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SCHUR AND PROJECTIVE SCHUR GROUPS 
OF NUMBER RINGS 

PETER NELIS 

Introduction. The Schur or projective Schur group of a field consists of the classes 
of central simple algebras which occur in the decomposition of a group algebra or a 
twisted group algebra. For number fields, the projective Schur group has been determined 
in [8], whereas the Schur group is extensively studied in [25]. Recently, some authors 
have generalized these concepts to commutative rings. One then studies the classes of 
Azumaya algebras which are epimorphic images of a group ring or a twisted group ring. 
Though several properties of the Schur or projective Schur group defined in this way 
have been obtained, they remain rather obscure objects. Apart from some examples in 
[3] and [4] and the determination of the Schur group for the S integers of a cyclotomic 
number field in [16], no concrete calculations have been carried through. Since a com
plete classification of the finite subgroups of the multiplicative group of the quaternions 
is known, we use this to describe all Schur algebras embeddable in a quaternion algebra 
over a number field. This classification also allows us to describe number rings having a 
non-trivial projective Schur algebra embeddable in a quaternion field, though one has to 
apply some techniques of projective representation theory in order to reduce information 
of the twisted case to the untwisted one. It turns out that many projective Schur algebras 
may be obtained by a small deformation of a Schur algebra, but a set of examples is 
given to show that this is not true in general. All this is being dealt with in § 2. In § 3, 
we show that the groups which span a Schur algebra are always subgroups of the au
tomorphism groups of a modular quadratic or hermitian form. In case the number ring 
is Z, these quadratic forms are moreover even and positive definite. As a consequence, 
Mn(T) is not a Schur algebra if 8 / n and n ^ 1, whereas for fields, Mn(k) is always a 
Schur algebra. One may now wonder whether it is possible to represent Schur algebras 
by means of easy groups. We finally prove that nilpotent groups are not apt to fulfill this 
task, but an example shows that solvable groups may span a Schur algebra. 

1. The Schur- and projective Schur group of number rings. Throughout, A' is a 
number field, R its ring of integers, G a finite group, c G Z2(G,/?*), i.e. c is a 2-cocycle 
on G with values in the units of R, en is an n-th root of unity, 6n — en + tn an unadorned 
tensor product is over R. 
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DEFINITION 1.1. A Schur algebra A over R is an Azumaya algebra which is an epi-
morphic image of some group ring RG. We call A a projective Schur algebra if A is the 
epimorphic image of a twisted group ring RGC. 

DEFINITION 1.2. The Schur group S(R) of R is the group consisting of the Brauer 
classes of Schur algebras. A similar définition holds for the projective Schur group PS(R). 

Clearly, R itself is always a Schur algebra and a fortiori a projective Schur algebra. 
We will call it the trivial Schur or projective Schur algebra and it will be excluded in 
most of our considerations. If A is a Schur algebra, then K <g) A is epimorphic image 
of K (g) RG, hence [K 0 A], its class in Br(K), is an element of S(K). Since the natural 
map Br(R) —• Br(K) is injective, (cf. [12], p. 57 Theorem 6.19) this proves that S(R) Ç 
Br(R) H S(K). Similarly PS(R) Ç Bv(R) H PS(K). By a theorem of Lorenz and Opolka 
(cf. [8]), PS(K) — Br(AT). If K' is the maximal subcyclotomic number field contained 
in K and R' = R D K\ then it has been proved in [15] that S(R) = {[R <8># A'], A' 
is a Schur algebra over R'}, in analogy with a similar theorem for fields. This reduces 
the calculation of S(R) to the subcyclotomic case, for which there is the following more 
general conjecture: 

CONJECTURE 1.3. IfTis the ring of S integers of a subcyclotomic number field K, 
where S is any finite set of places, then S(T) = Br(T) H S(K) and PS(T) = Br(T) 

This conjecture has been proven when T is the ring of integers of K in [11]. If K has no 
real embeddings and R is the ring of integers of K, then Br(/?) = 0. In what follows, we 
will therefore assume that K has at least one real embedding. This certainly implies that 
t(R*) = { ± 1 } , where t denotes the torsion group of/?*. Note that Bv(R) n S(K) Ç C2, 
the cyclic group of order 2. Indeed, any element [A] E Br(/?)D S(K) vanishes at the finite 
places of/?, since A is Azumaya. (cf. [12], p. 76 Proposition 6.34). Also Inv[A] = 0 or 
Inv[A] = 1/ 2 at the infinite places. Moreover, the invariants of A at the infinite places 
are all equal, by a theorem of Benard and Schacher. (cf. [25], p. 89 Theorem 6.1.). This 
proves our assertion. If AT is a subcyclotomic extension of Q, then equality holds if and 
only if K has an even number of real places. This condition is clearly necessary, by 
the above discussion on the Hasse invariants of [A] and by Hasse's sum Theorem. If K 
has an even number of real places and K is subcyclotomic, then K contains a quadratic 
extension L. Let/? be a prime of Z which ramifies in L or with even residue degree. Then 
K<g> (Q(CQ _1) is a central simple, cyclic K algebra and its class is a non-trivial element of 
Br(/?) H S(K). This proves the equality Br(R) Pi S(K) = C^ in this case. In order to prove 
the equality S(R) = Br(/?)D S(K), it is therefore sufficient to find one Schur algebra over 
R with a non-trivial class. These can often be found using the following theorem. 

THEOREM 1.4 (AUSLANDER GOLDMAN). Let Lbea Galois extension ofK, with Ga
lois group Q and ring of integers S, let d G Z2(Ç,S*) and A = (&aeçSua, the R order 
such that uas = a(s)ua, uauT = d(a,T)uaT. Then A is Azumaya if and only if S is 
unramified over R. 
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PROOF. Cf. [13], p. 374, Theorem 40.14. The same proof holds, showing that the 
difference of A is equal to 1 if and only if S is unramified over R. But then A only ramifies 
at the infinite places, i.e., A is Azumaya. • 

NOTATION 1.5. With notations as in Theorem 1.4, let L be a quadratic extension of 
K and let T be an R algebra such that R Ç T Ç S and T is stable under the unique 
non-trivial K automorphism a ofL. Furthermore, let d be the normalized 2-cocycle such 
that d(p, a) — (3 for some f3 G R*. Then we write ( ^)far ©a€ç7wa. 

Most examples of Schur algebras were constructed using Theorem 1.4. However, for 
R= T [y/2], there does not exist any unramified extension, but there exists a non-trivial 
Schur algebra over /?, which is embeddable in a quaternion algebra over K. In the next 
paragraph, we investigate which Schur or projective Schur algebras can be constructed 
in this way. 

Let S be any finite set of places of K and let #§ be the ring of S integers of K. The 
equality S(R§ ) = Bv(R§ )D S(K) has recently been proved for R = Z [en] by C. R. Riehm 
in [16]. However, in the cases we are interested in, S is the set of all Archimedian primes 
and the theorem then becomes trivial. 

2. Schur and projective Schur algebras embeddable in quaternion skew fields. 
In this paragraph, we give necessary and sufficient conditions on R for the existence of 
non-trivial Schur or projective Schur algebras that are embeddable as subalgebras of a 
quaternion skew field over K. If [B] is a Schur algebra or a projective Schur algebra such 
that [B] ̂  0 in Br(fl), then Index(X ® B) = 2, so K <g> B ^ Mn(D) for some n <G N and 
some quaternion skewfield D over K. Here we investigate the case n = 1. 

THEOREM 2.1. Let M = R 0 R / © Kj © R k. Any finite subgroup of M is conjugate 
to one of the following 

i A cyclic group of order n, Cn — ( en) = ( COS(2TT / n) + sin(2n / n)i) 
ii The quaternion group of order An, Hn — ( C2nJ) 

Hi The binary tetraedral group of 24 elements, 

E24 = { ±1 , ±i\ ±/\ ±k, (±1 + ±i + ±j + ±k)/ 2} 

iv The binary octaedral group of '48 elements, 

£48 = ^ 2 4 U { ( ± a ± / 3 ) / v / 2 ; { a , / 3 } G 2>2({ l,ij,k})} 

v The binary icosaedral group of 120 elements 

£120 = E24U {x/2;x = yz.y G E24,z = i + ((1 + V5)/2)/+ ( ( -1 + V5)/2)k} 

PROOF. Cf. [24], p. 17, Theorem 3.7. • 

The names of the E[ have been chosen so that they are isomorphic to the group of 
isometries under which the corresponding geometrical object is stable. In particular, £48 
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is isomorphic to the group of isometries of an octaeder. Now take three vertices of one 

face of the octaeder and call them 1,2,3 respectively. The opposite vertices will then be 

called —1, —2, —3 respectively. In this way, £48 may be viewed as the group of signed 

permutations on 3 elements, C\ x S3. This description will reappear later on. Other 

noteworthy isometries are E24 = S12(F3) and £120 = S12(F5), cf. [24], p. 17. 

DEFINITION 2.2. n £ N is truly composite if and only if either n is divisible by at 

least two odd primes or 4| n and n is divisible by at least one odd prime. 

LEMMA 2.3. The field Q (en) is unramified over Q (6n) if and only ifn is truly com

posite. 

PROOF. The discriminant of Q (en) over Q (0n) is (en - enf. Now (e„ - ên)
2 e Z [6n]* 

if and only if (1 — e^) G Z [en]*. Let On denote the n-th cyclotomic polynomial. 

CASE 1. n odd. If n — pr, then Q (epr)/ Q is totally ramified and the Lemma is true. 

Otherwise, O n ( l ) = n3=i,(</,n)=iO ~<^) = (1 —C^)-JC, for some x G S. By differentiating 

the equality Ud\n ®d = X" — 1> evaluating it for X = 1 and using induction, one easily 

proves that <ïy(l) = p for/? prime and O n( l ) = 1 if n is divisible by two primes. Since 

O n ( l ) = N (1 — en) = N (1 — e^), where N denotes the norm for the extension Q (en)/ Q, 

this proves the Lemma for this case. 

CASE 2. 41 n. Then e^ = enj 2 • As above, one proves that 1 — enj 2 is a unit if and only 

if n is divisible by an odd prime. • 

LEMMA 2.4. Let K Q L be an extension of number fields, with rings of integers R 

and S respectively. Then an algebra A is Azumaya over R if and only ifS®A is Azumaya 

over S. 

PROOF. If A is Azumaya over R, then S®A is Azumaya over 5, by a classical theorem 

on Azumaya algebras. Conversely, if A is not Azumaya, then disc(A/ R) ^ R, disc(5 0 

A/ S) — disc(A/ R)S ^ S and S 0 A is not Azumaya over S. m 

THEOREM 2.5. Let K be a number field having a real embedding. Then a non-trivial 

Schur algebra over R is embeddable in a quaternion skew field over K if and only ifK 

satisfies one or more of the following: 

i Q (9n) Ç K, n truly composite. 

ii Q(y/2)CK 

iii Q( \ /5) QK 

The corresponding Azumaya algebras A are: 
l r r ) 

ii A^R(h(l+i)/y/2,(l+j)/V2,(l+i+j + Jc)/2) _ 

iii A*R(l, ( - 1 + y/5 + 2/ + (1 + V5)j)/4J, ( - 1 - y/5 + ( - 1 + y/5)j + 2k)/4) 

PROOF. If A is such a Schur algebra and TT : RG —» A is a representation, then, up 

to replacing G by 7r(G) if necessary, we may assume that 7r | G is faithful. Hence G is a 
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finite subgroup of R <8>/? A = H. The R order generated by G will be denoted by R( G). 
There are now five cases to consider, corresponding to the five types of finite subgroups 
ofH. 

CASE 1. G is conjugate to Cn. 

If n < 2, then R(G) is Azumaya over /?, but it is trivial. If n > 2, then R(G) ^ R and 
R( G) is a commutative R algebra, hence it is not Azumaya over R. 

CASE 2. G is conjugate to Hn. 

Then (e„ + tn) — 0n commutes with every element of Hn in A, hence with every element 
of K 0 A. But K <g> A is central simple, so 6n G K. Clearly, 6n is integral over Z, which 
shows that 0n G R. Then R(G) = R ®z[9„] {Zz[9~)1)- A c c o r d i n g t 0 Theorem 1.4 and 
Lemma 2.3 9{

Z2\e~\l) *s Azumaya if and only if n is truly composite. Also, R(G) and 
(Z2\e~]1) a r e b° t n Azumaya or not by Lemma 2.4, which proves the theorem in this case. 

CASE 3. G is conjugate to E24. 

Since Azumaya algebras over Z are trivial, I^E^A) is not Azumaya. By Lemma 2.4, 
R{E2A) is not Azumaya. 

CASE 4. G is conjugate to E^. 

Let x = -4= G £48. A little calculation then shows that JC — x3 — \fl, so \/2 G /?. Now 

disc(R(G)/R) = d i s c ( l , ^ , ^ , I ± ^ ) = - 1 . So Z [VÏ](E4S) is Azumaya and by 

Lemma 2.4, R(E4%) is Azumaya too. 

CASE 5. G is conjugate to £120 

L e t A = Z [ ^ ] ( l , ( - l + v ^ + 2/ + ( l + v ^ ) y V 4 ^ ( - 1 - ^ + ( - 1 + v ^ ) y + 2^)/4). 

This case is very similar to the previous one. One first shows that y/5 G R and that 

A = Z f ̂ f^](E\2o) is Azumaya over Z [^f^-]. This may be done by a very cumbersome 

calculation of disc(A/ Z [ - ^ J ) . Alternatively, one may observe that B = ( ^ j ^ 1 ) = 

Z [ ^ ] ( l , ( - l + > / 5 + 2 / + ( l + V 5 ) ^ ÇA and 

C = T [ I i
2^]( £"24) Q A. But C is Azumaya at every prime P G Spec(#) such that 2 g P. 

On the other hand, B is Azumaya at every prime P G Spec(7?) such that 5 ^ P, since 

Z [^5]/ Z [̂ 5] is only ramified at the unique prime above 5. Therefore, A is Azumaya at 

every prime P G Spec(Z [M^]), so R ®z[05] A is Azumaya over R. 

COROLLARY 2.6. //"AT satisfies at least one of the 3 conditions in Theorem 2.5, then 
the equality S(R) = Br(fl) H S(K) holds. 

PROOF. This is an immediate consequence of Theorem 2.5 and the remark after 
Conjecture 1.3. • 

This equality was proved for R = Z [y/l] in [3] and in the same article the question 
has been posed for the case R = Z [(1 + A/5) / 2]. 

As a by product, Theorem 2.5 yields an infinite sequence of examples of pairs of 
Azumaya algebras which are not isomorphic but embedded in the same quaternion skew 
field. 
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COROLLARY 2.7. If K satisfies 2 (resp. 3) of the conditions of Theorem 2.5., then 
there exists a quaternion skew field over K containing a pair (respectively triple) of pair-
wise non-isomorphic Azumaya algebras. 

PROOF. Let t(A) denote the group of norm 1 units of an Azumaya algebra A in a 
quaternion skew field. Then t(A) is finite, by a theorem of Eichler (see also Swan, [22], 
p. 58 Remark 2). If A/ denotes the Azumaya algebra constructed in Theorem 2.5 when 
K satisfies hypothesis /, then Hn Ç t(A\), E4& Ç t(A2), £120 Ç t(A^). By the enumeration 
of all the finite groups of IU (Theorem 2.1), it is now clear that no Azumaya algebra can 
contain two of these groups. On the other hand, the quaternion skew field in which these 
Azumaya algebras are embedded are isomorphic. Indeed, their invariants at the finite 
places are 0 whereas at the infinite places, they are all equal by the theorem of Benard 
and Schacher (cf. [25], p. 89, Theorem 6.1). • 

REMARK 2.8. In [3] examples of Azumayas over Q(y/n) were constructed if p\n, 
p = 3 mod 4 using Theorem 1.4. These Azumayas are embeddable in a quaternion al
gebra over Q (y/n). Theorem 2.5. shows that they are not Schur algebras, contrary to the 
assertion made in [3]. As a consequence, the determination of S(R), where R is the ring 
of integers of a quadratic number field, remains an open question, except in the special 
cases when R=l [y/l\ or R = Z [(1 + y/5)/ 2]. 

We now proceed to determine all number fields having a projective Schur algebra 
embeddable in a quaternion skew field. First, we recall some techniques which are very 
often used in projective representation theory. Iff: G —• H is a homomorphism of groups 
and (3 is a 2-cocycle on H with values in a Z G module F, then we define a 2-cocycle a 
on G by: 

Vg,heG:a(g,h) = l3(f(g),f(hj) 

In particular, one may apply this when TV is a normal subgroup of G, H = Gj N and / 
is the canonical epimorphism. The resulting map Inf: Z2(G/' N, F) —• Z2(G, F) is called 
an inflation. For a concise exposition of some of the properties of this map, the reader 
is referred to [21], p. 124. We will use this when N = G', the commutator subgroup of 
G. If a = Inf (/? ), where /? G Z2(G/ G', F), then the following property is an immediate 
consequence of the definition: 

Vg,/z G G,Vx G G' : a(gx,h) = a(xg,h) = a(g,xh) = a(g,hx) 

Since any 2-cocycle is cohomologous to a 2-cocycle which is normalized, we will tac
itly assume, without loss of generality, that f3 is normalized. Then a satisfies the extra 
condition: 

Vg e G,\/x e G' : <x(g,x) = a(x,g) = 1 

Here, we used a multiplicative notation for F, since this is most appropriate for the ap
plications we have in mind. 
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LEMMA 2.9. Ifoc G Z2(G,F), where F is a torsion free abelian group without G 
action, then a is cohomologous to some (5 Glnf(Z2(G/G',F)). 

PROOF. Cf. [6], p. 63, Lemma 3.19. • 

LEMMA 2.10. Any twisted group ring RGC is epimorphic image of a twisted group 

ring RHd, where d G inf(Z2 (#/// ' ,#*))• 

PROOF. By Dedekind's units Theorem, R* = W x Z a , where W is the group of 
roots of unity of R\ Then c = cx • c2, where cx G Z2(G, W) and c2 G Z2(G, Z a ) . 
Let H — W Mc, G. Then H is a finite group and if we set e — inf(c2) then RHe —» 
RGC: U(W,g) »—* vvwg is an epimorphism of twisted group rings. Since Z a is torsion free, e 
is cohomologous to J, where d G inf (z2( / / / //', /?*)). Hence RHd ^ /?//" - » RGC. m 

If c G Z2(G, /?*), then we define a map Pc on Z(G) x G by Pc(g, h) = c(g, h)/ c(/i, g). 
A cocycle computation shows that Pc is a pairing. 

LEMMA 2.11. L^ G fr£ abelian and assume that PC:G x G —• { i l } ^ a ^<^~ 
degenerate pairing. Then RGC = ®"=1 2/ where Qt is a quaternion algebra over R. 

PROOF, (see also [9], p. 12, Theorem 3.7.) According to a theorem of E. M. Zmud 
(cf. [26], p. 17, Theorem 3.7) G ^ ©JL^A/ © Bt) where A,Mi = Q such that, if (*,) = 
A/, (}>/) = #/> w e have: 

Pc(x/,*,-) = ^ ( - * ^ ) = PciyuXj) = Pc(y,-,») = 1 if « ^ 7 

Since f(/?*) = { ± 1 } , this implies nt = 2. Let oct = C(JC,-,JC/), ft = c(y;,.y/), g/ the 
quaternion algebra determined by at and ft, then translating the above for RGC, we have 

RGc^®UQi- • 

DEFINITION 2.12. Let S be an /? algebra contained in a number field L. Then S is 
called a Kummer extension if and only if there exist n numbers a\,...,an G N and n 
elements ft,..., pn G R* such that S ^ R[ V/3"i,..., a<fpn] 

LEMMA 2.13. Let K Ç Lbean extension of number fields with ring of integers R and 
S respectively. Then S is a Kummer extension ofR if and only if S is epimorphic image 
of some twisted group ring RGC. 

PROOF. Let TT:RGC —> S be an epimorphism. Let H = © c e c C where C is the 

collection of cyclic subgroups of G. For any C G C, we choose a fixed generator xc and 

define ac = (7r(xc)) £ /£*. For any C G C we define a 2-cocycle de on C by: 

dcC*o*c) = 1 i f ° - 1>J < I Cl a n d [ +J < I C\ 
dc(xl

c,x!c) — ac if 0 < ij < \ C\ and / +j > \ C\ 

These dc allow us to define a 2-cocycle J on H by 

^n4^c) = n^c(4,vc) 
c c 
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The map p:RHd —> S:xc •—* n(xc) is a ring homomorphism, since S is commutative. 

Now 7r(G) Ç p(/ /) , SO p is surjective, i.e., S is a Kummer extension of R. The other 

direction is obvious. • 

LEMMA 2.14. Let TT : RGC —» A be a representation of a non-trivial Azumaya algebra 

which can be embedded in a quaternion skew -field over K. Assume that there exists a 

maximal subfieldL ofK<g>A such that the inner automorphisms induced by n(ug),g G G 

leave L stable. Let S denote the ring of integers ofL. Then A := (S^)for some f3 G R*, S 

is a Kummer extension ofR and L is an imaginary and unramified extension ofK. 

PROOF. Define r : G —> AutK(L) = { l,cr} by taking T(g) equal to the inner auto

morphism induced by vg = 7t(ug). Let H = Ker(T). If h G / / , then Vh commutes with 

L, hence v/, G L since L is a maximal commutative subfield. Also, VH G S, since Vh is 

integral over R. So T — TT(RHC) Ç S and consequently H ^ G. Now H is a normal 

subgroup of G and this implies that T is left stable under inner automorphisms by vg. 

Let go G G be such that T(go) = cr. Then v 0̂ G 5 is stable under r (g 0 ) = 0", hence 

v ô = p G / P . Since G = HU Hg0, TT(RGC) Ç ( r^) Ç (5^). Since A is Azumaya, 

this implies A = ( ^ ) = ( ^ ) and T = 5, i.e., S is a Kummer extension. Clearly, L is 

imaginary and Theorem 1.4. shows that Lj K is unramified. • 

THEOREM 2.15. Let Kbea number field having a real embedding. Then a non-trivial 

projective Schur algebra is realizable in a quaternion skew field over K if and only ifK 

satisfies one or more of the following properties: 

i K has an imaginary\unramified extension L of degree 2 such that its ring of inte

gers S is a Kummer extension ofR. 

ii (2) = (p,)2 for some / iG i? . 

Hi Q(y/5)CK. 

The corresponding Azumaya algebras are: 

i A^ (SP), for some P G R* 

ii A ^ R( 1, (1 + I)/ /x, (1 +7)/ /x, (1 + i +j + k)l 2), where (/x)2 = (2) 

Hi A^R(h ( - 1 + \ / 5 + 2/ + (1 + v /5)/)/4,y, ( - 1 - \ / 5 + ( - 1 + \/5)y + 2i t ) /4) 

PROOF. We first show that the conditions are sufficient. Therefore, we have to verify 

that the stated R algebras are indeed Azumaya and moreover that they are an epimorphic 

image of some twisted group ring RGC. 

CASE 1. K satisfies condition iii. 

This is obvious, in view of Theorem 2.5, item iii. 

CASE 2. K satisfies condition ii. 

Let A be the R algebra mentioned in item ii. Then disc(A/ R) = —4/ (/i)4 G R*, so A 

is Azumaya over R. We claim that A is the epimorphic image of RE°4S, for some c G 

Z2(E4s,R*). Note that there exists a natural embedding V :^24 —̂  A*, if one uses the 

description of Theorem 2.1 for £24- We view E^ as embedded in a quaternion algebra 
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over Q (y/ï), as in Theorem 2.5. Then £24, £48 and A may be regarded as subsets of H, 

which facilitates the description of the extension of ^ to £48. 

•0 : £48 —> A:w\—> ijj (w) if w G £24 

w 1—• w if w G £ 4 8 \ £24 

One now easily verifies that Vg, /i G £48 : 0 (g)^)(h) = c(g, h)ip(gh), for some c(g, h) G 

/?*. Since A is associative, this implies that c G Z2(£48,/?*). Then 

is an epimorphism of/? algebras, so A is indeed a projective Schur algebra. 

CASE 3. K satisfies condition i. 

Applying Theorem 1.4, we see that (s^) is an Azumaya algebra over R. By assumption, S 

is a Kummer extension of/?, so by Lemma 2.13 there exists a finite group H, a 2-cocycle 
d G Z2(//, ZT ) and an algebra epimorphism 0 : #£^ —> 5. Let £ = Gal(L/ ff) = {id, a } 

and ^ = Map((^, / /) , the set of functions from G to //. We define an action of G on H 

by VJC, Z G G, V£ G H : (jd)(z) = /:(JC_1 O Z). Using this action, we now define a group G 
as follows. As a set G = i # x Q and multiplication is given by 

Vh,k G #,Vjt,;y G Ç : {Kx){k,y) = (h(xk)9xy) 

This means that G = Hi Ç, the wreath product of / / and £7. Finally, we define a cocycle 
c on G by the following rules 

c((h,x),(k,yj) = S(*,y) I I d(h(zl(xk)(z)) 

1 if JC = id or y = id 
J \f3 if x = a and y — a. 

The group G and the 2-cocycle c may be used to define a group ring RGC. We define n 

by 

7r:/?Gc—> f J : H ( M ) H - > [ ] Z(V'(MA(Z)))"^ 
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It is easily seen that 7r is surjective. We verify that 7r is an algebra homomorphism 

^(u{hvX))Tï{u{Ky)) = J ] z{^{uh{z)))uxz{^{uk{y)))uy 
zeg 

= Hz(^(uh(z)))xo^(uk(z)))uxuy 

zeg 

= E[ z(ip(uh(z))ip(uk(x^oz)))è(x,y)uXy 
zeg 

= I I d(h(z), k(x~l o zj) S (x, y) z(V> (uh(Z)k(x^oZ)))^xy 
zeg 

= I I d(h(z), (xk)(zj) S (x, y) 7T(M ( M ( M ) 
zeg 

= c((Kx),(k,yj)n(u{hs)(k,y)) 

= n(U(hyX)U(k,y)) 

To prove necessity, we start from a representation n : RGC = ®geG Rug —» A of a pro
jective Schur algebra A. Throughout, let v̂  = ir(ug) G A*. According to Lemma 2.10, 
we may assume that c — Inf(J), d G Z2(G/ G',R*) and d normalized. Then W = TT(G') 

is a finite subgroup of A* since c is trivial on G', hence of H*. We first show that W is 
stable under inner automorphism by vg. If g G G, x G G7 then: 

v ^ O ^ y " 1 = n(uguxu~l) 

c(g,x)c(gx,g-1) 

By the remarks made before Lemma 2.9, c(g,jt) = 1 and c(gx,g~l) — c(g,g~l). So 
vg7r(ux)vjl — 7r(ugxg-\) G W. We now distinguish 5 cases according to 5 types of sub
groups W of HI. 

CASEI . \W\ < 2 . 

Then W is trivial orW= Ci- Let 7f : G —• A*/ R* be the group homomorphism defined 
by 7r. By our assumption W Ç { ± 1 } , hence G' Ç ker 7f. Let H = G/ kerf. Choose 
a section a:H -^ G and define d onH x Hby d(g,h) • v a ^ = v ^ v ^ . Then J is a 
2-cocycle on the abelian group H and o and 7r determine an epimorphism </> : /?//d —-» 
A: W| i—> v<j(£). We claim that P^ is non degenerate. If x G H is such that Vy G H: d(x, y) = 
d(y,x), then 

(j)(ux)<t){uy) = d(x9y)<l>(uxy) 

= d(y,x)(f)(uyX) 

= (j)(Uy)<f)(UX) 

So </>(wx) commutes with every </>(wy), hence with A. But then </>(«*) = ^(w^)) G /?*, 
i.e. cj(x) G kerf, which proves our assertion. Applying Lemma 2.11, RHd = (g)^ Qt. 
But then <\> : AT 0 7W* = ®?=1 ̂  0 2/ —•» # 0 A is an epimorphism of central simple 
algebras, hence an isomorphism. However [A : K] = 4 and [£ 0 Q/ : AH is a square, 
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so exactly one of the K <S> Qt is isomorphic to K (g) A and all other ones are trivial. This 
shows that <j> is injective too and therefore RHd = Q = A. However, one verifies that 
disc(Q/R) = — I6a2(32 if Q is the quaternion algebra defined by x2 = a , y2 = /?, 
xy = — yx. So <2 is not Azumaya, which shows that this case actually can not occur. 

CASE 2. W is conjugate to Cn = (en), n > 3 or W is conjugate io Hn — ( e2n, i), 
n > 3 . 

In this case, (e„) is a characteristic subgroup of W (note that (e„) = H'n). Since W 
is invariant under inner conjugation by vgy the same holds for ( en). Let L = #(en), 5 its 
ring of integers. Lemma 2.14. now shows that ^satisfies hypothesis 1 and A = ( ^ ) . 

CASE 3. W is conjugate to H2 or W is conjugate to £24 
Then H2 = { ± 1 , ±1, ±7, ±A:} is a characteristic subgroup of W, namely it is its unique 
Sylow 2-subgroup. Since W is stable under inner automorphism by vg, the same then 
holds for H2. Let vgiv~l = a/7r(/), where a, G { ± 1 } , 7r(0 G {ij,k} and analogous 
rules hold for 7 and fc. We now define a homomorphism 

r:G^dx5 3 ^£ 4 8:^f ' j ,^ *„,! 

Let T : C\ x S3 —• S3 be the canonical epimorphism. One easily verifies that r o]"\g) = id 
implies vg = ax for some a € R* and JC G { 1,1,7, k} whereas ord(r o T(g)) = 3 implies 
vg = ax for some a G R* and x G {(±1 ± i ± j ± k)/ 2} . If r o r is not surjective, 
then the above remarks imply that n(RGc) Ç R{E2^) » a contradiction since R{E2^) is 
not Azumaya. (cf. Theorem 2.5) So r o r is surjective and we may choose go G G such 
that r(go)O) = ±* and ord(r o T)(go) = 2. If T(go) = — *\ then we choose g\ G G' such 
that 7r(gi) = 7 G W and replace go by gogi- This is possible, since H2 Ç W2 — n(G') 
and it does not affect ord(r o T)(go)- We now have T(go)(i) — i. Since K(i) is a maximal 
subfield of K <g> A, this implies vg0 = a + //?, a,b £ K. Now assume that T(go)O) — &• 
This implies r(go)(&) = F(go)(ij) = —7. An easy calculation then shows that a = b, 
i.e. v̂  = a{\ + /). If r(go)0) = — ^ r(go)(&) — 7> then we have a = — b. In both cases, 
vs

go = 24 • as G /?*. Let /x = a"1, then (2) = (jx)2 in fl, i.e. /<: satisfies hypothesis 2. 
Note further that (1 + /)//z = (1 — i')//i + 2///x, so anyhow, (1 + /)//i G A. If we 
interchange i and 7 in the above, we find that (1 + j)j v G A, where (z/)2 = (2). Since 
the group of fractional ideals of R is free, this implies v — \xh, for some 6 G R* and 
(1 +7)/ M = (1 +7)6 /veA. Finally, (1 + / +7 + *)/ 2 = (d + 0(1 +7)/ M2)(M V 2) G A, 
and we have shown that: 

/ ? ( 1 , ( 1 + 0 / M . ( 1 + 7 ) / M . ( 1 + «+7 + * ) / 2 ) ÇA 

As already shown in Case 2 of the sufficiency part of the proof, the right hand side is 
Azumaya and so equality holds. 

CASE 4. W is conjugate to E^ 

Then \fl G R> so K satisfies hypothesis ii. Since R(E/&) is already Azumaya, R( E^) — 
A. 
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CASE 5. W is conjugate to £120 

This implies y/5 G R, i.e. K satisfies hypothesis iii. As in Case 4, we find R(E\2o) = A m 

REMARK 2.16. The Azumaya algebras which can be constructed if K satisfies hy
pothesis ii, were obtained by L. Childs in [1] by studying the smash product of Hopf 
algebras of rank 2 over R. 

A comparison of the Azumayas constructed in Theorem 2.5 and Theorem 2.15 if # 
satisfies hypothesis 2 shows that they are very akin, namely one may change the coeffi
cients of some generators in order to pass from one to another. We make this precise in 
the following definition. 

DEFINITION 2.17. Let K and K' be number fields with ring of integers R and R' re
spectively. A projective Schur algebra A over R is a twisted version of a Schur algebra B 
over R' if there exists a finite subgroup G ofB* and a 2-cocycle c G Z2(G,R*) such that 
A is epimorphic image ofRGc and B is spanned by G as an R' module. 

EXAMPLE 2.18. All projective Schur algebras mentioned in items ii and iii in The
orem 2.15 are twisted versions of Schur algebras which can be embedded in skew fields 
over K'. For item iii, this is obvious, whereas for item ii, this has been shown in the 
sufficiency part of the proof of Theorem 2.15. 

We now examine condition i closer. If K Ç L is an unramified extension of degree 
2 and S — R[ A/<5 1,.. . , \/<5„], then it is easily verified that we can take A, = 2 unless 
Si = 1. So S has the form S = R[es, y/62, • • •, VSn]. If es $ S for s > 3, then we have 
VJC G S: 21 tr(x), as is easily seen. But then S is not unramified over R. On the other hand, 
if there exists es G S where s is truly composite, then R[es] is an unramified extension of 
R, by Lemma 2.4. and (s^) is a twisted version of (R[e^~1)- One may now be tempted to 
conjecture that any projective Schur algebra constructed in Theorem 2.15 is the twisted 
version of a Schur algebra constructed in Theorem 2.5. This however is not the case. 
We will produce infinitely many examples of projective Schur algebras which can not be 
obtained by this process. We first collect some technical facts in a Lemma. 

LEMMA 2.19. If G ^ £48 or G ^ Eno and c G Z2(G,{±1}), then ({±1} x c 

G)' ^ G\ IfG^Hm,m> 2, then \nï\H2(Hm/H'm, {±1}) - • H2(Hm,{±\}) is an 
epimorphism. 

PROOF. Let G ^ £120. Then H2(El2o,C*) = //2(S12(F5),C*) = 1 (cf. [19], p. 232 
Satz ix). The long exact cohomology sequence corresponding to the short exact sequence 

(*) i _ { ± i } _ c * 8 Î ^ C * - > l 

then yields that H2 (Ex 20, {±1}) = 1 and therefore ({±1} x c Eno)' = £*12o-If G = E4S 

then £24«£48. Since //2(£24,C*) ^ //2(S12(F3),C*) = 1 (cf. [19], p. 232, Satz ix), 
the same calculation as above yields that H2(E24, { ±1} ) = 1. The inflation restriction 
sequence 

0^H2(E4,/E24,{±1})^H2(E4&,{±1}) -^ / / 2 (£ 2 4 ,{±1}) 
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is exact, since Hom(£24, { i l } ) = 1 (cf. [21], p. 126, Proposition 5). This shows that 
Inf: H2(E^/ £24, { ±1} ) —* H2(E4^ { ±1} ) is surjective. Without loss of generality, we 
may therefore assume that c G Inf [Z2{E^/ E24, { ±1} )). One now immediately verifies 
that ({±l} x c G ) ' ^ G ' . 

If G ^ Hm, then H2(Hm,C*) = 1 (cf. [2], p. 302). and after substitution in the long 
exact cohomology sequence associated to (*) above, this shows that the transfer map 
8\ : Hom(//m, C *) —> H2{Hm, { ±1} ) is an isomorphism. We have a commutative diagram 

Hom(//m / /4,C*) ^ Hom(//m,C*) 

H2(Hm/H'm,{±\}) ^ H2(Hm,[±l}) 

Since Inf 1 and 6\ are isomorphisms, Inf2 is surjective. • 

EXAMPLE 2.20. Let p be an odd prime, p > 7, r > 0. In this example, we write 
0, e instead of 9pr,epr. Choose u G Z [0 ]* such that u is not a square and u is positive 
in at least one embedding of Q(0). Let K = Q(0)(\/(2 - 0)w), L = £(e). Then # 
admits a real embedding and L is an imaginary extension of degree 2 over Â . Let R, 
S be the ring of integers of K and L respectively. Note that e = (9 + v 02 — 4)/2, 
0 - 2 = (e2j,r - tip)2 and 0 + 2 € Z [0]*, since N(0 - 2) = N(02 - 4). This implies 
y/^û G 5. Now disc(l,e) = (02 - 4) and disc(l, y^ î / ) = —Au. Since (02 - 4) and 
4 are coprime, this implies that S is unramified over R. Also 5 = R[e, y/^u], so 5 is a 
Kummer extension of R. 

Let A = (5^1), then A is a projective Schur algebra by Theorem 2.15. We claim that 
A is not the twisted version of any Schur algebra embeddable in a quaternion skew field 
over K'. To prove this, we first calculate t(A), the group of norm 1 units of A. Clearly, 
Hpr C t(A) and by Theorem 2.1, this implies t(A) — Hk for some multiple k ofpr. In the 
notation of Theorem 2.5., this implies that t{A)' = Q is stable under inner conjugation 
by ua,a ^ id, so Q Ç S*. If <\> denotes the Euler function, then we have 

t(k)<[L:Q(eM(pr) = 2<t>(pr) 

This inequality implies that k/pr = 1, 2, 3 or 4. If kj pr — 3, then 63 G L, (3) ramifies in 
L and hence in K, contradicting the fact that K can only ramify at 2 and p. If kj pr = 2 
or £ / / / = 4, then / G L. This implies yfû G T̂. By assumption yju £ Q(0), so y/ïi = 
xyl — 9 for some x G Q (0 ). This implies that (2 — 0 ) is the square of an ideal in Z [0 ], 
contradicting the fact that it is a maximal ideal. We have now proved that t(A) — Hpr. 

If our claim is not true, then there exists a finite subgroup G of the multiplicative group 
of a Schur algebra B such that TT'\ RGf —» 5 represents B and n:RGc —» A represents 
A. Theorem 2.5 now shows that G = //m, G = £43 or G = £120- As in Lemma 2.10, we 
decompose c = c\C2, where c\ G Z2(G, { ±1} ) and ci G Z2(G, F), F a free subgroup of 
J?*. 

C A S E I . G ^ £48 or G = £120 
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Then we replace G by T = {±1} xCl G and c by d — Inf(c2). We then obtain a 
representation 7: RP —» A, where d G Inf (Z2(7/ r', /?*)). To this representation, we 
may then apply the proof of the necessity part of Theorem 2.15. Cases 3, 4 and 5 are 
immediately excluded, since Hpr = t(A) does not contain #2. Case 2 is also excluded, 
since V = G' by Lemma 2.19, C3 £ t(A) and C„ is not the epimorphic image of G' if 
n > 4 . 

CASE 2. G = Hm. 

By Lemma 2.19, we may already assume that c E Inf(Z2(Hm/H'm, {±1})). We may 
therefore apply Theorem 2.15 to 7r:RHc

m —» A and again all cases but the second are 
immediately excluded. Let L = ^(KC^) and Q the ring of integers of L. Then A = (ô

/?
/?) 

for some f5 G R* and Q is generated over R by irÇRC0), where C runs over a subcollection 
of all cyclic subgroups of G (cf. Lemma 2.13 and Lemma 2.14). Now g is an unramified 
Kummer extension of R of degree 2, so Q = R[eS], y ^ , . . . , y/o&\. Let Q/) be a cyclic 
subgroup of G such that n : RC^ —» R[y/cti], i > 2. Then | Q/)| is even and a, = c(^, C X 
where £ is the unique element of order 2 of C^, hence of G. This proves that all at are 
equal. Moreover, if 51 is even, then ax• — —1 for all / > 2 and Q = R[eSx ]. But e5l € K^)*, 
so s\\2pr or 51! = 4. Applying Lemma 2.3 this contradicts the fact that Q is unramified 
over R. If si is odd and RC(\) —» R[eS] ], then there exists an element 7 G G such that 
7 2 generates Qi). Then7* = C and a2 = c(75l,7*') = c(72,72(5l_1)) = - 1 . So again 
Q = R[eSl ], and for the same reason as above this leads to a contradiction. • 

3. Schur algebras and hermitian forms. As shown in §2, the construction of 
Schur algebras in skew fields over K is only possible in very limited circumstances. 
So we now turn our attention to Schur algebras embeddable in matrix rings over skew 
fields. Since proving some analogue of Theorem 2.1. for Mn(U ) or Mn(R ) is clearly an 
impossible task, there is no hope that a procedure similar to the one of the previous para
graph may lead to the determination of the Schur or projective Schur algebras over R. 
However, the theory of hermitian and quadratic forms sheds some light on this question. 
In this paragraph, we will prove that any Schur algebra for which the class in the Brauer 
group is non-trivial is spanned by the automorphism group of some positive definite, 
modular hermitian form. If the class in the Brauer group is trivial, then a similar theo
rem may be proved, using quadratic instead of hermitian forms. Moreover, these forms 
are even, which puts a severe restriction on the possible Schur algebras and if R = Z, 
this even suffices to determine them all. It also shows that easy groups, in some sense, 
must not be expected to span a Schur algebra. We will make this precise in the final the
orem. First, we recall some facts from the theory of involutions on quaternion algebras 
and the hermitian forms associated to them. In this paragraph, the conventions made in 
the beginning of § 1 remain in force; in particular, the field K admits at least one real 
embedding. 

DEFINITION 3.1. Let Dbea skew field over K. An involution r.D^DisaK linear 
map such thatr2 — id andr{ab) — r{b)r{a). 
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REMARK 3.2. In the theory of central simple algebras, one distinguishes between 
involutions of the first kind, which are the ones we defined, and involutions of the second 
kind, which induce a non-trivial automorphism on K. Since the involutions of the second 
kind will not play a role in what follows, we will use the term involution only in the sense 
of Definition 3.1. 

Actually, we do not need involutions on skew fields, but involutions on maximal R 
orders contained in them. In general, it is very difficult to find out whether an involution 
invariant order exists (cf. [18], p. 150, § 4). Fortunately, for Azumaya algebras in quater
nion fields, there is a nice method, due to D. J. Saltman, to circumvent these difficulties. 
The proof that follows is essentially the same as in [17], p. 534. 

THEOREM 3.2. Let D be a quaternion algebra over a number field K. Let A be an 
Azumaya algebra contained in D. Then A is stable under the unique symplectic involution 
ofD. 

PROOF. Let T:D—>D:6 H—• tr(<5 ) 1 — 6, where tr denotes the reduced trace. If L is a 
splitting field for D, then L®D = M2(L) and 

This shows that r is an involution. The uniqueness of r is stated in [18], p. 148, Theo
rem 2.6. If A is an Azumaya algebra, then clearly r(A) ÇA. • 

In what follows, r will denote this symplectic involution. 

DEFINITION 3.3. Let V be a finite dimensional right vector space over a skew field 
D over K and let r be an involution on D. An hermitian form ( , ) on V is a K bilin
ear map into D such that Vv,w G V,\/6 G D : (v8, w) = T(6)(V,W),(V,W6) = 
(V,W)<S,T((V,W)) = (w,v) 

If for every real embedding K <—• R we have that Vv G V\ { 0} : t (( v, v) ) > 0, then 
the form will be called positive definite. With the notations of the previous definition, let 
A be an Azumaya algebra contained in D and let TV be a right A module contained in V. 
Let / be the ideal generated by {(m,n) ,m,n £ N}. Since r (A) Ç A, / is a 2 sided A 
module contained in D. But A is an Azumaya algebra, so there exists a 2 sided fractional 
R ideal I of K such that IA = I (cf. [5], p. 54, Corollary 3.7). 

We give TV a left A module structure by Va G A, Mn € N : a • n = nr(a). A hermitian 
form on Af may then be viewed as a right A module map 

\l) : NA —-* Hon\4(AN,A / ) : n \—y (m »—• ( m, n) ) 

The subscripts in the above formula indicate the sidedness of the A modules under consid
eration. The form ( , ) on N will be called modular if the above map is an isomorphism. 
Now let G be a finite group and assume that N is a (RG, A)-bimodule. If J7 is any 2 sided 
A ideal, then NJ is also a (RG, A)-bimodule. 
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DEFINITION 3.5. Let 3 be any 2 sided ideal of A. A (RG,A)-bimodule will be called 
simple (mod J) ifN/ NJ is a simple (RG, A)-bimoduley that is, if it contains no non-trivial 
(RG,A)-bimodules. N will be called everywhere simple if it is J simple for any non-zero 
2 sided prime ideal J of A. 

We now have all definitions at our disposal to state the theorem which gives a con
nection between Schur algebras and hermitian forms. 

THEOREM 3.6. Let TT.RG —» B be an epimorphism from a group ring RG onto 
a non-trivial Azumaya algebra B. If[B] ^ 0 in Br(R), then there exists an Azumaya 
algebra A contained in a quaternion skew field D over K, a 2 sided A lattice I contained 
in D, a (RG,A)-bimodule N and an hermitian form ( ,):N x N—> I such that 

i B 9i EndA(NA) 
ii Vg G G, Vra,n € N : (gm,gn) = (m,n) 

Hi N is everywhere simple, 
iv ( , ) is a positive definite, modular, hermitian form. 

PROOF. Let B be a non-trivial Schur algebra and assume that [B] ^ 0 in Br(R). Let 
K (g> B = Mn(D) for some skew field D over K. We already know that D is a quaternion 
algebra over K. Let A be a maximal order contained in D. Then A and B are Morita 
equivalent over R (cf. [13], p. 189 Corollary 21.7). An easy application of Theorem 4.4 
of [5] then shows that A is Azumaya too. Let V be an n dimensional right vector space 
over D. Then K ® B acts on the left of V, so G also acts on the left of V via n. By 
Theorem 21.6 of [13], there exists a right A lattice N in V such that B — EndA(NA,NA). 
Let T:D —> D:6 H-» tr(<5)l — 8 denote the unique non-trivial symplectic involution on 
D. Pick a basis e\,...,eninV and define 

( , )0: V x V-^D: (£*,*,•,£ w l h- ][>(*/)}>/ 
V Ï = I i=i J i=i 

It is easy to verify that ( , )# is an hermitian form. 
Let t: K —• R be any real embedding of K. Then R ®K D = H, since Inv[D] = 

Inv[#] = 1/ 2, at all infinite places. This is a consequence of the assumption that [B] ^ 0 
and the fact that the Hasse invariants are equally distributed, (cf. [25], p. 89 Theorem 6.1) 
It also follows that there exists a quadratic extension LofK such that L ®K D is split (cf. 
[13], Theorem 7.15 p. 97). From this one easily deduces that D is itself a quaternion 
algebra. Now R ®K D 9* H implies that V i G / ) \ { 0 } : t (T(X)X) = t (nr(x)) > 0. This 
shows that ( , )# is positive definite. 

Define a new form ( , ) on V by 

( , ): V x y - > Z ) : ( j t , y ) ^ £ ( g j t , g y ) 0 

gee 

Then ( , ) is still a positive definite, hermitian form and moreover, it is invariant under 
the action of G. If I denotes the 2 sided ideal generated by{(m,n);m,nEiV}, then we 
may restrict ( , ) to TV to obtain 

( , ):Nx N—> I:(n,m)\—>{n,m) 
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Clearly, G acts on the left on TV via IT . This provides TV with a left RG, right A mod
ule structure. We have to prove that TV is simple everywhere. The left #, right A module 
structure on N may be interpreted as a left B (g> A° module structure. This yields a ho-
momorphism 7 : B ® A° —• End/?(A0- Since B is the commutator of A° in End/?(A0, the 
double commutator property may be applied to show that 7 is an isomorphism (cf. [5], 
p. 57, Theorem 4.3). Let 3 be any non-zero 2 sided prime ideal of A, J = 3 Pi R. Then 
N/ NJ = NINJ is a simple EndR(N) module. By the above discussion, N/ NJ does not 
contain a non-trivial (RG, A)-bimodule, i.e. TV is everywhere simple. 

Finally, we show that ( , ) is modular. To prove that 

IJJ'.NA—* Hom^G^A I)'- n i—• (m t—-• ( m, n) ) 

is an isomorphism, it suffices to verify this mod J for any non-zero prime ideal J of R. 
Let a bar denote reduction mod J. Since xjj is a right A module homomorphism, Ker(i/i ) is 
a right A module. Also, G leaves ( , ) invariant, so Ker(V0 is a left /?G module also. But 
N is simple everywhere, so Ker(V>) = 0 or Ker(i/; ) = N. Now Ker(V;) = Nis easily seen 
to imply A/JA = 1/ JI — 0, a contradiction. Therefore, i/S is injective. A comparison 
of dimensions over R then shows that $ is surjective too, which proves our assertion. • 

If D = K andr = id, all the definitions before Theorem 3.6 still make sense, mutatis 
mutandis, and instead of hermitian forms, we obtain the usual quadratic forms. However, 
we need one extra definition. 

DEFINITION 3.7. Let ( , ) be a quadratic form on a projective R module N and let I 
be the fractional R ideal generated by {{m,n)\m,n G Af}. The form ( , ) will be called 
even if and only if for any prime ideal J ofR such that 2 G J and Vra, n G TV; (m,n) G IJ. 

THEOREM 3.8. Let TT.RG —H B be an epimorphism from a group ring RG onto a 
non-trivial Azumaya algebra B. If[B] — 0 in Br(/?), then there exists a projective R 
module N, an ideal I ofR and a quadratic form ( ,):N x N —> I such that 

i B ^ EndR(N) 
ii Vg G G,^m,n G N: (gm,gn) — (m,n) 

Hi N is everywhere simple, 
iv ( , ) is a positive definite, even, modular, quadratic form. 

PROOF. The proof of Theorem 3.6 may be copied almost verbatim. Note that the 
existence of an R lattice N such that End#(A0 = B is now an immediate consequence 
of the fact that [B] = 0 in Br(R). We still have to verify that ( , ) is even. Let J be any 
prime ideal of R such that 2 G J and let a bar denote reduction mod/. Then <j>:N —> 
Ln\—>{n,n) is a homomorphism. Since ( , ) is modular, there exists a unique q G N 
such that <f)(n) — (q,n). Since G leaves ( , ) invariant, gq = q and therefore Rq is 
a RG submodule of N. Now N is simple, so Rq = N or Rq = 0. If Rq = N, then 
B — End̂ Ĉ V) = R, which contradicts our assumption that B is non-trivial. So q = 0 and 
VneN:( AI, n) G //. • 

The extra information that ( , ) is even when [B] = 0 in Br(R) has no analogue when 
[B] ^ 0. This is due to the fact that, for any non-trivial Azumaya algebra A, the 2 sided 
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ideal generated by { a + r(a)} is equal to tr(A)A. Since A is Azumaya, tr(A)A = A. This 
may easily be verified by localization, a chore which is left for the reader. 

Since even modular quadratic forms occur rather seldomly, Theorem 3.8 puts a severe 
restriction on the possible Schur algebras such that [B] = 0 in Br(R). We illustrate this 
for the case R = Z. 

COROLLARY 3.9. IfMn(T) is a Schur algebra, then n = 1 or 8|n. 

PROOF. Even modular forms of rank n only exist when 8|n (cf. [20], p. 92, Corol
lary 2). 

REMARK 3.10. The above corollary was already proved, in a different form, by 
Thompson (cf. [23]). Actually, the condition 8|n is also sufficient. For R = Z, all Schur 
algebras are therefore known. For a proof of this the reader is referred to [10]. 

As automorphism groups of positive definite, even quadratic forms tend to have an 
intricate structure, one may wonder whether it is possible to represent Schur algebras by 
means of easy groups such as solvable or nilpotent groups. Theorem 2.1. shows that E^, 
a solvable group, spans a Schur algebra over Z [A/2]. We now show that Schur algebras 
over number rings can not be obtained as epimorphic image of group rings where the 
group is nilpotent. 

THEOREM 3.11. If G is nilpotent, then RG has no non-trivial epimorphic image 
which is Azumaya over R. 

PROOF. Let TT : RG —» A be a representation of a Schur algebra, assume that G is 
nilpotent and A ^ R. Choose a primep such that/7 divides | G\ and TT(RGP) ^ R, where 
Gp denotes the unique Sylow p-group of G. It is easy to see that such a prime exists. 
Since G is nilpotent, there exists a subgroup H of G such that G = Gp x H (cf. [7], 
p. 139, Théorème 17.1.4). Let bar denote reduction mod 7, where / is any prime ideal 
ofR containing /?, TT(RGP) = B, n(RH) — C. Since Gp and H commute, B 0 C —» 
À: b 0 c i—> be is a ring epimorphism. By Maschke's Theorem, RH is semi-simple, hence 
so is C. Also, Z(C) Ç Z(Â), so C is actually simple. By the double commutator theorem, 
(cf. [5], p. 57 Theorem 4.3) it follows that B is simple too. Then RGP —» B factors 
through RGp/rad(RGp). But Gp is a/7-group, so RGp/rad(RGp) = R (cf. [2], p. 114, 
Theorem 5.20). Hence R = B, which implies R = B. This contradicts our choice of p. m 
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