is not difficult to verify that S is irredundant; but S is not independent (because
S generates L). It should also be noted that independent sets need not be reduced:
consider, for example, the set {x,y, z + [y,x]} in the Lie algebra freely generated by x,
y and z.

Kukin [7] adapted Shirshov's argument to give a proof of Witt's result for free
restricted Lie algebras. This adaptation contained an analogue of Shirshov's main step,
this time proclaimed as a lemma. With definitions of reduced and independent as before,
except that subalgebra now means restricted Lie subalgebra, Kukin's Lemma (Lemma 2
in [7]) states that every reduced subset of a free restricted Lie algebra is independent.

In that paper, and later also in Bakhturin's book [1], this result was used not only
in the proof of Witt's Theorem, but (for instance) also in proving Kukin's formula for the
free rank of a subalgebra of finite codimension in a free restricted Lie algebra (the analogue
of Schreier's formula so well known in group theory). We have found it an indispensable
tool in [2, 3, 6], and have little doubt that it will find many further applications.

However, we have been aware for some time that both of its proofs in print, the
original in [7] and the one given in [l], contain substantial gaps (see the Remarks in
the last section of this note). Our confidence in the result was sustained by possible
alternative approaches, but recently we found that Kukin's proof may be corrected by
extending and modifying his argument. The main purpose of this note is to provide firm
foundations for the applications of the result by making available our corrected proof. A
consolidated exposition seems preferable to a list of corrigenda, and then it is only one
short step to complete Kukin's proof of Witt's Theorem: we include that to make the
readers' labour more rewarding.

The focus here is on free restricted Lie algebras, but only minor modifications are
needed to deal with the case of free Lie algebras, as considered by Shirshov. We hope
that our exposition will bring wider attention to the powerful and rather striking results
of Shirshov and Kukin that have been described above.

2. F R E E RESTRICTED LIE ALGEBRAS

Let K be a field of prime characteristic p. When considering Lie algebras over K

we write the Lie product of elements u and v as [u,v], and [ui,U2> ••-,"„] denotes the

left-normed product • • • [[tii, u 2 ] , . . . ], un \.L J

A restricted Lie algebra R over K is a Lie algebra over K with an additional unary

"p-powering" operation, in which the image of each element u of R is written as a formal
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power uv. The properties of this operation are (au)p = apup for all a € K, u 6 R, where

Q P denotes the usual p th power,

[u, v") = \u,v,...,v)

p

for all u,v e R, and (u + v)p = vP + vp + l(u, v), for all u,v € R, where l(u, v) is a certain
linear combination of Lie products (see [5, Definition V.4] or [8, Section 2.5.2] for the
precise form).

Free restricted Lie algebras may be defined by means of a universal property. How-
ever, they arise in a concrete way from free associative algebras, as now described. For
many purposes this is the easiest way of thinking about them.

Let A be a free associative algebra over K with a free generating set X. Then A may
be regarded as a restricted Lie algebra with Lie multiplication given by [u. v] = uv - vu

and p-powering given by
u •-> up — u • • • u.

v

The restricted Lie subalgebra R of A generated by X is a free restricted Lie algebra with
free generating set X (see, for example, [8, Section 5.2]). If |A"| — r then R is said to
have rank r.

For each positive integer n let An be the subspace of A spanned by all products of
the form Uiu2 • • • un with u i , . . . , un e X, and write Rn = RD An. It is easily proved that
Rn is spanned by all monomials that have the form uph where k ^ 0, p* | n, and u is the
Lie product, with some bracketing, of n/p* not necessarily distinct elements of A".

As a vector space, R has the decomposition R = ®/£„ . Furthermore, R is graded
n

as an algebra: if u € Rm and v € Rn then [u, v] e Rm+n and up e Rpm. An element u of
R is said to be homogeneous if u € Rn for some n. Each element u of R may be written
uniquely in the form u — 53 un, where un 6 Rn for all n and only finitely many of the un

n

are non-zero. If u ^ 0 we write deg u for the largest value of n for which un ^ 0. This
is called the degree of u. The corresponding term un is called the leading term of u and
denoted by u. For u = 0 we define deg u = 0 and u = 0. Furthermore, if 5 is a finite
subset of R we write

deg 5 = V ] deg u.

This is called the degree sum of S.

By a subalgebra of R we always mean a restricted Lie subalgebra, and the subalgebra

generated by a set S is denoted by (5). A subset 5 is said to be independent if S is a

free generating set for (5), and 5 is said to be reduced if, for all u G 5,

u £ (w : w €
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The concepts of homogeneous element, degree, leading term and reduced subset are
defined in terms of the grading of R given by the free generating set X. Unless otherwise
specified this grading is taken as fixed.

In [7], Kukin used the alternative terminology of Lie p-algebras, instead of restricted
Lie algebras. He referred to p-subalgebras, p-reduced subsets and p-independent subsets,
presumably in order to avoid any confusion with the corresponding concepts for Lie
algebras discussed in Shirshov's paper [9]. Since we concentrate on restricted Lie algebras
there should be no confusion here.

Then [7, Lemma 4] may be paraphrased as follows.

LEMMA 2 . 1 . Let R be a free restricted Lie algebra with free generating set
{x\,...,xT}, where r is a positive integer. Then the ideal I of R generated by
xf,x2,. • ,xr is a free subalgebra of R with a free generating set Y consisting of x\
and the elements

for i = 2, . . . ,r and c = 0,. . . ,p — 1.

We have no reservations about the proof of this lemma in [7] or in Bakhturin's book
[1, Section 2.7, proof of Witt's Theorem], so we give no proof here. This lemma, in the
terminology of [10], is called "restricted elimination". There was a corresponding result
for free Lie algebras in [9] and that was the simplest special case of what has since become
known as "elimination" or "Lazard elimination" (see, for example, [4, Proposition 10 in
Section 2.9, Chapter 2] or [8, Section 0.3]).

The subalgebra I of R described in Lemma 2.1 has a grading determined by its free
generating set Y. For elements and subsets of / it is sometimes necessary to distinguish
between the concepts homogeneous, degree, leading term and reduced defined in terms of
X and the same concepts defined in terms of Y. When necessary we make this explicit.
For example, we write degx u and degy u for the degrees of an element u of / with respect
to X and Y, respectively.

Our main object here is to give a corrected proof of [7, Lemma 2], namely the
following result.

LEMMA 2 . 2 . (Kukin's Lemma) Let S be a reduced subset of a free restricted
Lie algebra R. Then S is independent.

Once the machinery for the proof of Lemma 2.2 has been set up it is rather easy to
prove the following result, [7, Lemma 1 ].

LEMMA 2 . 3 . Let Q be a subalgebra of a free restricted Lie algebra R. Then Q
has a reduced generating set.

We include a proof of this result partly because Kukin suppressed some of the details
but mainly because Lemmas 2.2 and 2.3 immediately give Witt's Theorem.
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THEOREM 2 . 4 . (Witt [11]) Let Qbea subalgebra of a free restricted Lie alge-

bra R. Then Q is free.

3. PRELIMINARY RESULTS

Throughout this section we take A" to be a field of prime characteristic p and R to
be a free restricted Lie algebra over K.

Let <j> or <j>{yi,.... ym) be a monomial in a free restricted Lie algebra over K with
free generating set {yu..., ym} and let i i i , . . . , um be homogeneous elements of R. Then
either 4>{u\,..., um) = 0 or <p(ui,..., um) has degree Yl dj degu,, where dj is the degree

i
of yj in <j>. We call the number Yl dj deg Uj the formal degree of 4>(ui,..., um) and denote

i
it by Deg^(ui,...,«m).

LEMMA 3 . 1 . Let S be a finite subset of R which is not independent. If the
leading terms of distinct elements of S are distinct then the set of these leading terms is
not independent.

PROOF: Let S — {si,...,sm}. Clearly we may assume that each Sj is non-zero.
Since 5 is not independent there exists a non-zero element <j> in a free restricted Lie

i

algebra of rank m such that <j>{si,..., sm) = 0. We can write <j> = £} ctj4>j where the a,
i=i

are non-zero elements of K and the 4>j are linearly independent monomials.
Let n be the maximum of the formal degrees Deg0 , (S i , . . . , sm). We can renumber

the 4>j so that, for some k > 0, Deg^- ( s i , . . . , s m ) = n for j < k and Deg<j>j(si,... ,sTO)
< n for j > k.

For j' ^ A; we have

k

where deg v,- < n. Also, for j > k, we have deg<f>j(si,..., sm) < n. Write <j>* = ^2 ajtpj.

Then <j>* / 0 and

0 = <£(«!,... , s m ) = ^ * ( s 1 , . . . , s m ) + u

where <f>*{si,... ,sm) € Rn and degu < n. Thus </>*(s!,...,sm) = 0. Hence { s i , . . . , sm}
is not independent. D

LEMMA 3 . 2 . Let S be a finite set of non-zero elements of R and suppose that S

is not reduced. Then, for some u € 5 , there exists w € (5 \{u}) such that deg(u - w)

< deg u. Furthermore we may take w in the form w — Wi + u>2> where W\ is a linear com-

bination of elements ofS\{u} of degree equal to degu and u>2 belongs to the subalgebra

of R generated by the elements of S\{u} of degree smaller than degu.
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PROOF: By assumption there exists u € S such that

u 6 (v : v e S\{u}).

Write 5\{u} = {si , . . . ,sm}. There exists an element <f> in a free restricted Lie algebra
i

of rank m such that u = <j>{jii,..., sm). Write <f> = £ <Xj4>j where the a, belong to /C

and the 0j are monomials. Let n = degu = degw. We consider the formal degrees
Deg<j>j(si,... ,sm) and renumber the 4>j so that, for some k, Deg$,-(si,...,sm) = n

for j ^ k and Deg<£,(si,... ,sm) ^ n for j > k. Write </>* = YlaAi- Then
u = <f>'(si,..., s m ) . L e t w = <j>'(si,..., s m ) . For j = 1 , . . . , k we have J~

0j(Sl> • • • . 5m) = 0j(Si, • • • , Sm) + Uj

where degw^ < n. Thus

u; = ^>*(s1,...,sm) = <f>'(si,...,sm)+v -u + v,

where degw < n. Hence deg(u - w) < n.

We may renumber <j>\,..., 4>k so that, for some t, deg <j>j = \ for j ^ t and deg </>j > 1

for j > t. Then w = W\ + u>2 where

wi = ^2aj<f>j(si,...,sm) and w2 =
j=i j=t+i

Since Deg</>j(si,... ,sm) = n for j = 1, . . . ,k, the elements Wi and w2 have the required
properties. D

LEMMA 3 . 3 . Let S be a reduced set of homogeneous elements of R. Then no set

of cardinality smaller than \S\ can generate (5).

PROOF: Let Q — (S). Write Q' for the ideal of Q generated by all elements of the
forms up and [u, v] where u,v € Q. Then any generating set of the restricted Lie algebra
Q/Q' spans it as a vector space. If W is any generating set of Q it follows that W spans
Q modulo Q'. Hence \W\ ̂  dim Q/Q'. Thus it suffices to show that the elements of 5
are linearly independent modulo Q'.

Suppose that this is not the case. Then for some u € S there exist elements
ui,...,ume S\{u}, <*i,..., am € K and v e Q' such that

Let Q be the subset of Q consisting of the elements sp* where s G 5 and k ^ 1 and

the elements w7^ where w is a Lie product (with arbitrary bracket arrangement) of two
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or more (not necessarily distinct) elements of S and k ^ 0. Thus each element of Q is
homogeneous. It is straightforward to verify that Q' is spanned by Q. Thus v is a linear
combination of elements of Q.

Write n — degu. We may renumber u\,... ,um so that, for some k, degu,- = n for
j ^ k and degu ; ^ n for j > k. Then, by comparing terms of degree n in the equation
u = v + Y1 ctjUj we obtain a relation

where v' is a linear combination of elements of Q of degree n.

By the definition of £2, every element of Q of degree n is formed from elements of S of

degree smaller than n. Thus v' £ (S\{u}) and we obtain u € (5\{u}). This contradicts

the fact that 5 is reduced and completes the proof. D

LEMMA 3 . 4 . Let S be a subset of R. Let u € S and w € (S\{u}), and write
S' — (S\{u}) U {u — w}. Ifu - w £ S\{u} and 5* is independent then S is independent.

P R O O F : Clearly (5*) = (5). Suppose that u - w £ S\{u} and 5* is independent.
Then there are endomorphisms o and r of (5*) given by

so = s for s € S\{u}, (u - w)a = u,

ST = s for s E S\{u}, (u - W)T = u - 2w.

It is easily proved that a and r are mutually inverse. Thus a is an automorphism. Since
S = S*a, it follows that 5 is independent. D

4. K U K I N ' S PROOF OF W I T T ' S T H E O R E M

In this section we prove Lemmas 2.2 and 2.3. As already remarked, they immediately
yield Witt 's Theorem, Theorem 2.4. Since the main purpose of our work is the correction
of Kukin's proof in [7] and the account of it in [1] we follow the proof of Lemma 2.2 with
a brief indication of the problems with the original proofs.

P R O O F O F L E M M A 2.2: It is clearly sufficient to prove the result in the case where
S is finite and R has finite rank. We assume that there is a counterexample, that is, a
pair (5 , R) where 5 is a finite and reduced, but not independent, subset of R, and R has
finite rank. We shall obtain a contradiction.

We choose n as small as possible such that there exists a counterexample (5, R)

where S has degree sum n, that is, d e g 5 = n. We then choose r as small as possible

such that there exists a counterexample (5, R) with deg S = n and R of rank r. Let X

be a free generating set of R, where X = {x\,...,xr}.
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Since 5 is reduced, distinct elements of 5 have distinct leading terms. Let H be the
set of these leading terms. Note that the elements of H are non-zero and homogeneous
and H is reduced. By Lemma 3.1, H is not independent. Also, degif = n.

Suppose that the elements of H of degree 1 are z\,...,z3. Since H is reduced,
{zi,..., zs) is a linearly independent subset of R^. If s = r then {z\,...,za} is a free
generating set for R and, since H is reduced, we get H = {z\,..., zs}, contrary to the
fact that H is not independent. Hence s < r. It follows that there is an automorphism
0 of R which maps Ri to Ri and maps {zx,..., zs} to a subset of {x2,..., xr}. Then
HO has all the properties of H. Thus without loss of generality we may assume that the
elements of H of degree 1 all belong to {x2,..., x r} .

Let / be the ideal of R generated by x\,x2,. • • ,xr. All monomials of R of degree
greater than 1 belong to / . Therefore H C I. Let Y be the free generating set for
/ given by Lemma 2.1. When the elements of H are written with respect to Y they
need not be homogeneous. However, for h e H, we may write h = hi + h2 where
hi € (x2, • • •, xr) and either h\ — 0 or degK h\ = degx h and where degy h2 < degx h.

Thus degy H ^ degx H = n and if degy H — deg^ H then the leading terms of the
elements of H with respect to Y all belong to (x2,..., xr).

The definition of independence for a set involves only the subalgebra it generates.
Hence H is not independent when considered with respect to Y.

Suppose that H is reduced with respect to Y. Then the minimality of n gives
degK H = n. Since H is reduced, the leading terms of distinct elements of H are distinct.
Let H be the set of these. Clearly H is reduced (with respect to Y) and degy H = n. By
Lemma 3.1, H is not independent. However, as observed above, H C (x2,... , i r ) . This
contradicts the minimality of r. Hence H is not reduced with respect to Y.

Consider the subsets TV of (H) satisfying (N) = (H), \N\ = \H\, 0 g N, N is not
independent, iV is not reduced with respect to Y, and degy N ^ n. For example, we can
take N = H. Among these sets, choose TV so that degy N is as small as possible. By
Lemma 3.2, there exist u £ N and w 6 (7V\{u}) such that degy(u — w) < degy u. Write
N' = (AT\{u})u{u-u>}. Clearly (Nm) - (N) = (H). Since H is reduced and consists of
homogeneous elements with respect to X, it follows by Lemma 3.3 that u — w £ (TV\{u}).
Thus \N*\ = |JV| = \H\ and the elements of iV* are non-zero. Also, by Lemma 3.4, N* is
not independent. Clearly degy /V* < degy N ^. n. Thus, by the minimality of n, TV* is
not reduced. This contradicts the choice of TV and completes the proof of the lemma. D

REMARKS 1. The last two paragraphs of our proof of Lemma 2.2 should be compared

with the last paragraph of Kukin's proof of his Lemma 2. In terms of the notation used

here, Kukin claims that degy H < degx H. This does not hold, for example, if H is the

set

{x2, [z3,x2] + [z2,zi]}-

We have had to treat the case degy H = deg^ H by observing that H C ( i 2 , . . . , xr)
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and using Lemma 3.1. Kukin's use of "elementary transformations" is essentially the
passage from N to N* in our proof. However, Kukin does not consider the possibility
that u — w = 0. To show that this case does not arise we have had to introduce Lemma
3.3.

In the version of the proof given in [1, Section 2.7, proof of Witt's Theorem] it seems
that the assumption is made that H remains homogeneous and reduced when written
with respect to Y. However, neither property is preserved, for example, if p > 3 and H

is the set
{[[z2,zi],[a:3,zi]] + [x2,xuxuxi], [x2,xl], [z3,

P R O O F O F LEMMA 2.3: For each non-negative integer n, let Qn be the subspace of
Q consisting of all elements u of Q such that degu ^ n. (In particular, Qo = {0}.) For
each n ^ 1, let Vn be a subspace of Qn such that

Qn= ((Qn-i)nQn)(BVn

and let Sn be a basis of Vn. Define 5 = [JSn. It follows by induction that (Qn)
n

= (Si U • • • U Sn) for all n. Hence Q = (S). It remains to prove that S is reduced.
Suppose otherwise. Note that, by construction, every element of S is non-zero.

Since S is not reduced it contains a finite subset which is not reduced. Thus we can
apply Lemma 3.2. There exist u € S and w € (S\{u}) such that deg(u — w) < degu and
w — Wi + w2, where Wi and w2 are as in Lemma 3.2. Let n = deg u. Thus u e Sn, W\ is a
linear combination of elements of S, , \{K} and w2 € (Qn_i). By the choice of Sn, u — w\ is
a non-zero element of Vn. However, since deg(u — w)<n, we have u - w € Qn-i- Hence

U - WX - (U - W) + W2 € (Qn-l) .

Thus u - w\ is a non-zero element of {Qn-i) O Vn. However,

(Q»-i> n vB = (($„_!) n Qn) n vn - {o}.

This is a contradiction, completing the proof of the lemma. D
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