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Introduction

The existence of massless charged particles (elec-
trons and positrons) in the description of the pulsar
magnetosphere description leads to the appearance
of two phases for each species. In the dynamical
phase (DP), the particles move like photons with
the speed of light. The static phase (SP), in which
the massless particles move with a speed less than
that of light, can exist only inside the capture region
(C-region). Inside the C-region (E, H) = 0 or E? <
H?, and the Lorentz force acting upon the particles
of SP vanishes. Inside the accelerating region (A-
region), where (E,H) # 0 or E?2 > H?, only the
DP can exist.

The pulsar magnetospheric structure is deter-
mined by the shape of the A- and C-regions (Rylov
1988). The shape of the capture regions and their
boundaries must be determined by dynamical equa-
tions. Conditions on the capture-region boundary
connect the values of physical quantities in the A-
and C-regions. There are a variety of surface dy-
namical equations. These conditions are necessary
for calculating the magnetospheric structure. Ig-
norance of these conditions leads to difficulties and
inconsistencies (for instance, a singularity on the
light cylinder boundary).

In this paper some expressions for discontinu-
ities of the electromagnetic field and its derivatives
on the capture-region boundary are obtained and
investigated. The capture-region boundaries are
classified by types.

Statement of the problem

In global models of the collisionless pulsar magne-
tosphere there is a small parameter
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where e,m,®, R, H,{)y are, respectively, the elec-
tron charge, the electron mass, a characteristic elec-
tric potential, a characteristic length (radius of the
neutron star), the magnetic field, and the angular
frequency of the neutron star.

As long as the value of ¢ is very small, ¢ =
1072 to 1071, then even the zeroth-order approxi-
mation of € leads to excellent results. The zeroth-

order approximation will be referred to as the mass-
less approximation, because it is associated with a
massless charged particle (m = 0 = ¢ = 0). This
approximation is good enough at a distance less
than 10°R to 108R. As a rule a charged massless
particie has nonzero momentum p and moves with
the speed of light. Its velocity v is defined by the
electromagnetic field only (Rylov 1989)

v = vs=vp + svL,
= sgn(q) = %1
vi = ¢ (1)

where ¢ is the charge of the particle, vp is the drift
component of the particle velocity, and vy, is its
longitudinal component, which is directed along the
magnetic field H in a coordinate system where E ||
H (Rylov 1989).

However, there is a very important special case,
when v? < 2. If

(E,H)=0or E? < H? (2)

then the Lorentz force ¢(E + c~!v x H) vanishes.
The massless particle can move with a velocity

v = vp + avy, llef] €1

3)
where «a is arbitrary, but restricted. Its momentum
vanishes p = 0.

The condition of eq.(2) can apply within certain
finite regions of the pulsar magnetosphere. These
regions will be referred to as capture regions be-
cause the particle momentun can be arrested there
(p = 0). In the capture region two phases of each
species can exist at the same time: the dynamical
phase (DP) moving with the speed of light [eq.(1)},
and the static phase (SP) moving with the velocity
given in eq.(3).

The static phase can exist only inside the cap-
ture region, whereas the dynamical phase can exist
inside both the capture region and the accelerating
region where the Lorentz force does not vanish.

The common expression for v has the form

(4)

where a < 1if (E,H)=0and E? < H},a=s=
sgn(q), if (E,H) # 0 or E? > H?. The electrical

v =17vp + av
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current density 7 generated by the particles depends
on v only, but not on the momentum p

(5)

where p4 and p_ are the charge densities of the
positrons and electrons, respectively.

A self-consistent established flow is described by
Maxwell’s equations and the continuity equations
together with eqs.(4) and (5), where vp and vy, are
expressed through E, H (Rylov 1989).

On the boundary of the capture region the dy-
namical variables E, H,p,,p_, and their deriva-
tives have jumps, generally speaking. These jumps
can be determined uniquely, because they are corol-
laries of the system dynamical equations.

There are several types of the jumps which are
determined by relations between vp, and vy, on
the capture-region boundary I', where index “n”
denotes the normal component v, = (v,n):

I: Ulz)n = VLn
M: 0}, < v,
mr: g, > ¢,

A jump of the normal component E, of F and
non-vanishing surface charge density o appear on
the capture-region boundary I only in case I, when
v3, = v?,. This is only possible in the case where
H is tangent to I'. In cases II and III, E and H are
continuous on I'. Only normal derivatives 0E/dn
and 0H /On can be discontinuous. Mathematical
expressions for the jumps can be found in Rylov
(1988, 1989, 1990).

In should be stressed that the size or shape I" of

J=p+v1+p-v p=pst+p-

the capture region V in the pulsar magnetosphere E—J

cannot be given. They depend on the dynamical
equations of which the capture boundary conditions
are a surface form. The shape of I' cannot be deter-
mined without using the conditions on the capture-
region boundary.

In particular, in many first generation pulsar
models (the models of early seventies (Goldreich
and Julian 1969, Julian 1973, Michel 1973, Scharle-
mann and Wagoner 1973) the whole magnetosphere
is supposed to consist of the capture region only.
This leads to singularities on the light cylinder and
to other inconsistencies.

In second generation pulsar models, where the
capture-region boundary conditions are taken into
account, these inconsistencies are removed.

The case of charge separation

In this case there are particles of only one species
(electrons or positrons) at any point. Let us say
that the boundary I' is unstable with respect to
species s (s = 1 for positrons and s = -1 for
electrons) if there is an outflow of s through T,
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(vs,n) > 0. T is stable with respect to the species
8, if there is no outflow of s through I' (v,,n) < 0.

In case II, when v, dominates vp, (vZ, > v3,),
I' can be stable with respect to positrons and un-
stable with respect to electrons (case II;). Con-
versely, I' can be stable for electrons and unstable
for positrons (case II_).

In case III, when vp dominates vy, (v}, >
v ), T can either be stable for both electrons and
positrons (case IIL;) or unstable for both (case
I1L).

In the coordinate systems of cases IT and III, Kj;
and Kjy1, where, respectively, vy, = 0, one has

II,: wvwn = 0, vin < O
II_: wpa = 0, vn > O
I, : vign = 0, vpn < 0
Hg: vin = 0, vpan > O.

The types of capture-region boundaries in
axisymmetric charge-separated pulsar magneto-
spheres with net total charge are shown schemat-
ically in figure 1.
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Figure 1

In case I following types of capture-region
boundaries exist:

Ipy: vin = —-vpa # O
Ip_.: vpn = wvpn # 0
Is: vy = vpa = 0.

Case Ipy corresponds to a positron, and case
Ip_ to an electron surface charge. Case Is corre-
sponds to asurface charge constructed from SP.

Case Is, when a non-vanishing surface density
of captured particles (SP) arises in empty space,
seems to be impossible. Nevertheless, very large
charge density (simulating the surface charge) can
arise in the pulsar magnetosphere, as figures 1 and
4 of Krause-Polstorff and Michel (1985), where the
magnetosphere was calculated numerically for the
case of large positive total charge.
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