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Reflection and transition of planar curved shock
waves
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In this paper, the reflection of curved shock waves over a symmetry plane in planar
supersonic flow is studied. This includes stable Mach reflection (MR) and the regular
reflection (RR) to MR transition process. Curved shock theory (CST) is applied to
derive the high-order parameters in front of and behind the shock wave. The method of
curved shock characteristics is used to establish an analytical model to predict the wave
configurations. The shock structures provided by the proposed model agree well with the
numerical results. Flow structures, such as the height of the Mach stem and the shape
of the shock wave and slip line, are studied by applying the analytical model. Isentropic
waves generated from a curved wall are found to significantly influence the flow patterns. It
appears that the compression waves obstruct the formation of the sonic throat and increase
the Mach-stem height. The expansion waves have the opposite effect. The evolution
mechanism of the Mach stem is found in conjunction with the RR-to-MR transition
process. The CST is extended to a moving frame and used to model the transition. The
time history of the moving triple point illustrates the effects of the incident shock angle
and isentropic waves on the transition process.
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1. Introduction

There is a long history of research examining the reflection of oblique shock waves
generated from a wedge over a wall or symmetry plane in steady supersonic flows. In 1878,
Mach (1878) was the first to observe two reflection configurations: regular reflection (RR)
and Mach reflection (MR). The transition criteria between these two shock reflection types
have been the subject of discussion for several decades. The two- and three-shock theories
were developed by von Neumann (1943, 1945) to describe RR and MR, respectively. The
configurations given by these two theories are shown schematically in figures 1(a,b).
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Figure 1. Schematic of RR and MR along with domains for different reflection types in the (M0, θi) plane.

In the case of RR, the incident shock wave (i) intersects with the reflecting surface
(R) and produces a reflected shock wave (r). For MR, the incident and reflected shock
waves are connected to the reflecting surface by another shock called the Mach-stem
shock (m). These three shocks intersect at the triple point (T) and generate a slip line
(s). The foot of the Mach stem is perpendicular to the reflecting surface. Based on these
two theories, von Neumann (1943, 1945) proposed the mechanical equilibrium criterion
(now commonly referred to as the von Neumann criterion) and the detachment criterion.
The former provides the minimum of the incident shock angle at which MR exists
theoretically; the latter gives the maximum shock angle for the existence of RR. After
further research, Mölder (1979) noted that the von Neumann criterion has an applicable
condition whereby the free-stream Mach number M0 must be greater than a certain Mach
number Mc. The value of Mc is related to the specific heat ratio γ (Mc ≈ 2.2 while
γ = 1.4). For M0 > Mc, there is a dual-solution domain in which both RR and MR
are theoretically possible. This domain is identified in the (M0, θi) plane in figure 1(c),
where θi is the incident shock angle at the reflection point. In this plane, θmax, θD, θN and
θmin represent the incident shock wave detachment criterion, von Neumann’s detachment
criterion, mechanical equilibrium criterion and Mach angle, respectively. RR can occur
for θmin < θi < θD, and MR can occur for θN < θi < θmax; the dual-solution domain exists
between θN and θD. For MR, Chow & Chang (1974) suggested that the flow behind the
reflected shock is supersonic (M2 > 1) for θi < θS, and subsonic (M2 < 1) for θi > θS,
where θS corresponds to the incident shock angle at which M2 = 1. While both RR and
MR are stable in the dual-solution domain (Teshukov 1989; Li & Ben-Dor 1996), they can
transit each other with a disturbance whose threshold level exceeds a certain value (Ivanov,
Kudryavtsev & Khotyanovskii 2000; Kudryavtsev et al. 2002). In RR-to-MR transition
initiated by a small disturbance, a tiny Mach stem first appears and develops smoothly to
the steady-state height. With the growth of the Mach stem, the triple point moves upstream
along the incident shock wave.

For flat-shock reflections, several studies have investigated the height of the Mach
stem, the shape of the discontinuities (Mach stem, reflected shock and the slip line)
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On curved shock reflection

and the time history of the RR-to-MR transition. Azevedo (1989) and Azevedo & Liu
(1993) studied the Mach stem and developed a physical model to predict its height Hm.
In their research, the region bounded by the slip line and the reflecting surface was
considered an effective one-dimensional converging nozzle. To describe the flow pattern,
the quasi-one-dimensional isentropic relation was applied. The slip line was assumed to
be linear before interacting with the leading expansion wave, which is where the sonic
throat formed. Li & Ben-Dor (1997) studied the interactions of the reflected shock with the
expansion fan from the trailing edge of the wedge. They described a physical mechanism
by which the centred expansion fan creates the sonic throat and determines the Mach-stem
height. However, they ignored the influence of the reflected waves of transmitted expansion
waves on the slip line. Mouton (2007) suggested another model that considered only the
geometrical features of the flow pattern while neglecting the curvature of discontinuities
(Mach stem and slip line). Gao & Wu (2010) improved the model by further considering
additional details, such as interactions between the transmitted expansion fan and the
waves generated from the slip line.

In addition to the Mach-stem height, research on the shape of the Mach stem and
other flow structures has attracted significant attention. Dewey & McMillin (1985a,b)
studied experimentally the shapes of the incident, reflected and Mach-stem shocks for
pseudo-steady reflections. They showed that the Mach stem was described well by a
circular arc centred slightly below the reflecting surface. These experimental results were
confirmed by Olim & Dewey (1992) and Dewey & Barss (1996). The shape of the Mach
stem was also considered analytically by Li, Ben-Dor & Han (1994) for pseudo-steady
reflections, and by Li & Ben-Dor (1997) for steady flows from a geometric perspective.
A second-order curve was used by Li & Ben-Dor (1997) to model the Mach stem. By
assuming that the angle between the slip line and the reflecting plane is sufficiently
small, Tan, Ren & Wu (2006) described the flow immediately behind the Mach stem
using the isentropic small-disturbance equation, and demonstrated that the Mach stem
can be approximated by a circular arc of relatively small curvature. The shape of the
reflected shock wave was analysed using the shock-expansion wave interaction method
of Rosciszewski (1960) and Hasimoto (1964), as well as by the approximate method of Li
& Ben-Dor (1995). Bai & Wu (2017) derived analytical expressions for the shape of the
slip line and reflected shock wave.

In comparison to the structures of stable MRs, the time history of the RR-to-MR
transition has rarely been considered. Mouton & Hornung (2007, 2008) presented an
approximate theory to predict the growth rate of the Mach-stem height. They assumed
that the transition process contains a single but evolutionary MR. The evolutionary MR
satisfies a steady-flow model when the reference frame is attached to the moving triple
point. In their model, during the transition, the Mach stem and reflected shock wave
were considered to be straight. Kudryavtsev et al. (2002) performed a series of numerical
simulations to study the influence of disturbances on shock wave reflection transitions.
Their results showed that a new shock interaction structure exists at the beginning of
the transition. The mechanism of this new interaction structure in the time history of
transitions was studied by Li, Gao & Wu (2011); they developed an idealized unsteady
model that divides the transition process into a multiple-interaction stage and a pure-MR
stage to capture the time evolution of the Mach stem.

The above studies considered flat shock waves. With the enrichment of theoretical
research on curved shock waves (Mölder 2015; Emanuel 2019; Shi et al. 2020), the
reflection of curved shock waves has gradually attracted increasing attention. Mölder
(2015) proposed the curved shock theory (CST), which relates the flow gradients to the
curvatures of shock waves. Emanuel (2019) and Shi et al. (2020) further developed the
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theory to higher dimensions and orders, respectively. Shi et al. (2021) derived the method
of curved shock characteristics (MOCC) for calculating the supersonic flow field behind
curved shock waves based on the CST. In 2017, the CST was applied to the reflection of
a curved shock by Mölder (2017). The curvatures of the reflected shock wave, Mach stem
and slip line, as well as the pressure gradient around the reflection point, were derived.
Based on this work, Shi (2021) proposed a geometric equation for the Mach stem and slip
line in curved shock MRs (CMRs). According to this equation, the shape of the Mach stem
should be determined by the position of the triple point.

The above-described research focused solely on the flow structure near the reflection
point. However, for CMRs, the wave configuration of the triple point is not sufficient
to reflect the properties of the whole flow field. For example, the position of the triple
point, which determines the shape of the Mach stem, is unknown. To reveal the formation
mechanisms of CMRs, the structure of the flow field and the time history of the RR-to-MR
transition should be examined. Due to the non-uniform nature of the flow behind curved
shock waves, traditional models for flat shock waves are no longer applicable. In this
paper, an analytical model is established to predict the overall structure of CMRs using
the CST and the MOCC. Details of the flow field are analysed using high-order flow
parameters. In addition, the curved shock equations attached to the moving frame are
derived to model the RR-to-MR transition process. The influence of the incident shock
angle and isentropic waves (or Mach waves) on the moving velocity of the triple point is
studied theoretically and numerically. Finally, the influence of the wall curvature on the
transition time is evaluated. This work is of great importance to the design of hypersonic
vehicles and supersonic engines.

2. Analytical model

First, we simulate numerically the reflection of a curved incident shock in the dual-solution
domain to display the two possible reflection structures and their associated transition.
Analytical models are then proposed to describe the structure and transition of curved
shock reflections. Throughout this paper, δw, Dw, H0 and He are used to denote the
initial deflection angle, wall curvature, and heights of the curved-wall inlet and outlet,
respectively. The wall curvature is positive when the deflection angle increases while
approaching the reflecting surface along the wall. This means that a positively curved
wall is always concave towards the upstream flow.

Figure 2 provides the Mach number contours of the flow at a series of moments during
the RR-to-MR transition in the dual-solution domain for M0 = 5, δw = 19◦, DwH0 = 0.12
and He/H0 = 0.5. The transition time t has been normalized with the inlet height H0
and free-stream sound speed a0. The computational fluid dynamics (CFD) methods used
throughout this paper and the density perturbation that is applied to induce transitions are
introduced in Appendix A, which also shows a grid independence analysis to illustrate
that the current grid set-up is sufficient to achieve the goals of this paper. When t = 0, the
disturbance has just reached the reflection point, and the flow field presents a structure of
RRs, as shown in figure 2(a). The steepening of the incident shock wave in the disturbed
region can be seen in the locally enlarged image of the reflection point. After a period
of continuous disturbance, figure 2(b) shows that the Mach stem is induced locally at
the reflection point to form a three-shock structure. At this point, the RR structure still
exists macroscopically. As the Mach stem evolves, the shock reflected at the triple point
intersects the reflected shock of the RR structure to form another triple point, as shown in
figures 2(c–f ). The second triple point moves along the reflected shock of the RR structure
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t = 0 t = 0.1077H0/a0

t = 0.0089H0/a0 t = 0.2781H0/a0

t = 0.0179H0/a0 t = 0.7356H0/a0

t = 0.0359H0/a0 t = 7.1588H0/a0

(a) (e)

(b) ( f )

(c) (g)

(d ) (h)

Figure 2. Instantaneous representations of the Mach contours during the RR-to-MR transition triggered by an
upstream density disturbance for a concave incident shock (M0 = 5, δw = 19◦, DwH0 = 0.12, He/H0 = 0.5).

until disappearing. At the same time, a sonic throat begins to form under the slip line, as
shown in figure 2(g). The triple point then moves upstream continuously and eventually
stabilizes at the position shown in figure 2(h). These plots clearly indicate the curving of
the incident shock wave and the non-uniformity of the post-shock flow field.

The current numerical method can be used to simulate the overall MR. However, due to
the numerical viscosity, the slip line will display Kelvin–Helmholtz instability (Samtaney
& Pullin 1996; Ivanov et al. 2002). The rolling of the slip line will produce parasitic waves
that invalidate the CFD results (Gao & Wu 2010). Therefore, it is necessary to model
the flow field to ensure that the main flow structures are well captured. In the rest of
this section, the analytical methods describing the flow configurations of CMRs and the
RR-to-MR transition process are introduced.

2.1. Analytical model for stationary CMRs
Figure 3 depicts schematic illustrations of the two stable structures (RR and MR) displayed
in figure 2. In the diagram, the incoming flow (0) passes a curved wall and generates a
curved shock at the leading edge due to flow deflection. The curved incident shock (i)
propagates downstream and intersects with the reflecting surface. It occasionally forms
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Figure 3. Schematic illustration of the stable curved shock reflection configurations: (a) regular reflections,
and (b) Mach reflections.

an RR structure and produces a reflected shock wave (r) from the rigid wall (figure 3a).
In the case of MR (figure 3b), a Mach stem (m) appears between the reflection point
and the reflecting surface. The Mach stem grows along the incident shock and remains
stable at the triple point (T). Sometimes, if the incident shock angle is located in the
dual-solution domain, an RR-to-MR transition can occur with an initial disturbance, as
shown in figure 2. The time history of the Mach stem during the transition is helpful
for revealing the formation mechanism of the CMR flow field. Before this, considering
the non-uniformity of the flow behind curved shock waves, the steady-state MR first
has to be studied to evaluate the influence of the non-uniform nature of the flow
structure.

As shown in figure 3(b), four discontinuities meet at the triple point: the incident shock,
reflected shock, Mach stem and slip line (s). Downstream of the triple point, the reflected
shock wave interferes with the expansion waves (e) generated by the trailing edge of the
wall. The four discontinuities, along with the first expansion wave, divide the entire flow
field into four regions. In general, regions (1), (2) and (4) are supersonic, and region (3)
is subsonic. The subsonic flow pattern behind the Mach stem can be approximated as a
one-dimensional flow and is similar to that through a de Laval nozzle. The height of the
slip line decreases initially. This is followed by an increase in height, giving a minimum
value at the throat (t), where the Mach number is equal to 1. Due to the complexity of
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Figure 4. Schematic illustration of the interactions between the expansion waves and the reflected shock
wave/slip line.

the flow behind a curved shock wave, the four regions should be solved separately. The
solution methods are introduced below.

2.1.1. Flow around the triple point
We use ρ, p, V , M, δ, θ and γ to denote the density, pressure, velocity, Mach number,
flow angle, shock angle and specific heat ratio of the gas, respectively. The following
classical shock relations connect the downstream flow (subscript 1) to the upstream flow
(subscript 0) of the incident shock:

p1

p0
= 1 + 2γ

γ + 1

(
M2

0 sin2 θi − 1
)

,

ρ1

ρ0
= (γ + 1) M2

0 sin2 θi

(γ − 1) M2
0 sin2 θi + 2

,

V1

V0
= cos θi

cos(θi − δ)
,

tan(δ1 − δ0) = 2 cot θi
M2

0 sin2 θi − 1

M2
0 (γ + cos(2θi)) + 2

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.1)

Equations (2.1) provide the flow parameters downstream of the shock. With the
development of CST (Mölder 2015), the first-order post-shock parameters, which reveal
more information about the flow near the shock, can be acquired with the following planar
curved shock equations:

A0,iP0 + B0,iD0 + E0,iΓ0 = A1,iP1 + B1,iD1 + CiSa,i,

A′
0,iP0 + B′

0,iD0 + E′
0,iΓ0 = A′

1,iP1 + B′
1,iD1 + C′

iSa,i,

A′′
0,iP0 + B′′

0,iD0 + E′′
0,iΓ0 = A′′

1,iP1 + B′′
1,iD1 + E′′

1,iΓ1 + C′′
i Sa,i,

⎫⎪⎬
⎪⎭ (2.2)
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where P, D, Γ and Sa indicate the pressure gradient, streamline curvature, vorticity and
shock curvature in the flow plane, respectively. The coefficients can be found in (Mölder
2015), and for planar flow, Sb (i.e. the shock curvature in the flow-normal plane) is zero.

The shock relations and the three-shock theory provide the following relationships
between the four discontinuities:

p2

p1
= 1 + 2γ

γ + 1

(
M2

1 sin2 θr − 1
)

,

tan(δ2 − δ1) = 2 cot θr
M2

1 sin2 θr − 1

M2
1 (γ + cos(2θr)) + 2

,

p3

p0
= 1 + 2γ

γ + 1

(
M2

0 sin2 θm − 1
)

,

tan(δ3 − δ0) = 2 cot θm
M2

0 sin2 θm − 1

M2
0 (γ + cos(2θm)) + 2

,

p3 = p2,

δ3 = δ2.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.3)

The angle moving anticlockwise towards the x axis is regarded as positive. There are six
unknowns in (2.3) for the six equations: p2, δ2, θr, p4, δ4 and θm. Thus the angles of the
reflected shock, Mach stem and slip line, as well as the post-shock pressure at the triple
point, can be solved from the incident shock angle and incoming conditions. Mölder (2017)
proposed the following equations based on the three-shock theory and CST to acquire the
curvatures of the reflected shock, Mach stem and slip line as well as the pressure gradient
at the triple point, where there are six unknowns, P2, D2, Sa,r, P4, D4 and Sa,m:

A1,rP1 + B1,rD1 + E1,rΓ1 = A2,rP2 + B2,rD2 + CrSa,r,

A′
1,rP1 + B′

1,rD1 + E′
1,rΓ1 = A′

2,rP2 + B′
2,rD2 + C′

rSa,r,

A0,mP0 + B0,mD0 + E0,mΓ0 = A3,mP3 + B3,mD3 + CmSa,m,

A′
0,mP0 + B′

0,mD0 + E′
0,mΓ0 = A′

3,mP3 + B′
3,mD3 + C′

mSa,m,

M2
3P3 = M2

2P2,

D3 = D2.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.4)

2.1.2. Introduction of the MOCC and its application in regions (1) and (2)
The CST gives the shock curvature and flow divergence/convergence in terms of the
pressure gradient, vorticity and streamline curvature. Once the incoming flow conditions
have been determined, the post-shock parameters can be solved using the curved shock
equations. However, these are tenable only near the shock. To calculate supersonic flow
fields, Shi et al. (2021) derived the MOCC in (2.5) in the (s, l) plane, where s denotes the
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streamline, and l denotes the characteristic coordinates from the Euler equations:

dp
dl±

− ρV2(P cos μ ∓ D sin μ) = 0,

dδ

dl±
− D sin μ ∓ P cos μ

tan μ
± j

sin δ sin μ

y
= 0,

dp
ds

− ρV2P = 0,

dδ

ds
− D = 0,

ρV
dV
ds

+ dp
ds

= 0,

dp
ds

− γ p
ρ

dρ

ds
= 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.5)

The equations for the left-running characteristic and streamline are solved in the (s, l+)

coordinates for the external flow, whereas the equations for the right-running characteristic
and streamline are evaluated in the (s, l−) coordinates for the internal flow. There are six
unknowns – p, δ, ρ, V , P and D – in the six equations to describe a unit process that
contains a streamline and characteristic line. Therefore, the MOCC extends the application
area of CST from the region near the shock to the post-shock flow field.

Three unit algorithms (interior process, shock process and wall/parameter distribution
process) are introduced by Shi et al. (2021). As shown in figure 3, the flow in region (1)
is a typical internal flow with uniform inflow and known wall boundary conditions that
can be solved using the interior, shock and wall processes. The flow pattern in region
(3) is considered as a one-dimensional flow. Thus the following equations establish the
relationship between the pressure and height of the slip line (where M̄m and p̄m are the
average Mach number and pressure just behind the Mach stem) as

y
H̄m

= M̄m

M

{
1 + [

(γ − 1)/2
]

M2

1 + [
(γ − 1)/2

]
M̄2

m

}(γ+1)/2(γ−1)

, (2.6)

p
p̄m

=
{

1 + [
(γ − 1)/2

]
M2

1 + [
(γ − 1)/2

]
M̄2

m

}1/(γ−1)

. (2.7)

Therefore, the flow over the slip line (region (2)) can be regarded as a non-uniform
external flow with a known pressure distribution.

2.1.3. Expansion fan and its interactions with the reflected shock
To prevent choking in internal contraction flows, the wall is set to turn at a certain height to
stabilize the flow field. Hence there are always interactions between the expansion waves
generated by the sharp corner and the reflected shock. For flat-shock MRs, the flow behind
the incident shock wave is uniform, and region (4) is a Prandtl–Meyer fan. However, for
curved shock reflections, the flow in front of the expansion fan is no longer uniform.
Therefore, expansion waves should disperse into segments for the calculations, as shown
in figure 4. Taking points 1 and 3 along the direction of the expansion wave as an example,
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the relationship between the two points is

dδ

dl
− sin μ̄

γ p̄
dp
dl

= j
sin δ̄ sin μ̄

ȳ
, (2.8)

y3 = y1 + (x3 − x1) tan(δ̄ + μ̄), (2.9)

where p, δ and μ represent the pressure, flow angle and Mach angle, respectively. The bars
indicate the averages of points 1 and 3. The aerodynamic parameters along the streamline
between different expansion waves, such as points 1 and 2, follow the relationship

ρV
dV
ds

+ dp
ds

= 0, (2.10)

dp
ds

− γ p
ρ

dρ

ds
= 0, (2.11)

y2 = y1 + (x2 − x1) tan δ̄. (2.12)

As the aerodynamic parameters in front of the expansion wave are obtained from the
flow field solved in § 2.1.2, the position and aerodynamic parameters of the first expansion
wave can be solved using (2.8) and (2.9). Then the shock angle at point 3 indicates that
the aerodynamic parameters behind the reflected shock wave can be solved with the shock
relations. The position at point 2 is then determined by the geometric equation

y2 = y3 + (x2 − x3) tan(δ̄ + θ̄ ). (2.13)

The parameters of point 2 in front of the reflected shock are solved using (2.8)–(2.12).
When the flow-deflection angle between points 3 and 4 is known, the aerodynamic
parameters of point 4 can be obtained from (2.10)–(2.12). The limit concept suggests
that when the adjacent expansion waves are sufficiently close, the deflection angle and
pressure behind the reflected shock waves at points 2 and 4 should be approximately equal.
Therefore, iterating the shock angle at point 2 provides the aerodynamic parameters after
the reflected shock wave at points 2 and 4, and the shock angle at point 2. The reflected
shock can be obtained by repeating the above process along the reflected shock wave.

2.1.4. Calculation of the Mach-stem height
The global algorithm used to obtain the height of the Mach stem is described here. An
initial guess for the Mach-stem height H∗

m is established, and this gives an initial value
for the position of the triple point (xT , yT). From quasi-one-dimensional-flow theory, the
height H∗

t of the sonic throat is related to H∗
m by

H∗
m

H∗
t

= 1
M̄m

(
1 + γ − 1

2
M̄2

m

)(γ+1/2(γ−1)

, (2.14)

where M̄m is the average Mach number immediately behind the Mach stem. The flow
parameters for the entire flow field, and the position and shapes of the slip line, are obtained
from the process described in §§ 2.1.1–2.1.3. Sonic flow must occur at a section with a
minimal area. Thus we examine whether the minimum distance between the slip line and
the reflecting surface is exactly H∗

t . If not, then the value of H∗
m is updated, and the entire

process described above is repeated until a converged H∗
m is obtained.
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Figure 5. Schematic illustration of two dynamic configurations during the transition: (a) multiple-interaction
stage, and (b) pure-MR stage.

2.2. Simplified model to describe the transition process
To describe the time history of the Mach stem, Li et al. (2011) divided the transition
process into a multiple-interaction stage and a pure-MR stage based on the evolution
of the flow structure. Figure 5 gives a schematic illustration of these two stages. At the
initial stage of the transition, the flow field appears as a multiple-interaction structure. This
structure was first observed in the numerical simulations of Kudryavtsev et al. (2002) and
explained by Li et al. (2011), as illustrated in figure 5(a). The overall structure is still RR,
and a the Mach stem (m) appears locally near the reflection point. The appearance of the
Mach stem forms a three-shock structure with the incident (i) and reflected (r) shock waves
corresponding to the MR. Here, the RR structure still exists downstream of the triple point
(T). The corresponding reflected shock wave (r′) of the RR structure interferes with r and
results in another triple point (O), a transmitted shock wave (r′′) and a slip line (s′). The
transmitted shock wave r′′ further interferes with the slip line (s) emitted from the triple
point T. This prevents it from intersecting with the reflecting surface, as this is physically
impossible for streamlines. This is true even though, based on the CFD results shown in
figure 2, the point N at which r′′ and s intersect is close to the reflecting surface. In the
mathematical description, Li et al. (2011) assumed that point N is on the reflecting surface.
Thus the flow from the Mach stem is used to grow the control volume TNG. As the Mach
stem grows, the initial formation of the sonic throat indicates that the flow field enters the
pure-MR stage, as assumed by Mouton & Hornung (2007). Figure 5(b) gives a schematic
diagram of the configuration. This is similar to the stationary MR, except that the triple
point moves upstream along the incident shock wave with velocity VT . This velocity is the
key parameter of the transition. The next subsubsection describes the method to determine
this.
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2.2.1. Solution for the moving triple point
We start with the flow around the moving triple point. It is assumed that the flow just
around the three-shock structure is pseudo-steady and satisfies the steady three-shock
theory when the reference frame is attached to the triple point. The shock wave
relationships and curved shock equations described by (2.1) and (2.2) still connect the
flow parameters upstream and downstream of the incident shock wave (i). The incident
shock wave is stationary in both the fixed and moving frames attached to the moving triple
point. In contrast to the incident shock wave, the reflected shock wave (r) and Mach stem
(s) remain stationary only in the moving frame.

Based on the basic shock relations and curved shock equations attached to the moving
frame derived in Appendix B, the flow parameters in regions (2) and (3) are given by

p2

p1
= 1 + 2γ

γ + 1
(M2

1,M sin2 θr,M − 1),

tan(δ2,M − δ1,M) = 2 cot θr,M
M2

1,M sin2 θr,M − 1

M2
1,M(γ + cos(2θr,M)) + 2

,

p3

p0
= 1 + 2γ

γ + 1
(M2

0,M sin2 θm,M − 1),

tan(δ3,M − δ0,M) = 2 cot θm,M
M2

0,M sin2 θm,M − 1

M2
0,M(γ + cos(2θm,M)) + 2

,

p3 = p2,

δ3 = δ2,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.15)

A1,rP1,M + B1,rD1,M + E1,rΓ1,M = A2,rP2,M + B2,rD2,M + CrSa,r,

A′
1,rP1,M + B′

1,rD1,M + E′
1,rΓ1,M = A′

2,rP2,M + B′
2,rD2,M + C′

rSa,r,

A0,mP0,M + B0,mD0,M + E0,mΓ0,M = A3,mP3,M + B3,mD3,M + CmSa,m,

A′
0,mP0,M + B′

0,mD0,M + E′
0,mΓ0,M = A′

3,mP3,M + B′
3,mD3,M + C′

mSa,m,

M2
3P3 = M2

2P2,

D3 = D2.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.16)

The quantities with subscript M are in the moving frame (the reference frame attached
to the moving triple point). Their transformation relations with the quantities in the fixed
frame are

V2
M = (V cos δ + VT cos ηT)2 + (V sin δ + VT sin ηT)2,

δM = arctan
(

V sin δ + VT sin ηT

V cos δ + VT cos ηT

)
,

MM = VM

√
ρ

γ p
,

θM = θ + δ − δM,

PM = K11P + K12D + K13Γ + K14,

DM = K21P + K22D + K23Γ + K24,

ΓM = K31P + K32D + K33Γ + K34.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.17)
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On curved shock reflection

The coefficients and their detailed derivations are provided in Appendix B. Here, VT
and ηT are the magnitude and direction of the velocity of the triple point, respectively. As
the triple point moves along the incident shock wave, ηT = θi.

2.2.2. Determination of the triple point velocity
Due to differences in the flow structures, the velocities of the triple point in the two stages
should be determined using different methods. For the pure-MR stage, the assumption
of Mouton & Hornung (2007) indicates that the flow satisfies a steady-flow model when
the reference frame is attached to the moving triple point. The method to determine the
relationship between the velocity of the triple point and the Mach-stem height is as follows.
Given a velocity VT > 0 in advance, the unsteady model (now reduced to a steady model
due to the use of the moving frame) can be solved in the same way as the steady-flow
model proposed in § 2.1. Thus a Mach-stem height corresponding to VT can be acquired.

For the multiple-interaction stage, we consider the triangle TNG as a control volume in
which the density is constant over time (Li et al. 2011). We then apply mass conservation
to determine the velocity of the triple point as

ρ0(u0 + VT cos θi)Hm ≈ d(ρ3ATNG)

dt
. (2.18)

This suggests that the mass flow rate across the Mach stem is balanced with the mass
increase in the triangle TNG. In flat-shock reflections, both the reflected shock and slip
line can be regarded as linear. Therefore, the area of the triangle can be calculated
approximately as ATNG = 1

2 H2
m tan δs. However, in curved shock reflections, the curvature

of the slip line is non-negligible (illustrated in § 3.1.2). Therefore, to extend the model
to curved shock reflections, we calculate the area of the triangle by integrating the shape
function of the slip line derived by Shi (2021), who described the shape of the slip line
with the quadratic function

Ds

2 cos3 δs
(x − xT)2 + tan δs (x − xT) + Hm − y = 0. (2.19)

The above process establishes the relation between the position and velocity of the
triple point during the whole transition process (including the pure-MR stage and the
multiple-interaction stage). With this relation, the transition time corresponding to the
position and velocity can be obtained by integration.

3. Results and discussion

The flow structure determined from the analytical model presented in § 2 is now studied
and compared to the CFD results.

3.1. Flow structure for CMRs

3.1.1. Overall configuration
The overall structure of the flow field is studied first. Three cases of different wall
curvatures under the conditions M0 = 5, δw = 26.9◦ and He/H0 = 0.5 are displayed in
figure 6. This shows good agreement between the analytical (denoted by dashed red
lines) and numerical results (denoted by solid black lines). Figure 6(a) illustrates the
Mach number contours for the case DwH0 = 0.08. A concave shock is generated, and the
corresponding reflected shock wave is close to the trailing edge. The flow field generated
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CFD

Analytical

(a)

(b)

(c)

Figure 6. Comparison of the analytical configuration with the numerical results (a) case A, DwH0 = 0.08,
concave, (b) case B, DwH0 = 0, flat wall, and (c) case C, DwH0 = −0.08, convex, under the conditions M0 = 5,
δw = 26.9◦ and He/H0 = 0.5.

from a wedge (DwH0 = 0) is shown in figure 6(b) for comparison. Distinct from the other
two cases, the incident shock is linear, and the flow in front of the first expansion wave is
uniform. Figure 6(c) displays an upward-curved wall with DwH0 = −0.08. The incident
shock weakens as it moves downstream, and the triple point is close to the reflecting
surface. These differences in flow structures are apparently caused by the curvature of
the wall.

Due to the one-dimensional-flow assumption behind the Mach stem and the
Kelvin–Helmholtz instability, as predicted analytically, the flow between the slip line and
the reflected shock does not match well with the CFD results. Especially when the height
of the Mach stem is small, the deviation between the analytical results and the CFD results
seems to be large. The main reason for these deviations is the difficulty in determining
the location of the sonic throat near the von Neumann transition point, as described
by Gao & Wu (2010). We believe that another reason is the greater interference of the
Kelvin–Helmholtz instability with one-dimensional flows when the slip line is closer to
the reflecting surface, as shown in figure 6(c). Nevertheless, the general configuration of
the flow, including the Mach stem, slip line and reflected shock wave, are well predicted.
Therefore, it is appropriate to use this analytical model to study the CMR structure in
planar flow.
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Figure 7. Slope and curvature of the analytical reflected shock wave, (a) case A, DwH0 = 0.08,
(b) case B, DwH0 = 0, (c) case C, DwH0 = −0.08, under the conditions M0 = 5, δw = 26.9◦, He/H0 = 0.5.
(d) Comparison of the reflected shock wave curvature for the three cases.

3.1.2. Shape of the reflected shock wave and slip line
Analysis of the shape of the slip line and shock waves is helpful for understanding the
action mechanism of the wall curvature. The influence mechanism of the wall curvature
on the shape of the incident shock wave is simple. The concave wall generates compression
waves and increases the incident shock intensity, therefore a concave incident shock
is produced. Conversely, expansion waves generated from the convex wall decrease the
incident shock angle, resulting in convex incident shocks.

The shape of the forward part of the reflected shock wave is also affected by these
isentropic waves generated from the curved wall. Figure 7 shows the slope and curvature
of the reflected shock wave for the three cases illustrated in figure 6. Before the reflected
shock wave intersects the leading Mach wave generated by the trailing edge at point F, it
deflects relatively slowly. After that, it starts to deviate upwards rapidly until reaching point
Q, where the last Mach wave intersects it. At this point, the reflected shock wave becomes
linear and the curvature dips to zero. For Dw /= 0, the curvature of the forward part of the
reflected shock wave (i.e. the part before point F) is obvious due to these isentropic waves,
as shown in figures 7(a,c). It is found that compression waves deflect the reflected shock
downwards (Sa,r < 0), and expansion waves deflect the reflected shock upwards (Sa,r >

0). For Dw = 0, the curvatures of the reflected shock remain nearly 0 before interacting
with the expansion wave (figure 7b). Thus this portion of the reflected shock appears linear.
An earlier investigation (Gao & Wu 2010) indicated that the reflected shock wave remains
linear before interacting with the expansion fan. Indeed, this statement is not strictly valid,
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Figure 8. Slope and curvature of the analytical slip line: (a) case A, DwH0 = 0.08, (b) case B, DwH0 = 0,
(c) case C, DwH0 = −0.08, under the conditions M0 = 5, δw = 26.9◦, He/H0 = 0.5.

even in flat-shock reflections. According to (2.2), the shock curvature is determined by the
non-uniformity of the flow in front of and behind the wave. For flat-shock MRs, the flow
upstream of the reflected shock wave is uniform. However, the flow behind the reflected
shock wave is always non-uniform due to pressure variations in quasi-one-dimensional
flows under the slip line. Therefore, the reflected shock wave is nonlinear before it interacts
with the expansion fan in flat-shock MRs. This is also confirmed by the analytical results,
as shown in figure 7(d). There is a slight curvature in the front portion of the reflected
shock wave, while the incident shock is linear. This curvature has also been observed by
Bai & Wu (2017). Neglecting the curvature of the forward part of the reflected shock wave
might be one cause for deviations between the previous analytical models and the CFD
results.

After interaction with the reflected shock wave, isentropic waves generated on the
curved wall will cross it and further affect the shape of the slip line. Figure 8 provides
the slope and curvature of the analytical slip line. For the flat incident shock (figure 8b),
the slip line is first convex and then concave with an inflection point B. At this point,
the leading transmitted Mach wave generated by the trailing edge intersects the slip line,
and the curvature Ds mutates abruptly from negative to positive. The slip line deflects
continuously upwards and becomes horizontal at point P, where the deflection angle is
exactly zero. This rule also applies when the incident shock is concave, except that the
free section of the slip line (i.e. the slip line before point B) is more convex. This suggests
the possibility of inverse Mach reflection (i.e. the slip line is deflected upwards at the
triple point) in curved shock reflections, while it is impossible for flat shock reflections

959 A11-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

13
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.132


On curved shock reflection

Conditions Hm/H0

Case M0

δw
(deg.) DwH0 He/H0 CFD Analytical model

Current
Gao & Wu

(2010) Current
Bai & Wu

(2017)
Gao & Wu

(2010)

Mouton &
Hornung

(2007)

Li &
Ben-Dor

(1997)

1 2.84 20.8 0.00 0.4957 0.191 0.191 0.199 0.180 0.202 0.140 0.118
2 4.00 23.0 0.00 0.4999 0.109 0.110 0.120 0.110 0.121 0.106 0.076
3 4.00 25.0 0.00 0.4971 0.214 0.213 0.217 0.215 0.223 0.300 0.167
4 4.50 23.0 0.00 0.5702 0.051 0.052 0.056 0.048 0.058 0.051 0.036
5 4.96 28.0 0.00 0.4836 0.287 0.283 0.289 0.324 0.292 0.395 0.269
6 5.00 26.9 0.00 0.5023 0.207 0.203 0.212 0.230 0.213 0.296 0.191
7 4.00 20.0 0.08 0.5000 0.190 — 0.196 — — — —
8 5.00 26.9 0.08 0.5000 0.387 — 0.386 — — — —
9 5.00 31.7 −0.15 0.5000 0.129 — 0.137 — — — —

Table 1. Mach-stem heights for various conditions.

(Ben-Dor 2007). The situation is more complicated for a convex incident shock. As
displayed in figure 8(c), the slip line is initially concave, transforms to convex between
points T and B, and then develops with the above rule. These differences are exactly
attributed to the interactions between the transmitted isentropic waves generated from the
curved wall and the slip line.

3.1.3. Mach-stem height
The variation of the shapes of the slip line and the shock waves will eventually be reflected
in the variation of the Mach-stem height, which is a key parameter in MRs. In this
subsubsection, the Mach-stem height will be studied quantitatively. A comparison of the
normalized Mach-stem height Hm/H0 between the present analytical results and those of
Bai & Wu (2017), Gao & Wu (2010), Mouton & Hornung (2007) and Li & Ben-Dor (1997),
as well as the CFD results of this work and from Gao & Wu (2010) for flat-shock MRs, are
provided in table 1. In addition, three cases of CMRs are added to the table.

For flat-shock MRs, the difference between theory and the CFD of the current model
appears to be smaller than for earlier theories for most conditions. This can be interpreted
as resulting from the influence of the waves generated over the slip line being ignored
either partially or entirely by previous approaches (as illustrated in § 3.1.2). Moreover, for
special cases of flat-shock reflection, the heights predicted by Gao & Wu (2010) are also
close to the CFD results, and the analytical model is much simpler than that presented
here. However, the advantage of the current model is that it has a similar precision for
CMRs, as seen from the last three rows of table 1.

Figure 9 further compares the present results with those of Gao & Wu (2010), Mouton &
Hornung (2007) and Li & Ben-Dor (1997), and the current CFD results for flat-shock MRs.
We maintain a fixed wedge angle in figure 9(a), and a fixed free-stream Mach number in
figure 9(b). There is good agreement between the current predictions and the CFD results,
especially for large Mach-stem heights.

For CMRs, we studied the relationship between the wall curvature and the Mach-stem
height both numerically and analytically, as shown in figure 10. The initial deflection angle
δw is fixed in figure 10(a), and the coordinates of the trailing edge are fixed in figure 10(b)
(the fixed values are different at different Mach numbers). In figure 10(a), the Mach-stem
height increases nearly linearly. This is caused by the dual effects of the changes in incident
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Figure 9. Comparisons of the current non-dimensional Mach-stem height with those in Gao & Wu (2010),
Mouton & Hornung (2007) and Li & Ben-Dor (1997), and the current numerical results (w/H0 = 1.1) for
flat-shock MRs (Dw = 0): (a) δw = 28◦, and (b) M0 = 4.5.
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Figure 10. Comparisons of the current non-dimensional Mach-stem height with the numerical results
(He/H0 = 0.5) for CMRs: (a) fixed initial deflection angle (δw = 26◦ while M0 = 4.5, and δw = 28◦ while
M0 = 6); and (b) fixed wedge-tail coordinates (Xe = 0.1025 while M0 = 4.5, and Xe = 0.0940 while M0 = 6).

shock angle and the slip line shape. Increasing the wall curvature results in increasing
incident shock wave intensity and downward deflection of the slip line. This hinders the
formation of the sonic throat and increases the Mach-stem height. For cases with the
same trailing edge, as shown in figure 10(b), the height of the Mach stem also shows
an increasing trend as the wall curvature increases.

3.2. Time history of RR-to-MR transition
The time evolution of the Mach stem during the RR-to-MR transition is studied in this
subsection to analyse the formation mechanism of the MR flow field.

3.2.1. Flat-shock transition
For a better understanding of curved shock transitions, we first study the transitions of flat
shocks. Consider the case with M0 = 5, δw = 26.9◦, w/H0 = 1.1 and DwH0 = 0. The time
evolution of the triple point as predicted by the model described in § 2.2 is displayed in
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Figure 11. Evolutions of the triple point from the analytical model and CFD for a flat incident shock (M0 = 5,
δw = 26.9◦, DwH0 = 0, w/H0 = 1.1). (a) Mach-stem height as a function of time; (b) relationship between the
triple point velocity and the Mach-stem height; and (c) triple point velocity as a function of time.

figure 11 alongside the numerical results. The results obtained from the models of Mouton
& Hornung (2007) and Li et al. (2011) are also displayed. The Mach contours obtained
from CFD at a series of instants during the transition process are shown in figure 12.

For flat-shock reflections, the analytical model indicates that the multiple-interaction
stage is self-similar. Therefore, the velocity of the triple points is constant at the initial
stage of the transition, as shown in figure 11 (where a0 is the speed of sound for the
incoming flow). In the pure-MR stage, the velocity of the triple point gradually decreases
to zero with the Mach-stem height. We also observe that for flat-shock reflections, the
velocity of the predicted triple point is mostly consistent with that of Li et al. (2011).
This is because the model of the pure-MR stage established by Li et al. (2011) is based
on the steady model of Gao & Wu (2010). According to the analysis in § 3.1.3, the stable
Mach-stem heights predicted from the current steady model and by Gao & Wu (2010) are
both close to the CFD results for flat-shock MRs. Generally, both results agree much better
with CFD than those of Mouton & Hornung (2007); this is because they did not model the
multiple-interaction stage.

The numerical results indicate that the triple point moves with a velocity that first
increases and then decreases. The velocity reaches its maximum at time tm, and
the corresponding Mach contours are displayed in figure 12(e). The reflected shock
corresponding to the MR has just entered the influence area of the expansion fan at this
moment. Accordingly, the flow fields before and after tm should be analysed. Here, φ

denotes the ratio of the mass flow rate out of the control volume TNG from the gap between
the slip line and the reflecting surface to that into the control volume through the Mach
stem. Before tm, as shown in figures 12(b–d), the deflection point of the slip line is close to
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Figure 12. Instantaneous representations of the Mach contours during the RR-to-MR transition triggered by
an upstream density disturbance for a flat incident shock (M0 = 5, δw = 26.9◦, DwH0 = 0, He/H0 = 0.5023).

the reflecting surface; thus the mass flow ratio φ is close to 0. This means that nearly all of
the flow from the Mach stem is used to grow the control volume. Therefore, the velocity
of the triple point is relatively large at this stage. After tm, the influence of the expansion
waves deflects the slip line upwards. The flow out from the right-hand side of the control
volume gradually increases. This leads to a velocity decrease in the triple point until the
sonic throat is fully formed (φ = 1) and the flow field stabilizes.

Some new explanations for the two stages of the simplified model are given based on
the above findings and analyses. The multiple-interaction stage corresponds to the initial
moment of the transition at which φ is close to 0. The pure-MR stage models the state in
which the flow field tends to be stable and φ is close to 1. The envelope of the VT–HM
curves corresponding to the two states simulates the time history of the Mach-stem height
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Figure 13. Evolution of the triple point from both the analytical model and CFD for a concave incident
shock (M0 = 5, δw = 22.0◦, DwH0 = 0.08, He/H0 = 0.5). (a) Mach-stem height as a function of time;
(b) relationship between the triple point velocity and the Mach-stem height; and (c) triple point velocity as
a function of time.

during the transition process, and the effects of the expansion waves and changes in the
flow ratio are ignored. Nevertheless, the results plotted in figure 11 show that the simplified
method can generally simulate the trends of the triple point.

3.2.2. Curved shock transition
A discussion on the transition process of the curved shock further illustrates the analysis in
the previous subsubsection. We consider the case with M0 = 5, δw = 22.0◦, He/H0 = 0.5
and DwH0 = 0.08 to analyse the transition of curved shock reflection. Figure 13 illustrates
the time evolution of the triple point. The corresponding Mach contours are given in
figure 14. The time evolution of the Mach stem in the pure-MR stage is similar to the case
for the flat incident shock. However, during the multiple-interaction stage, the magnitude
of the velocity of the triple point is no longer a constant; it varies with the Mach-stem
height, as it should on a concave wall. The weakening of the incident shock wave leads to
a decreased deflection angle for the slip line and an increased control volume area as the
triple point moves upstream. Therefore, this is no longer a self-similar stage. The increased
relative area of the control body instead decreases the velocity of the triple point at larger
Mach stems. This process is opposite to that with a convex wall.

The influence of compression or expansion waves, which are more complicated in
non-uniform flow, is neglected. Therefore, the agreement between the analytical and CFD
results for curved shock reflections is not as good as that for flat-shock reflections, even
though the curvature of the slip line is considered. Nevertheless, the analysis based on
the analytical results still reflects the trend of triple point motion. This is evidenced by
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Figure 14. Instantaneous representations of the Mach contours during the RR-to-MR transition triggered by an
upstream density disturbance for a concave incident shock (M0 = 5, δw = 22.0◦, DwH0 = 0.08, He/H0 = 0.5).

the numerical results shown in figure 13. The results show that the velocity of the triple
point does not tend to increase at the initial moment of the transition. Examination of the
analytical results suggests that this is due to the impact of the varying incident shock angle
and the decreased φ as caused by the compression waves generated on the concave wall.

3.2.3. Transition-time analysis
Although the time evolution predicted by the theoretical model deviates from that
calculated from the analytical method, it is sufficient for macroscopic law analyses.
Therefore, in this subsubsection, the model is used to analyse the relationship between
the transition time and the wall curvature. Figure 15 shows the time evolution of the
Mach-stem height for varying wall curvatures, with fixed M0 and initial deflection
angle δw. We observe that the Mach-stem heights are sensitive to the wall curvature in
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Figure 15. Evolution of the Mach stem as a function of time (M0 = 5, δw = 26.5◦, He/H0 = 0.5).

Case M0 δw DwH0 He/H0 Hm/H0 t∗/(H0/a0) tc/(H0/a0) Hm/(t∗a0) tc/t∗

1 4.0 23.6◦ 0 0.5 0.15 7.78 1.64 0.0577 0.21
2 4.5 24.4◦ 0 0.5 0.15 6.43 1.12 0.0697 0.17
3 5.0 19.2◦ 1 0.5 0.15 4.81 0.70 0.0933 0.15
4 5.0 22.4◦ 0.5 0.5 0.15 4.97 0.80 0.0902 0.16
5 5.0 25.2◦ 0 0.5 0.15 5.01 0.82 0.0895 0.16
6 5.0 27.6◦ −0.5 0.5 0.15 5.03 0.76 0.0892 0.15
7 5.5 25.7◦ 0 0.5 0.15 4.49 0.62 0.0999 0.14
8 6.0 26.3◦ 0 0.5 0.15 4.07 0.48 0.1103 0.12

Table 2. Transition times for cases with the same Mach-stem height under different conditions.

the multiple-interaction stage. With a decreased curvature, the growth rate of the Mach
stem slows down and the stationary height decreases.

We use t∗ and tc to denote the times of the entire transition process and
the multiple-interaction stage, respectively. Table 2 provides the non-dimensional
characteristic times t∗/(H0/a0) and tc/(H0/a0), the non-dimensional average speed of
the triple point during the entire transition process Hm/(t∗a0), and the time proportion of
the multiple-interaction stage tc/t∗, for various inflow conditions. To control the variables
to the greatest extent, we adjust the boundary conditions so that the stable Mach-stem
heights in these cases are the same. Li et al. (2011) defined the transition time t∗ as the
time from the initial instance of the transition to that at which the Mach-stem height is
95 % of the stable value. However, figures 11 and 13 indicate that defining the transition
time in this way is not reasonable, as the last 5 % of the height may require a significant
time. With the analytical model, the time taken for the Mach stem to reach the stable
height can be obtained and defined as the transition time t∗. The table indicates that for
He/H0 = 0.5, the times for both the entire transition process and the multiple-interaction
stage are sensitive to the inflow Mach number. Increasing the inflow Mach number for a
fixed Mach-stem height reduces the transition time and increases the average velocity of
the triple point during the entire transition process. When the incoming Mach number is
4, the multiple-interaction stage occupies approximately 1/5 of the total transition time.
This proportion decreases and reaches approximately 1/8 when M0 = 6.

In addition to the Mach number of the incoming flow, the transition time is also affected
by the wall curvature, although the extent of this influence is much smaller. We observe
that when the curvature is negative, the corresponding transition time is less than that
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for the flat shock, which increases the absolute value of the curvature. Conversely, the
transition time of the concave shock is longer than that of the flat shock. This is consistent
with the analysis in the previous section. We believe that this is the result of isentropic
waves generated from the wall.

4. Conclusion

In this paper, the configurations of CMRs and the time evolution of the RR-to-MR
transition were studied numerically and analytically. The analytical model agrees well with
the CFD results when considering the global structure of the flow field. This includes the
slip line, reflected shock wave, Mach stem and triple point. In CMRs, the height of the
Mach stem depends not only on the strength of the incident shock wave but also on the
wall curvature. The wall produces Mach waves, and these interact with shock waves and
the slip line, and affect the height of the Mach stem. The influence mechanisms can be
expressed as compression waves that hinder the formation of the sonic throat to increase
the Mach-stem height. Expansion waves accelerate the formation of the sonic throat and
decrease the height of the Mach stem.

For the transition process, the shock relationships and curved shock equations in the
moving frame were studied. For curved shock transitions, the moving velocity of the
triple point depends greatly on the Mach-stem height during the multiple-interaction stage.
The analysis also showed that the transition time depends not only on the velocity of
the incoming flow but also on the curvature of the wall. It appears that concave shock
waves transition faster than convex shock waves. As the compression waves (including
the incident shock wave) deflect the slip line downwards, the reduction of the area and
mass flow ratio of the control volume finally increases the velocity of the triple point. In
contrast, expansion waves have the effect of decreasing the velocity of the triple point.
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Appendix A. Numerical methods

The numerical simulations in this paper are based on AMROC (Adaptive Mesh
Refinement in Object-Oriented C++) (Deiterding 2011; Laurence & Deiterding 2011),
which improves the calculation efficiency with a high grid resolution (refer to the website
for details: http://rdeiterding.website/html/pub.htm). In this work, only inviscid flow is
considered, and the hybrid Roe solver for the Euler equations is used to solve Riemann
problems along one data slice. The scheme is blended with the Harten–Lax–Van Leer
scheme for robustness. A multi-dimensional entropy correction is used to prevent the
carbuncle phenomenon. The slip boundary condition is used on the wedge surface and
the reflecting surface; the left boundary models the supersonic inflow condition. The other
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Figure 16. Schematic illustration of localized density disturbance: (a) upstream density disturbance;
(b) spatial Riemann problem; and (c) threshold-level contour lines of the localized density disturbance.

boundaries are interpolated under the assumption of zero first-order derivatives over all
flow parameters. We have
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A1)

To trigger the RR-to-MR transition, we introduce a localized density disturbance
upstream of the reflection point, following the approach of Li et al. (2011). The density
of the lower five calculation cells that belong to the incoming flow (left) boundary
is varied by 	ρ (figure 16a). In this way, the Mach number in the disturbed layer
becomes Mdist = M0

√
1 + 	ρ/ρ0. The disturbance is kept constant for a certain time

T = 0.1H0/a0 until the undisturbed incoming flow conditions are restored. When the
disturbance propagates downstream and reaches the reflection point, the spatial Riemann
problem shown in figure 16(b) occurs. The structure is similar to the triple point of the
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Figure 17. Instantaneous representations of the Mach contours for the RR-to-MR transition for M0 = 4,
DwH0 = −0.08, δw = 20◦ and He/H0 = 0.5. The grid is 300 × 120 in (a–d), and 450 × 180 in (e–h).

MR except that the reflected shock is replaced with an expansion fan. The angle of the
refracted shock can be determined easily analytically by solving (A1). Through the proper
selection of 	ρ, the refracted shock angle θrefr can exceed the detachment angle θD and
induce the transition. The level of density disturbance needed for the RR-to-MR transition
can be evaluated directly, and the results are given in figure 16(c).

The mesh is refined carefully near points with fine structures using the block-structured
adaptive mesh-refinement technique proposed by Berger & Colella (1989). The refinement
factor ri is set to 2, 2 and 4. The max time step is set to 10−4H0/a0. Figure 17 displays the
Mach contours during the transition using two grid densities (300 × 120 on level 4, and
450 × 180 on level 4) for M0 = 4, DwH0 = −0.08, θw = 20◦ and He/H0 = 0.5. Although
slight differences exist in terms of the flow details, the main flow structures in the present
study of the two dense grid numbers are similar and can be well captured.

Figure 18 displays the time evolutions of the triple points under the different grids and
refinement levels. The results show good agreement when the number of grid points is
greater than 300 × 120 and the refinement level is above 3. Therefore, we use grid 300 ×
120 or denser, and refinement level 4, throughout the paper.
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Figure 18. Time evolution of the Mach-stem height during the transition using different grids and refinement
levels for M0 = 4, DwH0 = −0.08, δw = 20◦, and He/H0 = 0.5.

Appendix B. Shock wave relations and curved shock equations in the moving frame

The classical shock relations and the curved shock equation for a fixed frame are provided
in § 2.1.1. To build the flow model during the transition, the connections for the flow
quantities between the fixed and moving frames are derived. The shock wave relationship
and curved shock equations in the moving frame are provided in (B11) and (B12). Here,
the subscript M denotes the quantities with respect to the moving reference frame, which
moves at speed VT in the direction ηT . The flow quantities in the reference frame are
related to the parameters in the fixed frame as

V2
M = (V cos δ + VT cos ηT)2 + (V sin δ + VT sin ηT)2,

δM = arctan
(

V sin δ + VT sin ηT

V cos δ + VT cos ηT

)
,

MM = VM

√
ρ

γ p
,

θM = θ + δ − δM.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B1)

Equations (B1) provide the relationships for only the velocity, deflection angle, Mach
number and shock angle. To study the high-order flow parameters of the flow field, CST
in the moving reference frame should be included. The connections between the pressure
gradient, streamline curvature and vorticity in the two reference frames provide the moving
and fixed frames. By definition, the pressure gradient, streamline curvature and vorticity
in the moving frame are given by

PM = 1
ρV2

M

∂p
∂sM

,

DM = ∂δM

∂sM
,

ΓM = 1
VM

∂VM

∂nM
− DM.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(B2)
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Replacing VM and δM by the quantities with respect to the fixed frame gives

PM = V2

V2
M

1
ρV2

∂p
∂sM

,

DM =
∂

[
arctan

(
V sin δ + VT sin ηT

V cos δ + VT cos ηT

)]
∂sM

= (V cos δ + VT cos ηT) sin δ − (V sin δ + VT sin ηT) cos δ

(1 + tan2 δM)(V cos δ + VT cos ηT)2
∂V
∂sM

+ (V cos δ + VT cos ηT)V cos δ + (V sin δ + VT sin ηT)V sin δ

(1 + tan2 δM)(V cos δ + VT cos ηT)2
∂δ

∂sM
,

ΓM = 1
VM

∂
[
(V cos δ + VT cos ηT)2 + (V sin δ + VT sin ηT)2]

∂nM
− DM

= V + VT cos δ cos ηT + VT sin δ sin ηT

V2
M

∂V
∂nM

+ VVT sin δ cos ηT + VVT cos δ sin ηT

V2
M

∂δ

∂nM
− DM.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B3)

Further simplification gives

PM = V2

V2
M

1
ρV2

∂p
∂sM

,

DM = VT sin(δ − ηT)

(1 + tan2 δM)(V cos δ + VT cos ηT)2
∂V
∂sM

+ V2 + VVT cos(δ − ηT)

(1 + tan2 δM)(V cos δ + VT cos ηT)2
∂δ

∂sM
,

ΓM = V + VT cos(δ − ηT)

V2
M

∂V
∂nM

+ VVT sin(δ + ηT)

V2
M

∂δ

∂nM
− DM.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B4)

The derivatives of any quantity with respect to distance along and normal to the
streamline in the moving frame can be expressed in terms of the two derivatives along
and normal to the streamline in the fixed frame as

(
∂•
∂sM

)
=

(
∂•
∂s

)
cos(δM − δ) +

(
∂•
∂n

)
sin(δM − δ),

(
∂•

∂nM

)
= −

(
∂•
∂s

)
sin(δM − δ) +

(
∂•
∂n

)
cos(δM − δ).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(B5)
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This produces

PM = V2

V2
M

1
ρV2

[
∂p
∂s

cos(δM − δ) + ∂p
∂n

sin(δM − δ)

]
,

DM = VT sin(δ − ηT)

(1 + tan2 δM)(V cos δ + VT cos ηT)2

[
∂V
∂s

cos(δM − δ) + ∂V
∂n

sin(δM − δ)

]

+ V2 + VVT cos(δ − ηT)

(1 + tan2 δM)(V cos δ + VT cos ηT)2

[
∂δ

∂s
cos(δM − δ) + ∂δ

∂n
sin(δM − δ)

]
,

ΓM = V + VT cos(δ − ηT)

V2
M

(
−∂V

∂s
sin(δM − δ) + ∂V

∂n
cos(δM − δ)

)

+ VVT sin(δ + ηT)

V2
M

(
−∂δ

∂s
sin(δM − δ) + ∂δ

∂n
cos(δM − δ)

)
− DM.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B6)
The derivatives ∂•/∂s and ∂•/∂n can be expressed as

∂p
∂s

= ρV2P,
∂p
∂n

= −ρV2D,

∂V
∂s

= −PV,
∂V
∂n

= −V (D − Γ ) ,

∂δ

∂s
= D,

∂δ

∂n
= −(M2 − 1)P − j

sin δ

y
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(B7)

With these substitutions, PM , DM and ΓM become

PM = V2

V2
M

P cos(δM − δ) − V2

V2
M

D sin(δM − δ),

DM = VT sin(δ − ηT)

(1 + tan2 δM)(V cos δ + VT cos ηT)2

× [−PV cos(δM − δ) + V(D − Γ ) sin(δM − δ)]

+ V2 + VVT cos(δ − ηT)

(1 + tan2 δM)(V cos δ + VT cos ηT)2

×
{

D cos(δM − δ) +
[
−(M2 − 1)P − j

sin δ

y

]
sin(δM − δ)

}
,

ΓM = VVT sin(δ + ηT)

V2
M

{
−D sin(δM − δ) +

[
−(M2 − 1)P − j

sin δ

y

]
cos(δM − δ)

}

+ V + VT cos(δ − ηT)

V2
M

(PV sin(δM − δ) + V(D − Γ ) cos(δM − δ)) − DM.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B8)
Collecting terms gives

PM = K11P + K12D + K13Γ + K14,

DM = K21P + K22D + K23Γ + K24,

ΓM = K31P + K32D + K33Γ + K34,

⎫⎪⎬
⎪⎭ (B9)
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where

K11 = V2

V2
M

cos(δM − δ),

K12 = − V2

V2
M

sin(δM − δ),

K13 = 0,

K14 = 0,

K21 = − VVT sin(δ − ηT)

(1 + tan2 δM)(V cos δ + VT cos ηT)2 cos(δM − δ)

− V2 + VVT cos(δ − ηT)

(1 + tan2 δM)(V cos δ + VT cos ηT)2 (M2 − 1) sin(δM − δ),

K22 = VVT sin(δ − ηT)

(1 + tan2 δM)(V cos δ + VT cos ηT)2 sin(δM − δ)

+ V2 + VVT cos(δ − ηT)

(1 + tan2 δM)(V cos δ + VT cos ηT)2 cos(δM − δ),

K23 = − VVT sin(δ − ηT)

(1 + tan2 δM)(V cos δ + VT cos ηT)2 sin(δM − δ),

K24 = − V2 + VVT cos(δ − ηT)

(1 + tan2 δM)(V cos δ + VT cos ηT)2 j
sin δ

y
sin(δM − δ),

K31 = −VVT sin(δ + ηT)

V2
M

(M2 − 1) cos(δM − δ) + V2 + VVT cos(δ − ηT)

V2
M

sin(δM − δ),

K32 = −VVT sin(δ + ηT)

V2
M

sin(δM − δ) + V2 + VVT cos(δ − ηT)

V2
M

cos(δM − δ),

K33 = −V2 + VVT cos(δ − ηT)

V2
M

cos(δM − δ),

K34 = −VVT sin(δ + ηT)

V2
M

j
sin δ

y
cos(δM − δ) − DM .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B10)

Through the above transformation, the shock relationship and curved shock equations
can be written in the form of the moving frame as

p1

p0
= 1 + 2γ

γ + 1

(
M2

0,M sin2 θM − 1
)

,

ρ1

ρ0
= (γ + 1)M2

0,M sin2 θM

(γ − 1)M2
0,M sin2 θM + 2

,

V1,M

V0,M
= cos θM

cos(θM − δM)
,

tan(δ1,M − δ0,M) = 2 cot θM
M2

0,M sin2 θM − 1

M2
0,M (γ + cos(2θM)) + 2

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B11)
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A0P0,M + B0D0,M + E0Γ0,M = A1P1,M + B1D1,M + CSa,

A′
0P0,M + B′

0D0,M + E′
0Γ0,M = A′

1P1,M + B′
1D1,M + C′Sa,

A′′
0P0,M + B′′

0D0,M + E′′
0Γ0,M = A′′

1P1,M + B′′
1D1,M + E′′

1Γ1,M + C′′Sa.

⎫⎪⎬
⎪⎭ (B12)

The coefficients are also calculated in the moving frame.
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