A Type of Alternant

By F. W. Ponting

(Received 4th May, 1950. Read 3rd November, 1950.)

1. Introduction.

We define

$$
\alpha_{j}^{(k)}=\left(\alpha_{j}+\beta_{1}\right)\left(\alpha_{j}+\beta_{2}\right) \ldots\left(\alpha_{j}+\beta_{k}\right),
$$

where $\alpha_{p} \neq \alpha_{q}$ when $p \neq q$. If $N=\Sigma \lambda_{i}$, then the partition ($\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$) of N with $\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant \lambda_{n}$ is denoted by (λ) and we set

$$
l_{j}=\lambda_{i}+n-j
$$

All partitions will be in descending order and the usual notation for repeated parts will be used.

The determinant with $f(s, t)$ in row s and column t will be denoted by $|f(s, t)|$. The use of s and t implies that the determinant is of order n. For other orders σ and τ will be used.

We consider the function

$$
\{\alpha ;(\lambda) ; \beta\}
$$

defined by

$$
\left|\alpha_{s}^{\left(L_{t}\right)}\right|=\{\alpha ;(\lambda) ; \beta\}\left|\alpha_{s}^{n-t}\right| .
$$

If every $\beta_{i}=0$, then we have the S-function $\{\alpha ;(\lambda)\}$ defined by

$$
\left|\alpha_{s}^{l_{s}}\right|=\{\alpha ;(\lambda)\}\left|\alpha_{s}^{n-t}\right|
$$

[1, chap. VI].
When $0<v \leqslant u$, we define $b(u, v)$ to be the v-th elementary symmetric function of $\beta_{1}, \beta_{2}, \ldots, \beta_{u}$. We set $b(0,0)=1=b(u, 0)$ and $b(u, v)=0$ if $v<0$ or $u<v$. We take $H(u, v)$ as the v-th complete homogeneous symmetric function of $\beta_{1}, \beta_{2}, \ldots, \beta_{u}$ when $0<v$, and $H(0,0)=H(u, 0)=1$, $H(u, v)=0$ if $v<0$.

In this note we prove the following theorems:
Theorem 1. If $b\{(l),(r)\}=\left|b\left(l_{s}, l_{s}-l_{t}+r_{t}\right)\right|$, then

$$
\{\alpha ;(\lambda) ; \beta\}=\Sigma\left\{\alpha ;\left(\lambda_{1}-r_{1}, \lambda_{2}-r_{2}, \ldots, \lambda_{n}-r_{n}\right)\right\} b\{(l),(r)\},
$$

where the summation is taken over all non-negative r_{i} such that

$$
\lambda_{1}-r_{1} \geqslant \lambda_{2}-r_{2} \geqslant \ldots \geqslant \lambda_{n}-r_{n} \geqslant 0
$$

Theorem 2. If $\lambda_{1} \leqslant n$, (μ) and ($\mu-r^{\prime}$) are partitions conjugate to (λ) and $(\lambda-r)$ respectively and $m_{s}=\mu_{s}+n-s$, then

$$
b\{(l),(r)\}=\left|H\left(2 n-m_{s}, m_{s}-m_{t}+r_{t}^{\prime}\right)\right|=H\left\{(m),\left(r^{\prime}\right)\right\}, \text { say. }
$$

Theorem 3. The function $b\{(l),(r)\}$ may be expanded as a polynomial in $\beta_{1}, \beta_{2}, \ldots, \beta_{l_{1}}$ with positive integral coefficients.

Since Theorem 2 is solely concerned with the β_{i}, we can choose $n \geqslant \lambda_{1}$ by adding a sufficient number of zero parts to (λ).

Hirsch [2] considered the case of $(\lambda)=\left(1^{n-k}, 0^{k}\right)$ and his result may be put in the form ${ }^{1}$

$$
\begin{equation*}
\left\{\alpha ;\left(\mathrm{l}^{n-k}, 0^{k}\right) ; \beta\right\}=\sum_{r=0}^{n-k}\left\{\alpha ;\left(\mathrm{l}^{n-k-r}\right)\right\} H(k+1, r) . \tag{1}
\end{equation*}
$$

We may obtain the dual result

$$
\begin{equation*}
\left\{\alpha ;\left(n-k, 0^{n-1}\right) ; \beta\right\}=\sum_{r=0}^{n-k}\{\alpha ;(n-k-r)\} b(2 n-k-1, r) \tag{2}
\end{equation*}
$$

by subtracting appropriate multiples of the columns of

$$
\left|\alpha_{3}^{\left(l_{)}\right)}\right|, \quad\left(l_{1}=2 n-k-1, l_{2}=n-2, l_{3}=n-3, \ldots, l_{n}=0\right)
$$

from the preceding columns.
Using Theorem 1, we find that in the expansion of (1) we have a term with

$$
\lambda_{1}=\lambda_{2}=\ldots=\lambda_{n-k}=1, \quad \lambda_{n-k+1}=\lambda_{n-k+2}=\ldots=\lambda_{n}=0
$$

$r_{1}=r_{2}=\ldots=r_{i}=0, \quad r_{t+1}=r_{t+2}=\ldots=r_{n-k}=1, \quad r_{n-k+1}=\ldots=r_{n}=0 ;$
so that
$(\lambda)=\left(1^{n-k}\right), \quad(\lambda-r)=\left(1^{l}\right)$
and in Theorem 2

$$
(\mu)=(n-k), \quad\left(\mu-r^{\prime}\right)=(t) .
$$

Thus the coefficient of $\left\{\alpha ;\left(1^{t}\right)\right\}$ is

$$
b\{(l),(r)\}=\left|H\left(2 n-m_{s}, m_{s}-m_{t}+r_{t}^{\prime}\right)\right|
$$

where

$$
\begin{aligned}
& m_{1}=2 n-k-1, \quad m_{2}=n-2, \quad m_{3}=n-3, \quad \ldots, \quad m_{n}=0, \\
& r_{1}{ }^{\prime}=n-k-t, \quad r_{2}{ }^{\prime}=r_{3}{ }^{\prime}=\ldots=r_{n}{ }^{\prime}=0 .
\end{aligned}
$$

The first column of $\left|H\left(2 n-m_{s}, m_{s}-m_{t}+r_{t}^{\prime}\right)\right|$ now has

$$
H(k+1, n-k-t)
$$

in the first row and zero below, since $m_{3}-m_{1}+r_{1}{ }^{\prime}<0$ for $s>1$. The other columns will have unity on the principal diagonal position and zero below. Hence we have (1).

[^0]In (2), we find that we have a term with

$$
\lambda_{1}=n-k, \quad r_{1}=r, \quad \lambda_{j}=r_{j}=0 \quad(j>2)
$$

and the coefficient of $\left\{\alpha ;\left(1^{n-k-r}\right)\right\}$ is $b(2 n-k-1, r)$ from Theorem 1.
As a further example we consider

$$
\left|\begin{array}{ccc}
\alpha_{1}^{(4)} & \alpha_{1}^{(2)} & 1 \\
\alpha_{2}^{(4)} & \alpha_{2}^{(2)} & 1 \\
\alpha_{3}^{(4)} & \alpha_{3}^{(2)} & 1
\end{array}\right|=\left|\begin{array}{ccc}
\alpha_{1}{ }^{2} & \alpha_{1} & 1 \\
\alpha_{2}{ }^{2} & \alpha_{2} & 1 \\
\alpha_{3}{ }^{2} & \alpha_{3} & 1
\end{array}\right|\{\alpha ;(2,1,0) ; \beta\} .
$$

We denote $b(u, v)$ by $u, v,\{\alpha ; \lambda\}$ by $\{\lambda\},-t$ by \bar{t}, and find that

$$
\begin{aligned}
& \{\alpha ;(2,1,0) ; \beta\}=\{2,1\}\left|\begin{array}{ccc}
4,0 & 4,2 & 4,4 \\
2, \overline{2} & 2,0 & 2,2 \\
0, \overline{4} & 0, \overline{2} & 0,0
\end{array}\right|+\{2\}\left|\begin{array}{lll}
4,0 & 4,3 & 4,4 \\
2, \overline{2} & 2,1 & 2,2 \\
0, \overline{4} & 0, \overline{1} & 0,0
\end{array}\right| \\
& +\left\{1^{2}\right\}\left|\begin{array}{lll}
4,1 & 4,2 & 4,4 \\
2, \overline{1} & 2,0 & 2,2 \\
0, \overline{3} & 0, \overline{2} & 0,0
\end{array}\right|+\{1\}\left|\begin{array}{lll}
4,1 & 4,3 & 4,4 \\
2, \overline{1} & 2,1 & 2,2 \\
0, \overline{3} & 0, \overline{1} & 0,0
\end{array}\right|+\left|\begin{array}{lll}
4,2 & 4,3 & 4,4 \\
2,0 & 2,1 & 2,2 \\
0, \overline{2} & 0, \overline{1} & 0,0
\end{array}\right| \\
& =\{2,1\}+\{2\} b(2,1)+\left\{1^{2}\right\} b(4,1)+\{1\} b(4,1) b(2,1)+\left|\begin{array}{ll}
b(4,2) & b(4,3) \\
b(2,0) & b(2,1)
\end{array}\right| .
\end{aligned}
$$

As an example of Theorem 3, we consider

$$
\left|\begin{array}{ccc}
4,2 & 4,3 & 4,4 \\
2,0 & 2,1 & 2,2 \\
1, \overline{1} & 1,0 & 1,1
\end{array}\right|=b\{(4,2,1) ;(2,1,1)\}
$$

This is the term independent of the α_{i} in the expansion of $\left\{\alpha ;\left(2,1^{2}\right) ; \beta\right\}$ and it does not factorise into determinants of the same type but lower order. The term independent of the α_{i} in the expansion of $\left\{\alpha ;\left(1^{3}\right) ; \beta\right\}$ also has this property and it is $h(1,3)$. These two terms are the first of order 3 which have the property.

Now
$\left.\begin{array}{lcc}b\{(4,2,1),(2,1,1)\} & \\ =\mid \beta_{1} \beta_{2}+\left(\beta_{1}+\beta_{2}\right)\left(\beta_{3}+\beta_{4}\right)+\beta_{3} \beta_{4} & \beta_{1} \beta_{2}\left(\beta_{3}+\beta_{4}\right)+\left(\beta_{1}+\beta_{2}\right) \beta_{3} \beta_{4} & \beta_{1} \beta_{2} \beta_{3} \beta_{4} \\ 1 & \beta_{1}+\beta_{2} & \beta_{1} \beta_{2} \\ 0 & 1 & \beta_{1}\end{array} \right\rvert\,$
$\left.=\left(\beta_{3}+\beta_{4}\right) \cdot \beta_{1}+\beta_{2} \quad \beta_{1} \beta_{2} \quad 0 \quad+\left|\begin{array}{ccc}\beta_{1} \beta_{2} & 0 & 0 \\ 1 & \beta_{1}+\beta_{2} & \beta_{1} \beta_{2} \\ 0 & 1 & \beta_{1}\end{array}\right| \begin{array}{cc}1 & \beta_{1}+\beta_{2} \\ 0 & \beta_{1} \beta_{2} \\ 1 & \beta_{1}\end{array} \right\rvert\,$
$=\left(\beta_{3}+\beta_{4}\right) \beta_{1}{ }^{3}+\beta_{1}{ }^{3} \beta_{2}$.

Since this note was first submitted, Foulkes [8] has given a different method of obtaining (1), (2) and Theorem 1.
2. Expansion of $\{\alpha ;(\lambda) ; \beta\}$.

We have, when $k \leqslant l_{1}$,

$$
\alpha_{j}^{(k)}=\sum_{i=k-l_{1}}^{k} b(k, i) \alpha_{j}^{k-i},
$$

so that $\left|\alpha_{s}^{\left(\alpha_{D}\right)}\right|$ is the determinant of the product of the matrices

$$
A=\left[\alpha_{s}^{l_{1}-\tau}\right] \quad \text { and } \quad B=\left[b\left(l_{t}, l_{t}-l_{1}+\sigma\right)\right],
$$

where $\sigma, \tau=0,1,2, \ldots, l_{1} ; s, t=1,2, \ldots, n$.
It is well-known $[c f .3,86]$ that the determinant $|A B|$ is the sum of the $\binom{l_{1}+1}{n}$ products of pairs of corresponding n-th order determinants which can be formed from A and B^{\prime}, the transpose of B, each determinant occurring once only.

The determinant in B^{\prime} corresponding to $\left|\alpha_{s}^{l_{t}-r_{t}}\right|$ is

$$
\begin{equation*}
\left|b\left(l_{s}, l_{s}-l_{t}+r_{t}\right)\right| \tag{3}
\end{equation*}
$$

We may select, and account for all n-th order determinants from A, by demanding that

$$
l_{1}-r_{1}>l_{2}-r_{2}>\ldots>l_{n}-r_{n}, \quad \text { i.e. } \quad \lambda_{1}-r_{1} \geqslant \lambda_{2}-r_{2} \geqslant \ldots \geqslant \lambda_{n}-r_{n}
$$

Moreover, $r_{i} \leqslant \lambda_{i}$ since $l_{i}-r_{i} \geqslant n-i$, the least possible exponent for column i. Hence the coefficient of $\left\{\alpha ;\left(\lambda_{1}-r_{1}, \lambda_{2}-r_{2}, \ldots, \lambda_{n}-r_{n}\right)\right\}$ in the expansion of $\{\alpha ;(\lambda) ; \beta\}$ is

$$
\left|b\left(l_{s}, l_{s}-l_{l}+r_{t}\right)\right|
$$

We have $l_{h} \leqslant l_{g}$ and $l_{g}-l_{j}+r_{j} \leqslant r_{g}$ for $j \leqslant g \leqslant h$. Hence, if $r_{g}<0$, then $b\left(l_{h}, l_{h}-l_{j}+r_{j}\right)=0$. In this case (3) vanishes, having zero elements in the first g terms of the last $n-g+1$ rows. This completes the proof of Theorem 1 .

If $r_{g-1}<l_{g-1}-l_{g}$, i.e. $r_{g-1} \leqslant \lambda_{g-1}-\lambda_{g}$, we can show similarly that (3) factorises into two lower order determinants of the same kind as (3). We note that the graph $[1,67]$ of the partition $\left(\lambda_{1}-r_{1}, \lambda_{2}-r_{2}, \ldots, \lambda_{n}-r_{n}\right)$ must be regular for a non-zero term. However, if we construct this graph by removing the last r_{i} nodes from row i of the graph of (λ) for $i=1,2, \ldots, n$ in succession, and if we have a regular graph at any, except the lest, stage, then (3) will factorise.

3. Duality.

Lemma 1. The p-th order matrices $H_{1}=[H(p-\tau+1, \tau-\sigma)]$ and $B_{1}=\left[(-1)^{\tau-\sigma} b(p-\sigma, \tau-\sigma)\right]$ are reciprocal and hence adjoint.

Proof. If $H=[H(p, \tau-\sigma)], B=\left[(-1)^{\tau-\sigma} b(p, \tau-\sigma)\right]$, then $H B=I$, the unit matrix [cf. 3, 115]. We set $Q_{u r}$ as the p-th order square matrix with 1 on the principal diagonal, $-\beta_{u}$ in row $r-1$ of column r, and zero elsewhere,

$$
Q_{u}=Q_{u, p} Q_{u, p-1} \ldots Q_{u, p-u+2} \quad \text { and } \quad Q=Q_{p} Q_{p-1} \ldots Q_{2}
$$

Now

$$
\begin{aligned}
b(i+1, j+1) & =b(i, j+1)+\beta_{i+1} b(i, j), \\
H(i+1, j+1) & =H(i, j+1)+\beta_{i+1} H(i+1, j)
\end{aligned}
$$

Then since $H(r, 0)=b(r, 0)=1=b(0,0)$, we have $H Q=H_{1}$ and $Q^{-1} B=B_{1}$. Hence $H_{1} B_{1}=I$, and since the determinant of H_{1} is 1 , then H_{1} and B_{1} are adjoint.

Lemma 2. If $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ and $\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)$ are conjugate partitions, then $n+s-\lambda_{s}$ and $n+1+\mu_{s}-s(s=1,2, \ldots, n)$, form a permutation of $1,2, \ldots, 2 n$.

This is merely a re-statement of Aitken's rule [5], that

$$
\left(\lambda_{n}, \lambda_{n-1}+1, \ldots, \lambda_{1}+n-1\right) \quad \text { and } \quad\left(\mu_{n}, \mu_{n-1}+1, \ldots, \mu_{1}+n-1\right)
$$

form bicomplementary sets in relation to the set $0,1,2, \ldots, 2 n-1$.
Proof of Theorem 2. This is based on a similar proof in [5]. If
 $p=2 n$) formed by rows $n+s-\lambda_{s}$ and columns $n+t-\left(\lambda_{t}-r_{t}\right)$, which by Jacobi's theorem and Lemma 2, is equal to $(-1)^{r}$ times the minor formed from the transpose of H_{1} by rows $n+1+\mu_{s}-s$ and columns $n+1+\mu_{t}-r_{l}{ }^{\prime}-t$. Hence we have

$$
\begin{aligned}
\mid b\left(l_{s}, l_{s}-l_{t}\right. & \left.+r_{t}\right)\left|=(-1)^{r}\right|(-1)^{l_{s}-l_{t}+r_{t}} b\left(l_{s}, l_{s}-l_{t}+r_{t}\right) \mid \\
& =\left|H\left\{2 n+1-\left(n+1+\mu_{s}-s\right), n+1+\mu_{s}-s-\left(n+1+\mu_{t}-r_{t}^{\prime}-t\right)\right\}\right| \\
& =\left|H\left(2 n-m_{s}, m_{s}-m_{i}+r_{t}^{\prime}\right)\right| .
\end{aligned}
$$

This completes the proof of Theorem 2.
We note that from Lemma 1 we may deduce modified Wronski recurrence formulae; for $1 \leqslant r \leqslant p-1$, we have

$$
\begin{aligned}
& H(p, 0) b(p-1, r)-H(p-1,1) b(p-2, r-1) \\
&+H(p-2,2) b(p-3, r-2)-+\ldots=0 \\
& b(p-1,0) H(p-r, r)-b(p-1,1) H((p-r, r-1) \\
&+b(p-1,2) H(p-r, r-2)-+\ldots=0
\end{aligned}
$$

If we replace $b(u, r)$ by $H(2 n-u, r)$ in $b\{(l),(r)\}$, we obtain

$$
\begin{gathered}
\left|H\left(2 n-l_{s}, l_{s}-l_{t}+r_{t}\right)\right| \\
\left|b\left(m_{s}, m_{s}-m_{t}+r_{t}^{\prime}\right)\right|,
\end{gathered}
$$

which is equal to
thus illustrating the duality.
As in Section 2, we find that $H\left\{(m),\left(r^{\prime}\right)\right\}$ will factorise if

$$
r_{g-1}^{\prime}<m_{a-1}-m_{g}, \quad \text { i.e. } \quad r_{g-1}^{\prime} \leqslant \mu_{g-1}-\mu_{g} .
$$

Hence if we remove r_{i}^{\prime} nodes from column i of the graph of (λ) in succession, and if, at any stage except the last, we have a regular graph, then $H\left\{(m),\left(r^{\prime}\right)\right\}$ will factorise into two determinants of the same type but of lower order.

4. Proof of Theorem 3.

We assume that

$$
r_{g-1} \geqslant l_{g-1}-l_{g} \quad(g=2,3, \ldots, n)
$$

so that $b\{(l),(r)\}$ does not factorise.
When $0<q \leqslant l_{u-1}-l_{u}$, we define

$$
\left(l_{u-1}, l_{u}\lceil q)\right.
$$

to be the q-th elementary symmetric function of

$$
B_{l u+1}, B_{l,+2}, \ldots, B_{l u-1} .
$$

We set $\left(l_{u-1}, l_{u} \chi 0\right)=1$ and $\left(l_{u-1}, l_{u} \gamma r\right)=0$ if $r<0$ or $r>l_{u-1}-l_{u}$.
We denote the n-th order determinant

$$
\left|\begin{array}{l}
b\left(l_{u}, l_{u}-l_{l}+r_{t}+v_{s^{\prime}}\right) \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
b\left(l_{s^{\prime \prime}}, l_{s^{\prime \prime}}-l_{i}+r_{t}\right)
\end{array}\right| \quad\left(s^{\prime}=1,2, \ldots, u-1 ; s^{\prime \prime}=u, u+1, \ldots, n\right)
$$

by

$$
\left[v_{1}, v_{2}, \ldots, v_{u-1}\right]
$$

Now

$$
\begin{equation*}
b\left(l_{u}, l_{u}-l_{t}+r_{t}\right)=\sum_{p=0}^{l_{u}-l_{u+1}}\left(l_{u}, l_{u+1} \gamma l_{u}-l_{u+1}-p\right) b\left(l_{u+1}, l_{u+1}-l_{l}+r_{t}+p\right) \tag{4}
\end{equation*}
$$

Hence

$$
b\{(l),(r)\}=\sum_{p_{11}=1}^{l_{1}-l_{2}}\left(l_{1}, l_{2} \gamma l_{1}-l_{2}-p_{11}\right)\left[p_{11}\right],
$$

the term for $p_{11}=0$ vanishing.
Similarly,
$\left[p_{11}\right]=\sum_{p_{12}=0}^{l_{2}-l_{3}} \sum_{p_{22}=1}^{l_{2}-l_{3}}\left(l_{2}, l_{3} \gamma l_{2}-l_{3}-p_{12}\right)\left(l_{2}, l_{3} \gamma l_{2}-l_{3}-p_{22}\right)\left[p_{11}+p_{12}, p_{22}\right]$
$=\Sigma\left|\begin{array}{ll}\left(l_{2}, l_{3} \curlyvee l_{2}-l_{3}-p_{12}\right) & \left(l_{2}, l_{3} \curlyvee l_{2}-l_{3}-\left(p_{22}-p_{11}\right)\right) \\ \left(l_{2}, l_{3} \gamma l_{2}-l_{3}-p_{11}-p_{12}\right) & \left(l_{2}, l_{3} \wp l_{2}-l_{3}-p_{22}\right)\end{array}\right|\left[p_{11}+p_{12}, p_{22}\right]$,
where the summation is taken over

$$
0 \leqslant p_{12} \leqslant l_{2}-l_{3}, \quad 1 \leqslant p_{22} \leqslant l_{2}-l_{3}
$$

subject to

$$
p_{11}+p_{12}>p_{22}>0
$$

We set

$$
P_{t u}=p_{t t}+p_{t, t+1}+\ldots+p_{t u} \text { when } t \leqslant u, \quad P_{t u}=0 \text { when } t>u
$$

and use Σ_{u} to denote summation over

$$
0 \leqslant p_{j u} \leqslant l_{u}-l_{u+1}, \quad \text { i.e. } \quad P_{j, u-1} \leqslant P_{j u} \leqslant l_{u}-l_{u+1}+P_{j, u-1}
$$

subject to

$$
P_{1 u}>P_{2 u}>\ldots>P_{u u}>0
$$

Then (5) may be written

$$
\left[P_{11}\right]=\Sigma_{2}\left|\left(l_{2}, l_{3} \chi l_{2}-l_{3}+P_{\sigma_{1}}-P_{\tau 2}\right)\right|\left[P_{12}, P_{22}\right] \quad(\sigma, \tau=1,2)
$$

Now $P_{1, u-1}>P_{s, u-1}$ for $s>1$, and hence from (4)

$$
\begin{aligned}
& b\left(l_{u}, l_{u}-l_{t}+r_{l}+P_{s, u-1}\right) \\
&=\sum_{w=0}^{l_{w}-l_{u+1}+P_{1, u-1}}\left(l_{u}, l_{u+1} \varnothing l_{u}-l_{u+1}+P_{s, u-1}-w\right) b\left(l_{u+1}, l_{u+1}-l_{l}+r_{i}+w\right)
\end{aligned}
$$

Then by a proof similar to that of Theorem 1 we obtain

$$
\begin{align*}
& {\left[P_{1, u-1}, P_{2, u-1}, \ldots, P_{u-1}, u-1\right]} \\
& \quad=\Sigma_{u}\left|\left(l_{u}, l_{u+1} \gamma l_{u}-l_{u+1}+P_{\sigma, u-1}-P_{\tau, u}\right)\right|\left[P_{1 u}, P_{2 u}, \ldots, P_{u u}\right] \\
& \tag{6}\\
& \quad(\sigma, \tau=1,2, \ldots, u) .
\end{align*}
$$

We find that if

$$
P_{1 u}>P_{2 u}>\ldots>P_{u u} \geqslant 0
$$

then the coefficient of

$$
\begin{equation*}
\left[P_{1 u}, P_{2 u}, \ldots, P_{u u}\right] \tag{7}
\end{equation*}
$$

in the expansion of (6) is

$$
\begin{equation*}
\left|\left(l_{u}, l_{u+1} \gamma l_{u}-l_{u+1}+P_{\sigma, u-1}-P_{\tau, u}\right)\right| \quad(\sigma, \tau=1,2, \ldots, u) . \tag{8}
\end{equation*}
$$

Then in (8),

$$
P_{j, u-1}+l_{u}-l_{u+1} \geqslant P_{j u}
$$

otherwise the first j elements of the last $n-j+1$ rows of (8) will be zero, and the determinant vanishes. Also

$$
P_{j u} \geqslant P_{j, u-1}
$$

otherwise the last $n-j+1$ elements of the first j rows will be zero and the determinant vanishes. If $P_{u u}=0$, then rows u and $u+1$ of (7) are equal. Hence the expansion of (6) follows.

We set

$$
\begin{aligned}
& \xi_{\sigma}=l_{u}-l_{u+1}+P_{\sigma, u-1}+n+\sigma \\
& \eta_{\tau}=P_{\tau, u}+n+\tau
\end{aligned}
$$

then

$$
\xi_{\sigma} \geqslant \xi_{\sigma+1} \quad \text { and } \quad \eta_{\tau} \geqslant \eta_{\tau+1}
$$

Hence $\quad\left|\left(l_{u}, l_{u+1} \gamma l_{u}-l_{u+1}+P_{\sigma, u-1}-P_{\tau, u}\right)\right|$
is the S-function [1, 110]
of

$$
\begin{gather*}
\{\tilde{\xi} / \tilde{\eta}\} \tag{9}\\
B_{l_{u+1}+1}, \ldots, \beta_{l_{u-1}}, \beta_{l_{u}},
\end{gather*}
$$

where the tilde denotes conjugate partition.
Now $\{\tilde{\xi} / \tilde{\eta}\}=\Sigma g_{\text {Sn } \xi}\{\tilde{\zeta}\}$,
where the $g_{\langle n \xi}$ are non-negative integers determined by

$$
\{\zeta\}\{\eta\}=\Sigma g_{\zeta \eta \xi}\{\xi\}
$$

[cf. 1, 110, 91-96]. Since $\{\tilde{\zeta}\}$ itself may be expanded as a polynomial in (10) with positive integral coefficients ${ }^{1}$, all the terms in the expansion of (6) as a polynomial in (10) have positive integral coefficients. Theorem 3 follows on repeated application of this argument.

We note that we may write in symbolic form:

$$
\begin{aligned}
\mid b\left(l_{s},\right. & \left.l_{s}-l_{t}+r_{t}\right) \mid \\
& =\prod_{u=1}^{n-1}\left\{\Sigma_{u}\left|\left(l_{u}, l_{u+1} \gamma l_{u}-l_{u+1}+P_{\sigma, u-1}-P_{\tau, u}\right)\right|\left|b\left(l_{n}, l_{n}-l_{t}+r_{t}+P_{s, n-1}\right)\right|\right\} .
\end{aligned}
$$

[^1]
REFERENCES.

1. D. E. Littlewood, Theory of Group Characters (Oxford, 1940).
2. K. A. Hirsch, "A note on Vandermonde's determinant ", Journal London Math. Soc., 24 (1949), 144-5.
3. A. C. Aitken, Determinants and Matrices (5th ed., Edinburgh, 1948).
4. -_On determinants of symmetric functions", Proc. Edinburgh Math. Soc. (2), 1 (1929), 55.
5. _-_ "Note on dual symmetric functions", Proc. Edinburgh Math. Soc. (2), 2 (1931), 164.
6. "The monomial expansion of determinantal symmetric functions", Proc. Royal Soc. Edinburgh (A), 61 (1941-3), 300-310.
7. O. H. Mitchell, "Note on determinants of powers", American Journal Math., 4 (1881), 341-4.
8. H. O. Foulkes, "Modified bialternants and symmetric function identities", Journal London Math. Soc., 25 (1950), 268-75.

Department of Mathematios, University of Aberdeen.

[^0]: ${ }^{1}$ We omit zero parts when there is no danger of ambiguity.

[^1]: ${ }^{1}$ This is well known [cf.7]. Aitken [6] gives a direct proof that (9) may be expanded with positive integral coefficients.

