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PROCESSOR-SHARING AND
RANDOM-SERVICE QUEUES
WITH SEMI-MARKOVIAN ARRIVALS
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Abstract

We consider single-server queues with exponentially distributed service times, in which
the arrival process is governed by a semi-Markov process (SMP). Two service disciplines,
processor sharing (PS) and random service (RS), are investigated. We note that the sojourn
time distribution of a type-l customer who, upon his arrival, meets k customers already
present in the SMP/M/1/PS queue is identical to the waiting time distribution of a type-l
customer who, upon his arrival, meets k+1 customers already present in the SMP/M/1/RS
queue. Two sets of system equations, one for the joint transform of the sojourn time and
queue size distributions in the SMP/M/1/PS queue, and the other for the joint transform
of the waiting time and queue size distributions in the SMP/M/1/RS queue, are derived.
Using these equations, the mean sojourn time in the SMP/M/1/PS queue and the mean
waiting time in the SMP/M/1/RS queue are obtained. We also consider a special case of
the SMP in which the interarrival time distribution is determined only by the type of the
customer who has most recently arrived. Numerical examples are also presented.
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1. Introduction

We study queueing systems with a single server, in which the arrival process is governed by
a semi-Markov process (SMP). The service time follows an exponential distribution and the
capacity of the waiting room is infinite. Two service disciplines are considered: (i) processor
sharing (PS), where, when there are k customers in the system, each receives service at rate 1/k;
and (ii) random service (RS), where, when the server becomes available, the next customer to
enter service is chosen at random among all waiting customers. The systems described above
are denoted by SMP/M/1/PS and SMP/M/1/RS, respectively, throughout the paper.

The PS discipline is the limiting case of the round-robin discipline as the quantum of service
time approaches 0, and allows for efficient and fair distribution of resources. PS queues have
been widely used in modeling computer and communication systems. Since Coffman et al. [3]
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first analyzed an M/M/1/PS queue, several queueing systems with processor-sharing service
have been studied, for example M/G/1/PS queues [14], [19], GI/M/1/PS queues [5], [10], [15],
and GI/G/1/PS queues [16]. A survey of works on PS queues prior to 1987 was made by
Yashkov [20], who cited many other references.

Early work on the PS queue [3] was motivated by the study of multiuser mainframe computer
systems. Recently, PS queues have become an important tool for the performance evaluation
of computer networks and web servers. Consider a number of independent transmissions on
a network. Transmission Control Protocol (TCP) controls the transmission rate of a sender
by adapting the congestion window size. Assuming that the TCP’s feedback and control
mechanism is perfect and absolutely fair, the bandwidth of a common bottleneck link will be
shared equally among the active connections. This situation can be modeled as a PS queue [11].
Since the PS discipline allows shorter jobs to finish before longer jobs, most web servers employ
PS-based algorithms to achieve the best ‘user-perceived’ performance in terms of fairness and
response time.

On the other hand, correlated-input-process models are of increasing interest for the per-
formance evaluation of computer networks. This is due to the fact that the superposition of
video and other traffic sources, such as voice and data, may yield a complex arrival process
characterized by high peak rate, general marginal distribution, and correlation between arrivals.
The arrival process governed by an SMP can model this kind of autocorrelated traffic. We would
like to mention that many other input processes, e.g. the special semi-Markov process (SSMP)
[6], [18] and the two-state Markov-modulated Poisson process (MMPP(2)) [9], are special cases
of the SMP. In [1], a queue with MMPP(2) arrivals and PS service discipline was used to model
a web server, and the performance values of the web server were obtained by simulation. To
the best of our knowledge, however, there have been no studies on queueing systems with SMP
arrivals and PS discipline.

Ramaswami [15] found the first two moments of the sojourn time distribution in a GI/M/1/PS
queue (he noted an error in [3]). Cohen [5] pointed out that the sojourn time distribution of
a customer who, upon his arrival, meets k customers already present in a GI/M/1/PS queue
is identical to the waiting time distribution of a customer who, upon his arrival, meets k + 1
customers already present in a GI/M/1/RS queue. We note that the same relation exists between
the SMP/M/1/PS queue and the SMP/M/1/RS queue. This is our motivation for analyzing the
two queueing systems SMP/M/1/PS and SMP/M/1/RS together in this paper.

The rest of the paper is organized as follows. In Section 2, we define the semi-Markov arrival
process and review some results about the queue size distribution before arrivals in SMP/M/1
queues. In Section 3, the sojourn time distribution of an arbitrary customer in the SMP/M/1/PS
queue is considered. The waiting time distribution of an arbitrary customer in the SMP/M/1/RS
queue is analyzed in Section 4. A special case of the SMP is investigated in Section 5. In Section
6, we give two numerical examples: one is the case of a general two-state semi-Markov arrival
process and the other is the case of burst arrivals generated by an SMP.

2. Preliminaries

2.1. Semi-Markov arrival process

The semi-Markov arrival process can be described as follows [2]. There are L types of
customer, numbered 1 through L. Customers arrive at time epochs 0 = T0 < T1 < T2 < · · · ,
and An := Tn− Tn−1, n > 1, is the interarrival time, with A0 := 0. Let S(n) denote the type of
a customer arriving at epoch Tn. For a given sequence of arrival epochs, all interarrival times
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are mutually independent. It is assumed that An+1 and S(n+1) depend only on S(n), i.e.

P{S(n+1) = m, An+1 ≤ t | S(0), . . . , S(n), A1, . . . , An}
= P{S(n+1) = m, An+1 ≤ t | S(n)}, m = 1, . . . , L, t ≥ 0.

Let
alm(t) := P{S(n+1) = m, An+1 ≤ t | S(n) = l}

be the probability that the arrival process moves from state l to state m in time t . We note that
alm(∞) is the probability that the arrival of a type-l customer is followed by the arrival of a
type-m customer. Let us define the Laplace–Stieltjes transform (LST) of alm(t) as

αlm(s) :=
∫ ∞

0
e−st dalm(t).

We also define the matrix A(s) := {αlm(s)}. It is noted that A(0) = {alm(∞)} is a stochastic
matrix; thus

A(0)1 = 1,

where 1 := [1, . . . , 1]� (‘�’ denotes transpose and 1 is the identity vector with L elements). If
π := [π1, . . . , πL] is the stationary distribution of the stochastic matrix A(0), we have

πA(0) = π , π1 = 1.

Without much loss of generality, we assume that the Markov chain {S(n), n = 0, 1, 2, . . . }
is ergodic. For a real number s ≥ 0, if λM(s) denotes the eigenvalue of the matrix A(s) with
the maximum absolute value, then [2, Equation (9)]

α = − d

ds
λM(s)

∣∣∣∣
s=0+

is the mean interarrival time, defined by

α :=
L∑
l=1

πl

L∑
m=1

∫ ∞

0
t dalm(t).

2.2. Queue size distribution immediately before arrivals in SMP/M/1 queues

As in GI/M/1 queues [15], owing to the memoryless property of exponentially distributed
service times, the queue size distribution immediately before arrivals in the SMP/M/1/PS queue
is the same as that in the corresponding SMP/M/1 queue with first-in–first-out (FIFO) service
discipline. Here we review some results about the SMP/M/1/FIFO queue from [2], which will
be used in studying the sojourn time distribution in the SMP/M/1/PS queue. Let µ be the
service rate.

The following theorem is a special case of the result of [2, p. 366], which is fundamental to
the analysis of SMP/M/1 queues.

Theorem 1. The equation
det[zI − A(s + µ− µz)] = 0 (1)

has exactlyL solutions, z = γ1(s), γ2(s), . . . , γL(s), within the unit circle |z| = 1 if Re(s) > 0.
Here, I denotes the L× L identity matrix.
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This theorem is the matrix version of Lemma 1 of Takács [17, p. 113] for a GI/M/1 queue,
and it can be proved by application of permutation theory and Rouché’s theorem [12], [13]. We
denote the distinct solutions of (1) by γ (1)(s), γ (2)(s), . . . , γ (M)(s), with M ≤ L.

For the analysis of SMP/M/1 queues, we impose the following assumption, which is the
same as the one in [2].

Assumption 1. All the elementary divisors [7, p. 142] of the matrix A(s + µ − µγ (i)(s))

corresponding to the eigenvalue γ (i)(s) are of the first degree, for i = 1, . . . ,M .

We note that the multiple eigenvalues are not ruled out. The matrix A(s + µ − µγ (i)(s))

may have elementary divisors not of the first degree if they correspond to eigenvalues other
than γ (i)(s). If we denote by gi (s) the left-eigenvector corresponding to the eigenvalue γi(s),
we have

gi (s){γi(s)I − A(s + µ− µγi(s))} = 0, i = 1, . . . , L,

where 0 := [0, . . . , 0] is the zero vector with L elements. We collect all the eigenvectors
corresponding to the eigenvalues γ1(s), . . . , γL(s) into an L× L matrix G(s), as follows:

G(s) := [g1(s),g2(s), . . . ,gL(s)]�.

Moreover, by �(s)we denote an L×L diagonal matrix with elements γ1(s), γ2(s), . . . , γL(s).
We next consider the Markov chain {(X(n), S(n)), n = 0, 1, 2, . . . }, where X(n) denotes

the number of customers seen by the nth SMP arrival. The following result is cited from
Theorem 5 of [2], which gives the queue size distribution immediately before arrivals in the
SMP/M/1/FIFO queue. Thus, it is also the queue size distribution immediately before arrivals
in the SMP/M/1/PS queue.

Theorem 2. UnderAssumption 1, all states of the Markov chain {(X(n), S(n)), n = 0, 1, 2, . . . }
are ergodic if αµ > 1. In this case,

�
(l)
k := lim

n→∞ P{X(n) = k, S(n) = l}, k = 0, 1, 2, . . . , l = 1, 2, . . . , L,

exist and are independent of the initial distribution. Letting �k := [�(1)
k ,�

(2)
k , . . . ,�

(L)
k ],

we have

�k = πG−1(I − �)�kG, k = 0, 1, 2, . . . , (2)

where � := �(0) and G := G(0).

We rewrite (2) in scalar form as

�
(m)
k =

L∑
l=1

βlγ
k
l glm, k = 0, 1, 2, . . . , m = 1, 2, . . . , L, (3)

where βl is the lth element of the row vector

β := πG−1(I − �), (4)

γl := γl(0), and glm is the (l, m)th element of the matrix G.
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3. Sojourn time in the SMP/M/1/PS queue

We now derive the sojourn time distribution in the SMP/M/1/PS queue. Let us focus on
a tagged customer of type l who finds k other customers in the system upon his arrival. Let
S
(l)
k (t) denote the sojourn time distribution of this tagged customer. We define

Alm(j, t) :=
∫ t

0

(µx)j

j ! e−µx dalm(x)

as the probability that exactly j customers are served in the time between the arrival of a type-l
customer and the immediately following arrival of a type-m customer, when this interarrival
time is less than t .

Lemma 1. The functions S(l)k (t) satisfy the following relations, where Alm(j, t) ∗ S(m)k (t)

denotes the convolution of Alm(j, t) and S(m)k (t):

S
(l)
k (t) =

L∑
m=1

k+1∑
j=1

1

k + 1

∫ t

0
[alm(∞)− alm(x)]µ(µx)

j−1

(j − 1)! e−µx dx

+
L∑
m=1

k∑
j=0

k + 1 − j

k + 1
Alm(j, t) ∗ S(m)k+1−j (t), l = 1, 2, . . . , L, k = 0, 1, 2, . . . .

(5)

Proof. Our proof extends the method of [15]. We write

S
(l)
k (t) = F

(l)
k (t)+ B

(l)
k (t), (6)

where F (l)k (t) is the probability that the tagged customer, being of type l and finding k other
customers present, ends his service before the next arrival and has a sojourn time less than t , and
B
(l)
k (t) is the probability that the tagged customer, being of type l and finding k other customers

present, ends his service after the next arrival and has a sojourn time less than t .
ConsiderF (l)k (t). Owing to the memoryless property of the exponentially distributed service

time, all customers present at time x have the same distribution for the residual sojourn time. If
there is a departure in a short time interval (x, x+�x], each customer present at time x has the
same chance to depart. Thus, if at least j customers end their services before the next arrival,
then the probability that the tagged customer is the j th to leave the system is given by

1

j

(
k

j − 1

)(
k + 1

j

)−1

= 1

k + 1
.

Conditioning on both the type of the next arrival and the number of departures before the next
arrival, we have

F
(l)
k (t) =

L∑
m=1

k+1∑
j=1

1

k + 1

∫ t

0
[alm(∞)− alm(x)]µ(µx)

j−1

(j − 1)! e−µx dx. (7)

Now considerB(l)k (t). The probability that the tagged customer is not one of the j customers
who depart from the system before the next arrival is given by

(
k

j

)(
k + 1

j

)−1

= k + 1 − j

k + 1
.
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Conditioning on the length of the interarrival time, the type of the next arrival, and the number
of departures before the next arrival, we obtain

B
(l)
k (t) =

L∑
m=1

k∑
j=0

k + 1 − j

k + 1
Alm(j, t) ∗ S(m)k+1−j (t). (8)

Substituting (7) and (8) into (6) gives (5).

We remark that if there is only one type of customer, then our Lemma 1 reduces to Lemma 1
of [15].

Let us define the generating function of the LST of S(l)k (t) as

σ (l)(z, s) :=
∞∑
k=0

σ
(l)
k (s)z

k, l = 1, 2, . . . , L,

where

σ
(l)
k (s) :=

∫ ∞

0
e−st dS(l)k (t), k = 0, 1, 2, . . . .

Introducing the column vector σ (z, s) := [σ (1)(z, s), σ (2)(z, s), . . . , σ (L)(z, s)]�, we have the
following theorem.

Theorem 3. The vector σ (z, s) satisfies the differential equation

[zI −A(s+µ−µz)]∂σ (z, s)
∂z

+σ (z, s) = µ

(1 − z)(s + µ− µz)
[A(0)−A(s+µ−µz)]1. (9)

Proof. Let us introduce the notation

ψ(l)(z, s) :=
∞∑
k=0

(k + 1)σ (l)k (s)z
k.

It is easy to verify that

ψ(l)(z, s) = σ (l)(z, s)+ z
∂σ (l)(z, s)

∂z
. (10)

By taking the LST of (5), multiplying by (k + 1)zk , and summing over k = 0, 1, 2, . . . , we
obtain

ψ(l)(z, s) = µ

(1 − z)(s + µ− µz)

L∑
m=1

[αlm(0)− αlm(s + µ− µz)]

+ 1

z

L∑
m=1

αlm(s + µ− µz)[ψ(m)(z, s)− σ (m)(z, s)]. (11)

Substituting (10) into (11) yields

z
∂σ (l)(z, s)

∂z
+ σ (l)(z, s) = µ

(1 − z)(s + µ− µz)

L∑
m=1

[αlm(0)− αlm(s + µ− µz)]

+
L∑
m=1

αlm(s + µ− µz)
∂σ (m)(z, s)

∂z
, (12)

and rewriting (12) in matrix form gives (9).
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Remark 1. Note that (9) has L singularities at z = γl(s), l = 1, . . . , L. This means that there
may be solutions to (9) that are not analytic at z = γl(s); it seems difficult to find a solution to
the differential equations in (9) in a general case. Theoretically speaking, (9) can be solved in
the real domain z ∈ (−1, 1), with z �= γl(s), by using the multiplicative integral [8, p. 132].
However, it seems difficult to obtain σ (z, s) explicitly.

Let σ(s) denote the LST of the sojourn time of an arbitrary customer. It follows that

σ(s) =
L∑
m=1

∞∑
k=0

�
(m)
k σ

(m)
k (s). (13)

Substituting (3) into (13) yields

σ(s) =
L∑
m=1

∞∑
k=0

L∑
l=1

βlglmγ
k
l σ

(m)
k (s) =

L∑
l=1

L∑
m=1

βlglmσ
(m)(γl, s)

=
L∑
l=1

βlglσ (γl, s),

where gl is the lth row of the matrix G. Thus, the mean sojourn time σ of an arbitrary customer
is given by

σ = −
L∑
l=1

βlgl
∂

∂s
σ (γl, s)

∣∣∣∣
s=0+

. (14)

Theorem 4. The mean sojourn time of an arbitrary customer in the SMP/M/1/PS queue is
given by

σ = 1

µ
πG−1(I − �)−1G1. (15)

Proof. Let us introduce the column vector

vl (s) := ∂

∂z
σ (z, s)

∣∣∣∣
z=γl

, l = 1, 2, . . . , L.

Evaluating both sides of (9) at z = γl yields

[γlI − A(s+µ−µγl)]vl (s)+ σ (γl, s) = µ

(1 − γl)(s + µ− µγl)
[A(0)− A(s+µ−µγl)]1.

(16)
Differentiating (16) with respect to s and taking the limit as s approaches 0+ gives

[γlI − A(µ− µγl)]v′
l (0)+ ∂

∂s
σ (γl, s)

∣∣∣∣
s=0+

= −[A(0)− A(µ− µγl)]1
µ(1 − γl)3

, (17)

where we have used

vl (0) = ∂

∂z
σ (z, 0)

∣∣∣∣
z=γl

= d

dz

(
1

1 − z

)∣∣∣∣
z=γl

1 = 1

(1 − γl)2
1.

Recall that gl is the left-eigenvector of the matrix A(µ−µγl) corresponding to the eigenvalue
γl . It follows that

gl[γlI − A(µ− µγl)] = 0.
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Multiplying (17) on the left by gl gives

−gl
∂

∂s
σ (γl, s)

∣∣∣∣
s=+0

= gl1
µ(1 − γl)2

. (18)

Using (4) and (18) in (14) gives (15).

4. Waiting time in the SMP/M/1/RS queue

We proceed to analyze the SMP/M/1/RS queue. In this system, the service time follows an
exponential distribution with rateµ, the arrival process is governed by the semi-Markov process
described in Section 2, and the service discipline is random. The random service discipline is
described as follows: at the end of a service, the next customer to be served is selected at random
among all the customers present in the queue. Since the order of service does not influence
the unfinished work of the system, the queue size distribution is independent of the order of
service. Hence, the queue size distribution immediately before arrivals in the SMP/M/1/RS
queue is identical to that in the corresponding SMP/M/1/FIFO queue.

Let W(l)
k (t) denote the waiting time distribution of a tagged customer of type l who finds

k + 1 other customers in the system upon his arrival. We then have the following lemma.

Lemma 2. The functions W(l)
k (t) satisfy the relations in (5), with S(l)k (t) replaced by W(l)

k (t),
for l = 1, 2, . . . , L and k = 0, 1, 2, . . . .

Proof. The proof is similar to that of Lemma 1.

Remark 2. Comparing Lemma 1 and Lemma 2, we note that the sojourn time distribution of
a type-l customer who, upon his arrival, meets k customers already present in the SMP/M/1/PS
queue is identical to the waiting time distribution of a type-l customer who, upon his arrival,
meets k + 1 customers already present in the SMP/M/1/RS queue. This is an extension of the
relation between the GI/M/1/PS queue and the GI/M/1/RS queue mentioned by Cohen [5].

Let us define the generating function of the LST of W(l)
k (t) as

w(l)(z, s) :=
∞∑
k=0

w
(l)
k (s)z

k,

where

w
(l)
k (s) :=

∫ ∞

0
e−st dW(l)

k (t), k = 0, 1, 2, . . . .

By the method used previously to derive (9), we obtain the following result.

Theorem 5. The vector w(z, s) := [w(1)(z, s), w(2)(z, s), . . . , w(L)(z, s)]� satisfies the dif-
ferential equation in (9), with σ (z, s) replaced by w(z, s).

Let w(s) denote the LST of the waiting time distribution of an arbitrary customer. Condi-
tioning on both the number of customers present in the system immediately before the arrival
of the arbitrary customer and the type of the arbitrary customer, we obtain

w(s) =
L∑
m=0

�
(m)
0 +

L∑
m=1

∞∑
k=1

�
(m)
k w

(m)
k−1(s). (19)
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Using (3) in (19) gives

w(s) =
L∑
m=1

L∑
l=1

βlglm +
L∑
m=1

∞∑
k=0

L∑
l=1

βlglmγ
k+1
l w

(m)
k (s)

=
L∑
l=1

L∑
m=1

βlglm +
L∑
l=1

L∑
m=1

βlglmγlw
(m)(γl, s)

=
L∑
l=1

βlgl1 +
L∑
l=1

βlγlglw(γl, s).

Therefore, the mean waiting time w of an arbitrary customer is given by

w = −
L∑
l=1

βlγlgl
∂

∂s
w(γl, s)

∣∣∣∣
s=0+

. (20)

Theorem 6. The mean waiting time of an arbitrary customer in the SMP/M/1/RS queue is given
by

w = 1

µ
πG−1(I − �)−1�G1. (21)

Proof. By the method used to derive (18), we obtain

−gl
∂

∂s
w(γl, s)

∣∣∣∣
s=0+

= gl1
µ(1 − γl)2

, l = 1, 2, . . . , L. (22)

Using (4) and (22) in (20) gives (21).

5. Special semi-Markovian arrival process

In this section, we consider the sojourn time in the SMP/M/1/PS queue and the waiting time
in the SMP/M/1/RS queue in a special case of the semi-Markov arrival process. That is, we
assume that the interarrival time distribution is determined only by the type of the immediately
prior arrival; we write this as A(s) = [α1(s), α2(s), . . . , αL(s)]�1�, where

αl(s) :=
∫ ∞

0
e−st d P{An+1 ≤ t | S(n) = l}, l = 1, 2, . . . , L.

It is then easy to verify that

det[zI − A(s)] = zL−1[z− α(s)]
and that z[z− α(s)] is the minimal polynomial [7, p. 89] of A(s), where

α(s) :=
L∑
l=1

αl(s).

Let us first consider the sojourn time in the SMP/M/1/PS queue for this special semi-Markov
arrival process. If Assumption 1 is satisfied, then the solutions to the equation

det[zI − A(s + µ− µz)] = 0
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are γ1(s) = γ2(s) = · · · = γL−1(s) = 0 and γL(s) = γ (s), where γ (s) is the solution to the
equation z− α(s +µ−µz) = 0 within the unit circle |z| = 1; hereafter, we write γ for γ (0).
Therefore, � becomes a diagonal matrix with the elements 0, 0, . . . , 0, γ . We note that the
left-eigenvector of A(µ− µγ ) corresponding to the eigenvalue γ is 1�, which is the last row
of the matrix G. The last column of the matrix G−1 is

ḡL = 1

γ
[α1(µ− µγ ), α2(µ− µγ ), . . . , αL(µ− µγ )]�,

which is the right-eigenvector corresponding to γ . It follows that

G−1(I − �)−1G1 (23)

=

⎡
⎢⎢⎢⎣

· · · · · α1(µ− µγ )/γ

· · · · · α2(µ− µγ )/γ
...
...

. . .
...

· · · · · αL(µ− µγ )/γ

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1/(1 − γ )

⎤
⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎣

· · · · · ·
· · · · · ·
...

...
. . .

...

1 1 · · · 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1
1
...

1

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + α1(µ− µγ )

1 − γ

α1(µ− µγ )

1 − γ
· · · α1(µ− µγ )

1 − γ
α2(µ− µγ )

1 − γ
1 + α2(µ− µγ )

1 − γ
· · · α2(µ− µγ )

1 − γ
...

...
. . .

...
αL(µ− µγ )

1 − γ

αL(µ− µγ )

1 − γ
· · · 1 + αL(µ− µγ )

1 − γ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1
1
...

1

⎤
⎥⎥⎥⎦

= 1 + γL

1 − γ
ḡL, (24)

where we have used G−1G = I . Substituting (24) into (15) gives

σ = 1

µ(1 − γ )
. (25)

We remark that if the number of types of customer is one for which the LST of the interarrival
time distribution is α(s), then (25) reduces to the mean sojourn time in a GI/M/1/PS queue,
given by [15, p. 440, Equation (8)].

We also consider the waiting time in the SMP/M/1/RS queue for the special semi-Markov
arrival process described above. In the same way as we derived (24), we obtain

G−1(I − �)−1�G1 = γ

1 − γ
1. (26)

Using (26) in (21) yields

w = γ

µ(1 − γ )
. (27)

Hence, if there is a single type of customer for which the LST of the interarrival time distribution
is α(s), then (27) is reduced to the mean waiting time in the GI/M/1/RS queue. This queue is
treated in Cohen [4, p. 443], but he does not comment on this reduction in [5].
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6. Numerical examples

In this section, we illustrate the results for the SMP/M/1/PS queues obtained in the previous
sections in two examples: one for a general two-state SMP and the other for an SMP that can
model a burst arrival process. In both examples, we assume that

A(s) =
[
(1 − p)b11(s) pb12(s)

qb21(s) (1 − q)b22(s)

]
, p, q ∈ [0, 1], (28)

where blm := ∫ ∞
0 e−st d P{An+1 ≤ t | S(n) = l, S(n+1) = m}, l, m = 1, 2. It can be shown

that the overall arrival rate is given by

λ = [π1, π2][(1 − p)β11 + pβ12 , qβ21 + (1 − q)β22]�

= qβ11 + pβ22 + pq(−β11 − β22 + β12 + β21)

p + q
, (29)

where βlm = −1/b′
lm(0), l, m = 1, 2, and

[π1, π2] =
[

q

p + q
,

p

p + q

]

is the stationary distribution of the stochastic matrix A(0). We also assume that the service
time is exponentially distributed with rate µ = 10.

Example 1. Two SMP/M/1/PS queues are considered. The first queue is denoted by SMP(M)/
M/1/PS, and we take

b11(s) = b22(s) = λ1

s + λ1
and b12(s) = b21(s) = λ2

s + λ2
,

i.e. the interarrival time in the SMP is exponentially distributed. The second queue is denoted
by SMP(Er)/M/1/PS, with

b11(s) = b22(s) =
(

2λ1

s + 2λ1

)2

and b12(s) = b21(s) =
(

2λ2

s + 2λ2

)2

,

i.e. the interarrival time in the SMP follows an Erlang(2) distribution. We can now calculate
the mean sojourn time of an arbitrary customer. For this purpose, the following parameters are
used: p = 0.2, q = 0.3, and λ2 = 1

2λ1.
In Figure 1, we plot the performance values as functions of λ, defined in (29). For

comparison, the mean sojourn times in an M/M/1/PS queue and an Er/M/1/PS queue, with
the same arrival rates as in the SMP/M/1/PS queues, are also plotted. It is observed that the
SMP(M) customers always receive worse treatment, i.e. have a longer mean sojourn time, than
the Poisson customers; the same relation exists between the SMP(Er) and Erlang customers.
Furthermore, the mean sojourn time of the SMP(M) customers is longer than that of the SMP(Er)
customers. This is similar to the relation between the sojourn time of a Poisson customer in an
M/M/1/PS queue and the sojourn time of an Erlang customer in an Er/M/1/PS queue.

Example 2. The MMPP(2) is often used to model bursty traffic on communication networks.
The MMPP(2) is a stochastic process with two arrival states, where the arrival process in state l
is a Poisson process with rate θl , l = 1, 2. The time intervals during which the process stays in
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Figure 1: Sojourn times in the PS queues, where (a), (b), (c), and (d) represent the SMP(M)/M/1/PS,
M/M/1/PS, SMP(Er)/M/1/PS, and Er/M/1/PS queues, respectively.

all states are exponentially distributed, with means 1/r1 and 1/r2 in states 1 and 2, respectively.
The overall arrival rate in the MMPP(2) is given by [9]

λ = θ1r2 + θ2r1

r1 + r2
. (30)

It was shown in [6] that the point process generated by an MMPP(2) is stochastically equivalent
to its matched two-state SMP, for which the LST matrix of the interarrival time distributions is
given in (28), with

b11(s) = b12(s) = λ1

s + λ1
and b21(s) = b22(s) = λ2

s + λ2
. (31)

For a given set of parameters {θ1, θ2, r1, r2} of the MMPP(2), the parameters {p, q, λ1, λ2} of
the corresponding SMP are determined by the following set of equations:

θ1 + θ1 + r1 + r2 = λ1 + λ2, (32)

r1 + r2 = qλ2 + pλ1, (33)

θ1θ2 + θ1r2 + θ2r1 = λ1λ2, (34)

θ1r2 + θ2r1 = (p + q)λ1λ2. (35)

We first choose the parameters of an MMPP(2) that simulates a burst arrival process, and then
construct an equivalent SMP(M) using (28), (31), and (32)–(35). The mean sojourn time of
an arbitrary customer can then be determined from our analysis. Given the overall arrival rate
λ of the SMP(M), we set θ1 = 0.75λ, r1 = 0.05, and r2 = 0.95. From (30), we then have
θ2 = 5.75λ. The high arrival rate θ2 implies that bursts of arrivals occur in 5% of the time
interval in the regeneration cycle in this MMPP(2).

In Figure 2, we plot the performance values as functions of λ. The mean sojourn times in an
SMP(Er)/M/1/PS are also plotted; here, each interarrival time follows the Erlang(2) distribution
with the mean equal to the corresponding one in the SMP(M). For comparison, the performance
values of an M/M/1/PS and an Er/M/1/PS are also plotted. We observe that the burst arrivals
strongly influence the mean sojourn time in the SMP(M)/M/1/PS and SMP(Er)/M/1/PS queues.

https://doi.org/10.1239/jap/1118777183 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1118777183


490 D.-A. WU AND H. TAKAGI

(a)

(b)

(c)

(d)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
ea

n 
so

jo
ur

n 
tim

e

0 2 4 6 8 10
λ

Figure 2: Sojourn times in the PS queues with burst arrivals, where (a), (b), (c), and (d) represent the
SMP(M)/M/1/PS, SMP(Er)/M/1/PS, M/M/1/PS, and Er/M/1/PS queues, respectively.
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