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Using direct numerical simulations of rotating Rayleigh–Bénard convection, we explore
the transitions between turbulent states from a three-dimensional (3-D) flow state towards
a quasi-2-D condensate known as the large-scale vortex (LSV). We vary the Rayleigh
number Ra as control parameter and study the system response (strength of the LSV) in
terms of order parameters, assessing the energetic content in the flow and the upscale
energy flux. By sensitively probing the boundaries of the region of existence of the LSV
in parameter space, we find discontinuous transitions and we identify the presence of a
hysteresis loop as well as a memoryless abrupt growth dynamics. We show furthermore
that the creation of the condensate state coincides with a discontinuous transition of the
energy transport into the largest mode of the system.
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1. Introduction

A hallmark feature of three-dimensional (3-D) turbulence is the forward energy cascade,
transporting kinetic energy from large scales to ever smaller scales, as described by the
celebrated theory of Kolmogorov (1941). In many geophysical and astrophysical flows,
however, velocity fluctuations are largely suppressed in one direction as a consequence of,
for example, confinement (Benavides & Alexakis 2017; Musacchio & Boffetta 2017, 2019),
strong magnetic fields (Alexakis 2011; Seshasayanan, Benavides & Alexakis 2014) or fast
rotation (Smith, Chasnov & Waleffe 1996; Seshasayanan & Alexakis 2018; Pestana &
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Hickel 2019; van Kan & Alexakis 2020), rendering the flow quasi-two-dimensional. This
leads to the development of an inverse energy flux, akin to fully 2-D turbulence (Kraichnan
1967; Batchelor 1969), transporting energy from smaller to larger scales. Ultimately, this
can lead to accumulation of kinetic energy at the largest available scales, followed by
condensation into a vertically coherent large-scale vortex (LSV) structure at the domain
size (see Alexakis & Biferale (2018) for a recent review). These LSVs are believed to play
a crucial role in, for example, the formation of the Earth’s magnetic field (Roberts & King
2013; Aurnou et al. 2015; Guervilly, Hughes & Jones 2015).

Following the framework that is brought forward in Alexakis & Biferale (2018), we aim
to classify the transition from a 3-D forward cascading state to the condensate state by
considering the behaviour of an order parameter that measures the strength of the LSV
as a function of a control parameter of the flow throughout this transition. Then one can
observe either a smooth transition, a continuous transition with discontinuous derivative
or a discontinuous transition. This categorisation of the transition into the condensate state
has shown to be an insightful approach in various other quasi-2-D flow systems (Alexakis
2015; Yokoyama & Takaoka 2017; Seshasayanan & Alexakis 2018; van Kan & Alexakis
2019).

These earlier works, however, have focused on more artificial, idealised flow models,
where the turbulent forcing occurs at a single well-defined length scale. Here, we
characterise the LSV transition in a natural, broadband-forced system of rotating
convection, which is ubiquitous in geophysical and astrophysical flows. In this system,
Favier, Guervilly & Knobloch (2019) have shown a bistability of an LSV with a non-LSV
state at the same parameter values, depending on the initial conditions. The natural buoyant
forcing over a broad range of scales obfuscates the strict separation of the injection,
dissipation and condensation scales. Although one may expect that, in such natural
and vigorously fluctuating turbulent systems, any transitions between different states are
washed out and become gradual, we find that the transition towards the condensate state is
in fact sharp and discontinuous.

Such abrupt transitions between turbulent states in a more general sense are a remarkable
feature of fluid turbulence and have received much recent interest, being observed in
various different flow settings, e.g. in torque measurements of Taylor–Couette and Von
Kármán flows (Ravelet et al. 2004; Saint-Michel et al. 2013; Huisman et al. 2014), in states
of stochastically forced 2-D and 3-D turbulence (Bouchet & Simonnet 2009; Iyer et al.
2017; Bouchet, Rolland & Simonnet 2019) and in reversals of the large-scale dynamics
in thin layers (Sommeria 1986; Michel et al. 2016; Dallas, Seshasayanan & Fauve 2020).
These types of abrupt transition are surmised to play an important role in, for example,
climate research (Weeks et al. 1997; Jackson & Wood 2018; Herbert, Caballero & Bouchet
2020) and in understanding the geomagnetic reversal (Berhanu et al. 2007; Pétrélis et al.
2009).

2. Numerical approach

We consider the canonical system of rotating Rayleigh–Bénard convection, in which the
flow is driven by buoyancy through a temperature difference �T between the bottom and
top of the domain, whilst being simultaneously affected by strong background rotation Ω

along the vertical axis. The input space to this problem is described by three dimensionless
numbers: the Rayleigh number Ra = gα�TH3/(νκ), quantifying the strength of the
thermal forcing, the Ekman number Ek = ν/(2ΩH2), representing the (inverse) strength
of rotation, and the Prandtl number Pr = ν/κ , containing the diffusive properties of
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Discontinuous transitions towards vortex condensates

runs Ra Ek Pr Ro D/H Resolution

Low-Ra transition 14 [2 × 106 : 1 × 107] 10−4 1 [0.14 : 0.32] 2.24 256 × 256 × 128
Intermediate Ra 2 [1.3 × 107 : 1.7 × 107] 10−4 1 [0.36 : 0.41] 2.24 256 × 256 × 136
High-Ra transition 30 [2 × 107 : 5 × 107] 10−4 1 [0.45 : 0.71] 2.24 256 × 256 × 144
Ensemble 100 6 × 106 10−4 1 0.24 2.24 128 × 128 × 72

Table 1. The different series of input parameters used in this work.

the fluid. Here, g denotes gravitational acceleration, H is the domain height and α, ν and
κ represent the thermal expansion coefficient, kinematic viscosity and thermal diffusivity
of the fluid, respectively. The system is non-dimensionalised into convective units using
H, �T and the free-fall velocity U = √

gα�TH.
We solve the full governing set of Boussinesq Navier–Stokes equations through direct

numerical simulation, employing the finite-difference code described in Verzicco &
Orlandi (1996) and Ostilla-Monico et al. (2015) on a Cartesian grid with periodic sidewalls
and stress-free boundary conditions at the top and bottom. For the width D of the domain,
we choose D/H = 10Lc with Lc = 4.8Ek1/3 the most unstable wavelength at onset of
convection (Chandrasekhar 1961). The complete set of input parameters as well as the
employed resolutions are provided in table 1. Note that we include the convective Rossby
number Ro = U/(2ΩH) = Ek

√
Ra/Pr for reference. A validation of the grid resolution

is provided in Appendix A.
For numerical convenience, we use Pr = 1 and Ek = 10−4, for which stable LSVs

have been observed in earlier direct numerical simulations over a limited range of Ra
(Favier, Silvers & Proctor 2014; Guervilly, Hughes & Jones 2014; Favier et al. 2019).
Upon increasing Ra from the onset of convection, the two boundaries of the region of
existence of the LSV are crossed. At the low-Ra transition, the LSV develops as sufficient
turbulent forcing is obtained to set up the upscale transport into the condensate, whereas
at the high-Ra transition, the LSV breaks down as too strong thermal forcing renders the
flow insufficiently rotationally constrained, breaking the quasi-2-D conditions for upscale
energy flux (Favier et al. 2014; Guervilly et al. 2014). We carry out a total of 46 runs at
varying Ra, concentrated around both LSV transitions.

In order to analyse the LSV, we decompose the flow field u = uex + vey + wez into
a 2-D (vertically averaged) barotropic flow and a 3-D (depth-dependent) baroclinic flow
(following Julien et al. 2012; Favier et al. 2014, 2019; Rubio et al. 2014; Aguirre Guzmán
et al. 2020; Maffei et al. 2021), i.e. u = u2D + u3D, where

u2D = uex + vey, u3D = (u − u)︸ ︷︷ ︸
u′

ex + (v − v)︸ ︷︷ ︸
v′

ey + wez, (2.1a,b)

where the overbar · · · denotes vertical averaging. Since the LSV is a largely vertically
coherent structure (see figure 1), it resides primarily in the 2-D field, whereas the turbulent
baroclinic fluctuations are captured by the 3-D field. Accordingly, we decompose the total
kinetic energy Etot = 1

2 〈|u|2〉 into 2-D and (horizontal and vertical) 3-D contributions
Etot = E2D + E3D

H + E3D
V as

E2D = 1
2 〈u2 + v2〉, E3D

H = 1
2 〈u′2 + v′2〉, E3D

V = 1
2 〈w2〉, (2.2a–c)

936 A43-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

90
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.90


X.M. de Wit and others

0.05

0

0.10

3/4H

x
y

z

0

0.15

0.20

Figure 1. Snapshot of horizontal kinetic energy (in units of U2) of the LSV-forming case Ra = 1.7 × 107,
truncated at three-quarter height to reveal a cross-section of the LSV.

where angular brackets 〈· · · 〉 represent an average over the full spatial domain. We also
consider the energy spectrum of the 2-D flow from its Fourier transform û2D

kxky
as

Ê2D(K) =
∑

K≤
√

k2
x+k2

y<K+1

1
2
|û2D

kxky
|2, (2.3)

where we normalise the wavenumber K by the box-size mode 2π/D, such that the LSV
occupies the K = 1 mode of the spectrum.

3. Results and discussion

In figure 2, the different components of kinetic energy are provided over the range of
considered Ra, crossing both LSV transitions. From the (largest mode of) 2-D energy
that captures the LSV, we find a substantial discontinuity at both boundaries of the LSV
state. At the high-Ra transition, we find that this transition is hysteretic: the morphology
of the flow depends on its history i.e. its initial conditions. These findings are in line with
Favier et al. (2019), showing this bistability of an LSV and a non-LSV state for one case
in this parameter range. To study this hysteresis loop, we initialise simulations using flow
snapshots from a preceding Ra. For decreasing Ra from a non-LSV state, the lower branch
of the hysteresis loop is followed (open diamonds), whilst for increasing Ra from an LSV
state, the flow adheres to the upper hysteretic branch (filled squares), see figure 2. Note the
remarkably large discontinuity in the lower hysteretic branch, where the flow transitions
directly from a non-LSV state into nearly the strongest LSV forming state. Hysteresis in
the LSV transition has also been observed in a rotating flow system with a sharp bandwidth
Taylor–Green forcing (Yokoyama & Takaoka 2017).

At the low-Ra transition, on the other hand, no hysteresis is observed (using increments
in Ra of ∼2 %). Considering the cases directly above the LSV transition, however, we
find that the growth of the LSV from a non-LSV state is non-monotonic: the flow
shows an evident plateau during which the LSV has not yet developed, before finally
growing relatively suddenly into the stable LSV state, see figure 3(a). The flow in this
plateau state shows morphological similarities to the jet state observed in rectangular
domains (Guervilly & Hughes 2017; Julien, Knobloch & Plumley 2018), but alternates
between being predominantly in the x- and y-direction. We hypothesise that the peculiar
growth behaviour found here signifies a memoryless abrupt growth process, much akin

936 A43-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

90
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.90


Discontinuous transitions towards vortex condensates

2 × 106 5 × 107107

Ra

K
in

et
ic

 e
n
er

g
y
 (

in
 U

2
)

0

0.02

0.01

0.03

0.04

0.05

0.06

E2D
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Figure 2. Averaged kinetic energy components as a function of Ra. Filled squares: upper hysteretic branch
of the high-Ra transition; open diamonds: lower hysteretic branch. The cyan dashed-dotted line denotes the
low-Ra LSV transition, whilst the magenta and red lines denote the LSV transition of the lower and upper
branch of the high-Ra transition, respectively.

to the nucleation and growth type of dynamics that is observed in plentiful different
systems throughout physics (Matsumoto, Saito & Ohmine 2002; Watanabe, Suzuki &
Ito 2010; Garmann, Goldfain & Manoharan 2019; Metaxas et al. 2019). To substantiate
this conjecture, we simulate an ensemble of 100 additional runs at Ra = 6 × 106 with
statistically perturbed initial conditions, using a reduced resolution of 128 × 128 × 72
for computational feasibility. The hypothesised abrupt memoryless growth would then
predict an exponential distribution of the waiting time spent in the metastable plateau
state (stage B in figure 3a).

To investigate the distribution of these waiting times, we define a time point tLSV at
which the LSV is said to have stably developed once a threshold of horizontal kinetic
energy is surpassed and sustained for 2000 convective time units, see figure 3(a). The
obtained empirical cumulative distribution is then fitted with an exponential distribution

CDF(tLSV) = 1 − exp

⎛
⎜⎜⎜⎝− tLSV − t0

μ(tLSV) − t0︸ ︷︷ ︸
τW

⎞
⎟⎟⎟⎠ , (3.1)

where the fit parameter t0 can be interpreted as the (fixed) contributions of the
initialisation, growth and stable LSV stages (A, C and D in figure 3a). Here,
μ(tLSV) denotes the mean of tLSV , providing the maximum-likelihood estimate for the
typical waiting time τW in this distribution. Figure 3(b) shows that there is excellent
agreement between the hypothesised and the obtained distributions: the exponential
distribution remains everywhere in between the 95 % confidence bounds of the empirical
distribution. Signs of the exponentiality of waiting times have been observed in the
LSV-forming system of sharp bandwidth forced thin-layer turbulence (van Kan, Nemoto
& Alexakis 2019). Our findings indicate that, indeed, turbulent fluctuations randomly
trigger the growth of the LSV, giving rise to this memoryless abrupt growth dynamics.
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Figure 3. (a) Time evolution of horizontal kinetic energy of seven of the runs in the ensemble of the
LSV-forming case Ra = 6 × 106 close to the transition. We distinguish four stages: an initialisation phase (A),
a metastable underdeveloped plateau state showing alternating jets (B), (quick) growth of the LSV (C) and the
stably developed LSV state (D). The horizontal dashed line denotes the threshold to be crossed and sustained
for 2000 convective time units (U−1H) before the LSV is said to be completely developed, which defines the
time point tLSV , depicted by the blue cross. (b) Cumulative distribution of tLSV of the ensemble (blue solid line)
with 95 % confidence bounds (blue dotted lines). It is fitted by an exponential distribution (red dashed line) as
provided by (3.1). Inset shows the histogram corresponding to the same distribution.

Similar sudden growth behaviour is also found near the ends of the hysteresis loop in the
high-Ra transition, although an extended analysis of how the mean transition time evolves
for changing Ra, repeating the ensemble average approach for all points in the considered
parameter space, is currently out of computational reach for rotating convection.

Considering the observed hysteretic behaviour as well as the exponentially distributed
waiting times, an analogy of this transition with first-order phase transitions in equilibrium
statistical mechanics seems appropriate (Binder 1987). However, although it is conjectured
that in particular the relatively more weakly dissipative large scales of the flow may
show resemblance to thermal equilibrium states (Bouchet & Venaille 2012; Alexakis &
Biferale 2018), ultimately, the chaotic and dissipative nature of turbulence makes the
analogy with equilibrium statistical mechanics indirect. A more immediate interpretation
of the transition in this fluctuating dynamical system would be in terms of nonlinear
bifurcations. Then, the condensate transition as observed here can be interpreted as a
subcritical nonlinear bifurcation, giving rise to two distinct attractors (indeed, the LSV
state and the non-LSV state) which remain separated in phase space. Such noise-induced
transitions between attractors are also known to be memoryless, yielding exponentially
distributed waiting times (Kraut, Feudel & Grebogi 1999).

To understand how the LSV is energetically sustained, we compute the mode-to-mode
kinetic energy transfer (see Dar, Verma & Eswaran 2001; Alexakis, Mininni & Pouquet
2005; Mininni, Alexakis & Pouquet 2005, 2009; Verma, Kumar & Pandey 2017; Verma
2019), distinguishing the 3-D to 2-D (baroclinic to barotropic) transport (following Rubio
et al. 2014; Aguirre Guzmán et al. 2020)

T3D(K, Q) = −〈u2D
K · (u3D · ∇u3D

Q )〉, (3.2a)

and the 2-D to 2-D (barotropic to barotropic) transport

T2D(K, Q) = −〈u2D
K · (u2D · ∇u2D

Q )〉, (3.2b)
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Figure 4. Time-averaged kinetic energy transport from 3-D (a,c,e,g) or 2-D (b,d, f,h) modes Q to 2-D modes
K, i.e. T3D(K, Q) and T2D(K, Q), respectively, in units of U3H−1. Blue lines denote T3D(K) (a,c,e,g) and
T2D(K) (b,d, f,h). The low-Ra transition is crossed from (a,b) (Ra = 5.6 × 106) to (c,d) (Ra = 5.7 × 106),
whilst the high-Ra transition of the upper hysteretic branch is crossed from (e, f ) (Ra = 3.10 × 107) to (g,h)
(Ra = 3.13 × 107), as also depicted in figure 5.

describing the energetic transport into the Fourier-filtered 2-D flow field u2D
K of mode K

from 3-D and 2-D modes Q through triadic interactions arising from the advective term
of Navier–Stokes. If T3D, T2D > 0, there is a net transfer of kinetic energy from mode Q
to mode K and vice versa. We also consider the transport into 3-D mode K from the full
(unfiltered) flow components T3D(K) = ∑

Q T3D(K, Q) and T2D(K) = ∑
Q T2D(K, Q), by

summing over the donating modes Q.
The results for the shell-to-shell energy transfer throughout the LSV transitions are

provided in figure 4. The two main energy fluxes are apparent in both T3D and T2D.
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Figure 5. Total 3-D T3D(K = 1) (blue) and 2-D T2D(K = 1) (red) transport of kinetic energy into the 2-D
K = 1 mode averaged over time as a function of Ra. Symbols and vertical lines are as in figure 2. Labels (a–h)
depict the corresponding transfer maps in figure 4.

Near the diagonal, one can observe the direct forward cascade, transporting energy
from Q to slightly higher modes K. Note here that, while the T2D self-interaction must
be symmetric by definition T2D(K, Q) = −T2D(Q, K), this does not apply to T3D as
it describes the energetic interactions between scales of the 2-D component and 3-D
component of the flow. In the bottom row K = 1, on the other hand, the upscale energy
flux into the LSV can be appreciated. This energy flux is non-local: energy is transported
directly from virtually all scales in the system into the box scale of the LSV, without
participation of intermediate scales.

Figure 5 shows the energetic transport into the box-size mode as a function of Ra. Note
that this considers the transport from the full, unfiltered 3-D and 2-D flow components into
the LSV, that is, a sum over the donating scales in the bottom row K = 1 of the transfer
maps in figure 4. It makes clear that also the upscale transport into the LSV exhibits an
evident discontinuous transition, both in T3D(K = 1) as well as, albeit to a lesser degree,
in T2D(K = 1). Importantly, the figure indicates that it is the 3-D transport that is the
dominant component in the forcing of the LSV.

We argue that this upscale transport provides a clue to understanding the physical
mechanism behind the observed sudden growth and hysteretic behaviour. As also detailed
in Rubio et al. (2014) and Favier et al. (2019), the upscale transport contains a positive
feedback loop, where the presence of the LSV itself enhances the upscale transport into
the box-size mode. This agrees with our observation that the energetic transport into
the LSV increases discontinuously as the LSV is created. The exact nature of how the
LSV interacts energetically with its 3-D turbulent background is an interesting non-trivial
question to explore in future work, which goes beyond considerations purely in Fourier
space as well, by looking at individual vortex interactions, for example. The existence
of such a positive feedback loop, however, seems intuitive: the predominantly cyclonic
LSV locally increases the total vorticity (background rotation + flow vorticity), thereby
strengthening the quasi-2-D conditions and hence the upscale transport. This mechanism
allows the LSV to develop once its growth is triggered by rare turbulent fluctuations and
allows the LSV to remain stably self-sustained over the hysteresis loop.
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Since we consider specifically a cross-section of the full parameter space for varying
Ra, the influence of other parameters on the transitional dynamics, such as Ek, Pr and
also the aspect ratio D/H (since the domain width is the principal dynamical scale of
the LSV), remains an open question. The morphology of the LSV in the asymptotically
reduced model for Ek → 0 is studied in its total parameter space in more detail in
Maffei et al. (2021). For the transition specifically, however, one can argue that, as
both attractors are expected to shift in continuous fashion through the phase space, only
quantitative changes to the observed transitional dynamics are expected as the other control
parameters are varied in vicinity to the computationally tractable values considered here.
Nonetheless, the possibility that the discontinuity in the transition vanishes in a certain
limit if both attractors would shift to coincide cannot be ruled out from the current
simulations; the asymptotically reduced model seems appropriate to investigate this
premise for the limit Ek → 0.

4. Conclusions

We have described the fluid turbulence transition into a quasi-2-D condensate state
in a natural broadband-forced system of rotating Rayleigh–Bénard convection, where
the transition is sharply discontinuous, in spite of the lack of a clear separation of
scales. We provide evidence of memoryless abrupt growth dynamics and hysteresis in
these transitions, raising the picture of a double attractor phase space with a subcritical
noise-induced transition between them. Furthermore, the correspondence of our findings
with certain aspects of the LSV transition in other, artificially forced, flow systems, as
remarked in the text, ultimately shows that this peculiar type of transition is a relevant
and robust phenomenon that is expected to survive even in the geo- and astrophysically
relevant flow of rotating convection, being one of the principal sources of fluid motion in
nature.
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Appendix A. Grid validation

We employ a Cartesian grid that is uniform in the x- and y-directions, but non-uniform in
the z-direction, clustering grid cells more closely near the top and bottom of the domain
to properly resolve the boundary layers.

The different spatial resolutions that are used in this work are included in table 1 of
the main text. To validate these resolutions, we separately consider the bulk flow and
the boundary layers. For the bulk resolution, we compare the grid spacing with the
Kolmogorov length η forthe smallest kinematic features, and the Batchelor length ηT for
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Figure 6. Number of Kolmogorov scales per cell (a) and temperature profiles (b) for the example case Ra =
107 (and Ek = 10−4, Pr = 1). In (b), the dashed lines indicate the boundary layer edges based on the maximum
of the root-mean-squared temperature.

the smallest thermal features of the flow. Their respective definitions (Monin & Yaglom
1975) can be rewritten into convective units (using the free-fall velocity scale U and length
scale H) as

η̃ =
(

Pr
Ra

)3/8

ε̃−1/4, η̃T = η̃Pr−1/2, (A1a,b)

where ε̃ denotes the kinetic energy dissipation rate

ε̃ =
√

Pr
Ra

|∇̃ũ|2. (A2)

In our work Pr = 1, so that the Batchelor length and Kolmogorov length coincide η = ηT .
We can compare the Kolmogorov length with the local grid spacing Δ = (�x, �y, �z)
in each dimension from a posteriori horizontal and temporal averages of the kinetic
dissipation. We calculate the number of Kolmogorov lengths per cell in each direction
Δ/η, as is shown in the example in figure 6(a). (Note that the grid is uniform in the
horizontal direction, so we have �x/η = �y/η.) In all simulations, we ensure that we
maintain Δ/η < 2 over the entire vertical extent of the domain, which is well below the
limit of Δ/η < 4 that was empirically found to be acceptable by Verzicco & Camussi
(2003). Also for the ensemble of runs, where we use a coarser grid for computational
feasibility (see table 1), we can adhere to Δ/η < 2 throughout the full domain, owing the
moderate Ra = 6 × 106.

To properly resolve the boundary layers at the top and bottom, we require that a sufficient
number of grid cells reside within these boundary layers. Since this work uses stress-free
boundary conditions for velocity, there is no formation of any kinematic boundary layers.
For the thermal boundary layer, on the other hand, we adopt the definition of maximum
(horizontally and temporally averaged) root-mean-squared temperature (e.g. Julien et al.
2012), see figure 6(b). We ensure that there are at least 10 grid cells within the thermal
boundary layer for all simulations, which is also empirically deemed sufficient by Verzicco
& Camussi (2003).
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