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1. Introduction.

We define

where a.p =£ a.q when p ^q. If iV = 2A,-, then the partition (A1; A2, ..., Xn)
of N with Ax ̂  A2 ^ ... > Xn is denoted by (A) and we set

h =
All partitions will be in descending order and the usual notation for repeated
parts will be used.

The determinant with f(s, t) in row 5 and column t will be denoted by
|/(s, t)\. The use of s and t implies that the determinant is of order n.
For other orders a and T will be used.

We consider the function

{«; (A); ft
defined by . |a«<>| = {«; (A); yS}|<-'|.

If every /?,- = 0, then we have the ^-function {a; (A)} defined by

| a j | = { a ; (A)}|a?-'|
[1, chap. VI].

When 0 < v < u, we define b(u, v) to be the v-th. elementary symmetric
function of &, #,, ..., flu. We set 6(0, 0) = 1 = b(u, 0) and b(u, v) = 0 if
v < 0 or u < v. We take H(u, v) as the v-th complete homogeneous
symmetric function of /31; [32, ..., /?„ when 0 < v, and #(0, 0) = H(u, 0) = 1,
H(u, v) = 0 if « < 0.

In this note we prove the following theorems:

THEOREM 1. If b{(l), (r)} = \b(l,, l,-l,+rt)\, then

{«; (A); iS} = S.{a; (A.-r,, A2-r2, ..., \n-rn)}b{(l), (r)},

where the summation is taken over all non-negative rt such that

Ai-»i > A,-r2 > - ^K~rn>0.
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THEOREM 2. If Xt ^n, (fx) and (fi—r') are partitions 'conjugate to (A)
and (A—r) respectively and ms = /j,s-\-n—s, then

b{(l), (r)} =\H(2n-m., m.-ml+rl')\=H{(m), (r% say.

THEOREM 3. The function b{(l), (r)} may be expanded as a polynomial
in pv /?2, ..., pti with positive integral coefficients.

Since Theorem 2 is solely concerned with the /?,-, we can choose n~^Xx

by adding a sufficient number of zero parts to (A).
Hirsch [2] considered the case of (A) = (ln~fc, 0k) and his result may

be put in the form1

{a; (1"-*, 0*); 0} = *S*{a; (P-*-)} #(&+! , r). (1)
0r = 0

We may obtain the dual result

{a; (n—k, 0"-1); £} = "s {a; (n-Jc-r)}b(2n-Jc-l, r) (2)
r = 0

by subtracting appropriate multiples of the columns of

|a'W|, (I1 = 2n-k-l, l2 = n-2, is = n - 3 , .... ln = 0),

from the preceding columns.
Using Theorem 1, we find that in the expansion of (1) we have a term

with

Xx = A2 = ... = ATC_ft = 1, Am_fc+1 = Are_fc+2 = ... = Xn = 0,

r1 = r 2 = . . . = r , = 0, rt+1 = rM = ... = rn_k = 1, rn_k+1 = ... = rn = 0;

so that (A) = (ln~k), (X-r) = (1«)
and in Theorem 2

(At)=(»-fc)> ( M -r ' )=(«) .

Thus the coefficient of {a; (1')} is

b{(l), (r)} = \H(2n-ms, m f _ m < + r / ) |
where

m1 = 2n—k— 1, m2 = w—2, m3 = w—3, ..., mn=0,

r{ = n—h-t, r2' = r3'= ...= rn' = 0.
The first column of \H(2n—ms, ma—mt

J
rrt')\ now has

H(k+1, n-k—t)

in the first row and zero below, since ra8—mx-\-r{ < 0 for s > 1. The other
columns will have unity on the principal diagonal position and zero below.
Hence we have (1).

We omit zero parts when there is no danger of ambiguity.
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In (2), we find that we have a term with
2),

and the coefficient of {a; (ln~k~r)} is b(2n—k— 1, r) from Theorem 1.
As a further example we consider

*(.«

{a; ( 2 , 1 , 0 ) ;

a3
2 a3

We denote 6(«, u) by w, V, {a; A} by {A}, — t by I, and find that

{a; (2,1,0); # = {2,1} 4,0

2,2

0,4

4,2

2,0

0,2

4,

2,

o,

1

1

3

4,

2,

o,

2

0

2

4,

2

o,

4

2

0

+{1} 4,

2,

o,

1

I

3

4,4

2,2

0,0

4,3

2,1

0,1

+ {2} 4,0

2,2

0,4

4,3

2,1

0,1

4,4

2,2

0,0

4,4

2,2

0,0

4,2

2,0

0,2

4,3

2,1

0,1

4,4

2,2

0,0

= {2, l}+{2}6(2, 1)+{1*}6(4, 1)+{1}6(4, 1)6(2, 1) +

As an example of Theorem 3, we consider

6(4, 2) 6(4, 3)

6(2, 0) 6(2, 1)

4,2

2,0

1,1

4,3

2,1

1,0

4,4

2,2

1, 1

= 6{(4, 2, 1); (2,1,1)}.

This is the term independent of the a,- in the expansion of {a; (2,12); /?}
and it does not factorise into determinants of the same type but lower
order. The term independent of the ae- in the expansion of {a; (I3); /}}
also has this property and it is h(l, 3). These two terms are the first of
order 3 which have the property.

Now

6{(4, 2, 1), (2, 1, 1)}

1

0
= (A+A) A+A

1

0

= (ft-

0

A A

ft(ft-

ftft
1

0

fA)+(A
ft+ft

1

0

ft+ft
1

+ft)/

0

ft ft
ft

hpt ft ft A
ftft
ft

ft
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Since this note was first submitted, Foulkes [8] has given a different
method of obtaining (1), (2) and Theorem 1.

2. Expansion of {a; (A); fi).

We have, when h ^ lx,

i=k-il

so that \a.f>\ is the determinant of the product of the matrices

A = [o£-T] and B = [b(lt, 1,—h+o)],

where a, T = 0, 1, 2, ..., lx; s, t= 1, 2, ..., n.
It is well-known [c/. 3, 86] that the determinant \AB\ is the sum of the

1 j products of pairs of corresponding n-th. order determinants

which can be formed from A and B', the transpose of B, each determinant
occurring once only.

The determinant in B' corresponding to M-rt I IS

(3)

We may select, and account for all n-th order determinants from A,
by demanding that

h—r1>l2—r2> ...>ln—rn, i.e. Ax—rx > A2—r2 > ... >X n —r n .

Moreover, r, < A,- since li—ri ~^n—i, the least possible exponent for column i.
Hence the coefficient of {a; (A^rx, A2—r2. ...; Xn—rn)} in the expansion
of {«; (A); ft is

\b(l., l-lt+rt)\.

We have lh^lg and lg—lj+»"j<»", for j ^.g ^.h. Hence, if r, < 0,
then 6(Z/i, i!A—Zi+ri) = 0. In this case (3) vanishes, having zero elements
in the first g terms of the last n—g-\-l rows. This completes the proof of
Theorem 1.

If rg_1<lg_1—lt, i.e. »•„_!<A^—A0) we can show similarly that (3)
factorises into two lower order determinants of the same kind as (3).
We note that the graph [1, 67] of the partition (Ax—rlt A2—r2, ..., Xn—rn)
must be regular for a non-zero term. However, if we construct this graph
by removing the last r( nodes from row i of the graph of (A) for i = 1, 2, ..., n
in succession, and if we have a regular graph at any, except the \? st, stage,
then (3) will factorise.
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3. Duality.

LEMMA 1. The p-th order matrices H1= [H(p—T+1, T—a)] and
Bx = [( — iy-"b(p—a, T—a)] are reciprocal and hence adjoint.

Proof. If H= [H(p, T-a)] , B = [(-\y-"b{p, r—o)], then HB = I,
the unit matrix [c/. 3, 115]. We set Qur as the ̂ -th order square matrix
with 1 on the principal diagonal, — fiu in row r— 1 of column r, and zero
elsewhere,

Now 6(»+l, j + l) = b(i, j+l)+pi+1b(i, j),

H(i+1, j+l) = H(i, j+i)+pi+1H(i+l, j).

Then since H{r, 0) = b(r, 0) = 1 = 6(0, 0), we have HQ = H1 and
Q"1 B = Bv Hence H1B1 = I, and since the determinant of Hx is 1,
then i/x and Bx are adjoint.

LEMMA 2. / / (Ax, A2, ..., Xn) and (/i1; /x2, ..., yun) are conjugate parti-
tions, then n-\-s—\s and w+l+/*s—s (s= 1, 2, ..., TO), form a permutation
of 1, 2, ..., 2».

This is merely a re-statement of Aitken's rule [5], that

(K> ^ - i + ! > •••> K+n~!) a n d (/*«» At»-i+1> •••> Mi + w— 1)
form bicomplementary sets in relation to the set 0, 1, 2, ..., In—1.

Proof of Theorem 2. This is based on a similar proof in [5]. If
r 1 + r 2 + . . .+ r , t = r, then | ( — l)l>~ll+r'b(ls, ls—l(+rt)\ is the minor of Bx (for
p — 2n) formed by rows n-\-s—As and columns n-\-t—(Xt—r(), which by
Jacobi's theorem and Lemma 2, is equal to (— l) r times the minor formed
from the transpose of Hx by rows » + 1 +/^s—s and columns n-\-1 -\-fj.t—rt'—t.
Hence we have

\= ( - 1 ) 1 (-l)'>-<>+rib(ls, l.-l,+rt)\

= \H(2n—ms, ms—mt+rt')\.

This completes the proof of Theorem 2.
We note that from Lemma 1 we may deduce modified Wronski recur-

rence formulae; for 1 ̂  r ^.p — 1, we have

, 0)b(p-l, r)-H(p-l, l)b(p~2, r-l)

+H(p-2, 2)6{p-3, r -2 ) - + ... = 0,

—l, 0)H(p-r, r)—b(p-l, l)H(j: — r, r—l)

- l , 2)H(p-r,r-2)—1-... = 0.
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If we replace b(u, r) by H(2n—u, r) in b{(l), (r)}, we obtain

\H(2n-ls, l-lt+rt)\

which is equal to \b(ms, ms—mt-\-r't)\,

thus illustrating the duality.
As in Section 2, we find that H{(m), (r')} will factorise if

r'll_1<ml,_1—mg, i.e. r',^^^^—^.

Hence if we remove r- nodes from column . of the graph of (A) in succession,
and if, at any stage except the last, we have a regular graph, then H {(m), (r')}
will factorise into two determinants of the same type but of lower order.

4. Proof of Theorem 3.

We assume that

r.-i>l,-i-h (0 = 2,3, . . . ,n) ,

so that b{(l), (r)} does not factorise.

When 0 < q ^ lu_1—lu, we define

to be the q-th elementary symmetric function of

We set (.„_!, luQO) = 1 and (.„_!, lu~§r) = 0 if r < 0 or r> lu_x—lu.

We denote the 7.-th order determinant

(s' = 1, 2, ..., M—1; s" = M, w+1, ..., n),

(«_-, ^ - ^ + ^ )
b y [ « i , «2> •••> u u - i ] -

Now

b(luJu-h+rt)= S*o ( l u , U l u - I u + 1 - p ) 6 ( l . + 1 , l + 1 - H ' ' ( + _ ) ) . (4)

Hence &{(.), (r)} = ' ^ ( . ^ 1^-12-Pll) [>..],
the term for pn = 0 vanishing.

Similarly,

nl= 2 2 (Z2, Z35Z2—Z3—

(h, hih—h—(P22—Pu))

(h, hULh-h-Pn-Pu) (h, l£k-h-

2. _»22]

[P11+P12, P22I
(5)
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where the summation is taken over

subject to P11+P12 > P22 > 0.

We set

PIVL = Pu+Pi,i+i+- • • +Piu w n e n t^u, Plu = 0 when t > u,

and use Su to denote summation over

0 <PJU < h-h+i, *-e- Pj,u-i < Piu < k-h+i+P,,u-i,

subject to Plu > Piu > ... > Puu > 0.

Then (5) may be written

E^iJ = Sa| (ia, a ^ - ^ + ^ x - ^ 2 ) ! [̂ 12. -P22] {o, r = 1, 2).

Now i>ijU_i> -P8jU-i for s > 1, and hence from (4)

b(h, lu-lt+rt+P3,u^)
lH-lu+l+Pl,u-\

w=0

Then by a proof similar to that of Theorem 1 we obtain

L-* 1 , u — 1 > •* 2 , « — 1 > • • • ' •* u—1> u - i J

(a, T = 1 ,2 , . . . , « ) . (6)

We find that if

Plu>P2u>->Puu>0,

then the coefficient of

l " l u ) -* 2UJ • • • ) -* « « J ( ' )

in the expansion of (6) is

I (K, lu+lBu-lu+1+P..U-l-Pr.u)] (O, T = 1, 2, .... «). (8)

Then in (8), ^ . « - i + ^ - W > ^ « :

otherwise the first j elements of the last n—j-\-l rows of (8) will be
zero, and the determinant vanishes. Also

P ~> P

otherwise the last n—j-\-l elements of the first j rows will be zero and
the determinant vanishes. If Pu u = 0, then rows u and u-\-\ of (7)
are equal. Hence the expansion of (6) follows.
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We set £, = *«-*«

then £, > £,+1 and rj, > T?T+1.

Hence | (lu, lu+1Va-lu+1+P,,u-i~Pr,u) I

is the /S-function [1, 110]

of fl|.+1+i. - , A . - i . A . ,

where the tilde denotes conjugate partition.

Now {Ilv} = 2g<M>
where the g^ are non-negative integers determined by

[c/. 1, 110, 91-96]. Since {£} itself may be expanded as a polynomial in

(10) with positive integral coefficients1, all the terms in the expansion of

(6) as a polynomial in (10) have positive integral coefficients. Theorem 3

follows on repeated application of this argument.

We note that we may write in symbolic form:

\b(h,l.-l,+rt)\

u = l

1 This is well known [cf. 7]. Aitken [6] gives a direct proof that (9) may be expanded
with positive integral coefficients.
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