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This paper presents a novel Hamiltonian formulation of the isotropic Navier–Stokes
problem based on a minimum-action principle derived from the principle of least squares.
This formulation uses the velocities ui(xj, t) and pressure p(xj, t) as the field quantities
to be varied, along with canonically conjugate momenta deduced from the analysis.
From these, a conserved Hamiltonian functional H∗ satisfying Hamilton’s canonical
equations is constructed, and the associated Hamilton–Jacobi equation is formulated for
both compressible and incompressible flows. This Hamilton–Jacobi equation reduces the
problem of finding four separate field quantities (ui,p) to that of finding a single scalar
functional in those fields – Hamilton’s principal functional S∗[ui, p, t]. Moreover, the
transformation theory of Hamilton and Jacobi now provides a prescribed recipe for solving
the Navier–Stokes problem: find S∗. If an analytical expression for S∗ can be obtained, it
will lead via canonical transformation to a new set of fields which are simply equal to
their initial values, giving analytical expressions for the original velocity and pressure
fields. Failing that, if one can only show that a complete solution to this Hamilton–Jacobi
equation does or does not exist, that will also resolve the question of existence of solutions.
The method employed here is not specific to the Navier–Stokes problem or even to classical
mechanics, and can be applied to any traditionally non-Hamiltonian problem.
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J.W. Sanders and others

1. Introduction

Given the title of this paper, it is incumbent on the authors to assure the reader that we do
not claim to have done the impossible. A viscous fluid is, after all, a non-Hamiltonian
system (Millikan 1929; Finlayson 1972a,b). There is no action integral for which
Hamilton’s principle (Hamilton 1833, 1834, 1835) yields the Navier–Stokes equations
(Stokes 1845; Anderson, Tannehill & Pletcher 1984; Anderson 1995; Batchelor 2000;
White 2006; Pozrikidis 2009; Cengel & Cimbala 2018) in their usual form (Millikan 1929;
Finlayson 1972a,b), and we do not claim otherwise. Remarkably, however, a Hamiltonian
formulation can still be found by considering a mathematically equivalent higher-order
problem, as we will now demonstrate via simple example.

1.1. A motivating example
Consider the first-order initial-value problem

v̇ = −v, v(0) = 1, (1.1a,b)

with unique solution v(t) = e−t. Here, v(t) can be interpreted as the velocity of a lumped
mass moving in a viscous medium in one dimension with linear damping. Like the
traditional Navier–Stokes equations (Stokes 1845; Anderson et al. 1984; Anderson 1995;
Batchelor 2000; White 2006; Pozrikidis 2009; Cengel & Cimbala 2018), this too is an
intrinsically non-Hamiltonian problem, in that there is no action S for which Hamilton’s
principle (δS = 0) yields the governing equation v̇ = −v. Yet, if we simply differentiate
both sides of the equation (v̈ = −v̇), use the original equation to write v̇ = −v and
apply the additional initial condition v̇(0) = −v(0) = −1, we arrive at the mathematically
equivalent second-order problem

v̈ = v, v(0) = 1, v̇(0) = −1, (1.2a–c)

which has the same unique solution v(t) = e−t but which is Hamiltonian – not in the sense
that the total mechanical energy is conserved, but in the sense that it has mathematically
Hamiltonian structure.

As first observed by Sanders (2021, 2022, 2023a,b) and Sanders & Inman (2023), the
associated action can be obtained by writing the original equation in standard form (R ≡
v̇ + v = 0), squaring the residual R and integrating over time

S∗[v] =
∫

dt
(1

2R2) =
∫

dt
[1

2

(
v̇2 + 2vv̇ + v2)] ∼

∫
dt

[1
2

(
v̇2 + v2)], (1.3)

where we have used the fact that 2vv̇ = d(v2)/dt is a total time derivative and can therefore
be excluded from the action without changing the resulting Euler–Lagrange equation
(Lanczos 1970). This is the so-called ‘time-averaged principle of least squares’ (Sanders
2021, 2022, 2023a,b; Sanders & Inman 2023): since R = 0 is a local minimum of R2, it
is also a local minimum of

∫
dt(R2). Varying v, the first variation of S∗ is

δS∗ =
∫

dt [v̇δv̇ + vδv] =
∫

dt [(−v̈ + v)δv] + [v̇δv]t2
t1 , (1.4)

yielding the second-order equation v̈ = v and revealing the canonically conjugate
‘momentum’ π ≡ v̇. Here, and in what follows, we will use the symbol π for canonically
conjugate momenta, as is customary in Hamiltonian field theory, in order to avoid later
confusion with the pressure field p. Since the mathematical constant 3.14159 . . . does not
appear in the present work, there will be no ambiguity.
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A canonical Hamiltonian formulation of Navier–Stokes problem

The corresponding Hamiltonian is obtained via the Legendre transform

H∗[v, π] = πv̇ − 1
2

(
v̇2 + v2) = 1

2

(
π2 − v2). (1.5)

Notably, this Hamiltonian has nothing to do with the total mechanical energy of the system,
although it is a conserved quantity. In fact, H∗ = 0 for the actual motion satisfying π ≡
v̇ = −v. We note in passing that Liouville’s theorem is satisfied, as the motion occurs
along the line π = −v, so that the phase-space volume, being always zero, is conserved.
Hamilton’s equations

v̇ = ∂H∗

∂π
, π̇ = −∂H∗

∂v
, (1.6a,b)

are mathematically equivalent to the second-order problem v̈ = v and therefore also
mathematically equivalent to the original, first-order problem.

The associated Hamilton–Jacobi equation (Hamilton 1833, 1834, 1835; Jacobi 1837,
1842–1843; Whittaker 1904; Lanczos 1970) is

1
2

(
∂S∗

∂v

)2

− 1
2
v2 + ∂S∗

∂t
= 0, (1.7)

where Hamilton’s principal function S∗ = S∗(v, t) serves as the generating function for a
canonical transformation to a new coordinate φ which is constant and equal to its initial
value. Although this is almost identical to the Hamilton–Jacobi equation for the simple
harmonic oscillator – the only difference being the sign in front of (1/2)v2 – the usual
separable solution of the form S∗(v, t) = W(v) + T(t), where W(v) and T(t) are functions
of v and t (respectively), does not work, as the reader may check.

Instead, let us use a trial solution of the form

S∗(v, t) = F(t)v + 1
2v2 + f (t), (1.8)

where F(t) and f (t) are as yet undetermined functions of t. This trial solution was chosen
to cancel the term (1/2)v2 from the equation. Substituting our trial solution into the
Hamilton–Jacobi equation, we find that

1
2 [F(t)]2 + [F(t) + F′(t)]v + f ′(t) = 0. (1.9)

In order for this equation to hold for all v, we must have the following:

F(t) + F′(t) = 0 ⇒ F(t) = αe−t, (1.10)

where α is a constant of integration which will be used to transform to the new coordinate,
and

1
2 [F(t)]2 + f ′(t) = 0 ⇒ f (t) = 1

4α2e−2t + γ, (1.11)

where γ is another constant of integration which is simply additive and can therefore be
discarded.

In this way, we have that

S∗(v, t;α) = αe−tv + 1
2v2 + 1

4α2e−2t. (1.12)

With one constant of integration (α) to match the single degree of freedom (v), this is
a complete solution to the Hamilton–Jacobi equation. The new coordinate φ (which is
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constant and equal to its initial value) is obtained via the canonical transformation

φ = ∂S∗

∂α
= e−tv + 1

2
αe−2t. (1.13)

The numerical value of α is in turn obtained via the canonical relation

π = ∂S∗

∂v
= αe−t + v, (1.14)

which, evaluated at t = 0, gives α = −2 (recall that π = v̇, and v̇(0) = −v(0) = −1).
Using the fact that the new coordinate φ is equal to its initial value, we have that

e−tv − e−2t = v(0) − 1 = 0, (1.15)

giving the correct solution v(t) = e−t.
In summary, by doubling the order of the governing equation and supplying additional

auxiliary conditions, we made a non-Hamiltonian problem into a Hamiltonian one
(Sanders 2021, 2022, 2023a,b; Sanders & Inman 2023). Furthermore, this simple example
demonstrates that the method correctly gives the solution to the original, non-Hamiltonian
problem. Indeed, it would appear that every non-Hamiltonian problem belongs to an
equivalence class of problems with the same solution, and within each such equivalence
class there are Hamiltonian variants. The remainder of this paper applies that concept to
the isotropic Navier–Stokes problem (Stokes 1845; Anderson et al. 1984; Anderson 1995;
Batchelor 2000; White 2006; Pozrikidis 2009; Cengel & Cimbala 2018).

1.2. The Navier–Stokes problem
The incompressible Navier–Stokes equations (Stokes 1845; Anderson et al. 1984;
Anderson 1995; Batchelor 2000; White 2006; Pozrikidis 2009; Cengel & Cimbala 2018)
are given by

ρu̇i + ρui,juj + p,i − μui,jj − ρbi = 0, (1.16)

ui,i = 0, (1.17)

where ρ is the constant and uniform density, ui = ui(xj, t) is the velocity field, p = p(xj, t)
is the pressure field, bi = bi(xj, t) is the body force field, subscript Roman indices label
Euclidean tensor components (i, j = 1, 2, 3), the xj are Eulerian spatial coordinates, t is
time, μ is the dynamic viscosity, a dot over a symbol denotes a partial time derivative
(u̇i = ∂ui/∂t), a comma in a subscript indicates a spatial gradient ( p,i = ∂p/∂xi) and we
employ the Einstein summation convention on repeated subscript indices. To be clear,
the notation ui(xj, t) signifies that each component of the velocity field is a function of
all three spatial coordinates (x1, x2, x3) and time t. It has the same meaning as other
common notations, such as ui(x, t) and u(x, t). Likewise for all other field quantities. In
the case of a uniform gravitational field, bi = gi coincides with the local acceleration due
to gravity; however, in what follows, we make no assumptions about the functional form
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of bi(xj, t): it is completely arbitrary. There are four unknown field quantities: ui(xj, t)
and p(xj, t).

We seek, ultimately, a functional

H∗ = H∗[ui, p, πj, π4; t], (1.18)

where (πi, π4) are suitable ‘momenta’ conjugate to the field quantities (ui, p), such that
Hamilton’s canonical equations

u̇i = δH∗

δπi
, ṗ = δH∗

δπ4
, (1.19a,b)

π̇i = −δH∗

δui
, π̇4 = −δH∗

δp
, (1.20a,b)

constitute a mathematically equivalent second-order formulation of the problem, where
δH∗/δui, δH∗/δp, δH∗/δπi and δH∗/δπ4 are the Volterra (1930) functional derivatives of
H∗ with respect to the field quantities and the conjugate momenta. We will find that this is
generally possible for a compressible fluid. For an incompressible fluid, the equation ṗ =
δH∗/δπ4 will need to be replaced by the incompressibility condition ui,i = 0, consistent
with the well-known result that the pressure usually serves as a Lagrange multiplier for
the incompressibility constraint (Lanczos 1970; Badin & Crisciani 2018) (refer to p. 361
of Lanczos (1970) and pp. 137 and 141 of Badin & Crisciani 2018).

The remainder of this paper is organized as follows. Section 2 gives a comprehensive
overview of the relevant literature to date. Sections 3 and 4 contain the main results of the
present work, culminating in a conserved Hamiltonian functional H∗ satisfying Hamilton’s
equations (1.19a,b) and (1.20a,b) for the mathematically equivalent second-order problem,
along with the accompanying Hamilton–Jacobi equation (Hamilton 1833, 1834, 1835;
Jacobi 1837, 1842–1843; Whittaker 1904; Lanczos 1970). Section 5 contains a discussion
of the physical interpretation of the second-order formulation. Section 6 presents a brief
case study in the form of one-dimensional flow over an infinite, flat plate. Finally, § 7
concludes the paper with a few closing remarks and an outline of how the present
formulation can aid in resolving the question of existence and uniqueness of solutions
to the Navier–Stokes problem.

By the end of the paper, we will have achieved precisely what the title promises:
a canonical Hamiltonian formulation of the problem, opening new avenues toward
resolution of one of the most famous unsolved problems in mathematics.

2. Literature review

The field of analytical mechanics, with foundations planted in Hamilton’s principle of
stationary action (Hamilton 1833, 1834, 1835) or d’Alembert’s principle of virtual work
(d’Alembert 1743), has been vital to the development of both classical and quantum
physics since the eighteenth century. This approach is versatile and helpful to the physical
understanding of the problem in question, and the foundation, structure and utility of
Hamiltonian formalism is well documented (Becker 1954; Taylor 2005; Hamill 2014;
Bohn 2018; Cline 2023; Fowler 2023). The supporting mathematics of the calculus of
variations as well as symplectic and differential geometry can also be found in many
excellent sources (Arnold 1989; Berndt 2001; Hall 2003; Boas 2006; Stone & Goldbart
2009; Gelfand & Fomin 2012; Arfken 2013; Needham 2021). It is therefore no surprise that
researchers have been applying analytical formalism to classical fluids dating back to the
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time of Lagrange (Lagrange 1811; Lichtenstein 1929; Morrison 1998, 2006; Berdichevsky
2009a,b; dell’Isola & Gavrilyuk 2011; Badin & Crisciani 2018; Bedford 2021).

The task of obtaining solutions to the governing equations of fluid flow represents one of
the most challenging problems in science and engineering. In most cases, the mathematical
formulation is expressed as an initial-boundary-value problem: a set of coupled, nonlinear
partial differential equations, which are to be solved subject to various initial and boundary
conditions. The degree of complication of the governing equations depends on the
type of the fluid. For a viscous fluid where the transport phenomena of friction and
thermal conduction are included, the governing equations are called the Navier–Stokes
equations (Stokes 1845; Anderson et al. 1984; Anderson 1995; Batchelor 2000; White
2006; Pozrikidis 2009; Cengel & Cimbala 2018). The Navier–Stokes equations are derived
by applying fundamental physical principles – conservation of mass, conservation of
momentum and conservation of energy – to a viscous fluid, and the derivation can be
found in any fluid mechanics textbook (Anderson et al. 1984; Anderson 1995; Batchelor
2000; White 2006; Pozrikidis 2009; Cengel & Cimbala 2018). It is important to recognize
that the Navier–Stokes equations as they are known today were not developed solely
by Navier and Stokes; indeed, Poisson, Cauchy and others were also heavily involved
in their development (Darrigol 2002). As far as the present authors are aware, to date
there is still no firm answer to the question of whether or not there always exist
unique, smooth, non-singular solutions to the three-dimensional Navier–Stokes equations
(Lemarie-Rieusset 2018), and this constitutes one of the most famous unsolved problems
in mathematics.

The application of analytical mechanics (Goldstein 1980; Arnold 1989; Fetter &
Walecka 2003; Gelfand & Fomin 2012) to the field of fluid mechanics (Lanczos 1970)
has recently seen a resurgence in interest (Salmon 1983, 1988; Brenier 2017; Giga,
Kirshtein & Liu 2018; Mottaghi, Gabbai & Benaroya 2019; Taroco, Blanco & Feijoo 2020;
Bedford 2021; Mavroeidis & Athanassoulis 2022) after a long history. In the absence of
non-conservative forces, an inviscid fluid is a Hamiltonian system, and so the classical
Hamiltonian theory applies. Serrin (1959), Benjamin (1984) and Holm, Marsden & Ratiu
(1986) have all described variational and Hamiltonian formulations of incompressible,
inviscid fluid flow. Roberts (1972) presented a Hamiltonian dynamic for weakly interacting
vortices. This research obtained the canonical equations of Hamiltonian dynamics for a
set of two well-separated vortex rings by setting up a Hamiltonian to define the set. Olver
(1982) showed that the Euler equations of inviscid and incompressible fluid flow can be put
into Hamiltonian form. Benjamin & Olver (1982) investigated the Hamiltonian structure
of the water waves problem. They examined the symmetry groups of this problem,
finding that Hamiltonian analysis enables the solution of conservative elements of the
problem. However, the study also acknowledged that further study is needed to identify
the physical significance of the mathematical results. Maddocks & Pego (1995) presented
a novel Hamiltonian formulation of ideal fluid flow expressed in material coordinates.
Their Hamiltonian formulation arises from a general approach for constrained systems
that is not restricted to problems in fluid mechanics. Rather, it is widely applicable for
obtaining unconstrained Hamiltonian dynamical systems from Lagrangian field equations
that are subject to pointwise constraints. More recently, Arnold (2014) also studied the
Hamiltonian nature of the ideal Euler equations.

Viscous forces are non-conservative, which presents a fundamental challenge when
applying Hamilton’s principle to viscous fluids (Millikan 1929; Finlayson 1972a,b;
Lemarie-Rieusset 2018). Indeed, it is a well-known theorem (first proven by Millikan 1929)
that the Navier–Stokes equations in their usual form cannot be derived from a classical
action principle (Millikan 1929; Finlayson 1972a,b). Millikan (1929) summarizes his main
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result as follows:
It is impossible to derive the equations of steady motion of a viscous, incompressible fluid from a
variation principle involving as Lagrangian function an expression in the velocity components and
their first-order space derivatives, unless conditions are imposed on these velocity components
such that all of the terms vu,2, wu,3, wv,3, uv,1, uw,1, vw,2 disappear from their positions in the
Navier–Stokes equations (Millikan 1929).

(It should be noted that the six terms referred to above come from the convective
acceleration ui,juj, and Millikan (1929) uses the notation u = u1, v = u2 and w = u3.)
More generally, it has been shown that the existence of variational formulations is
related to self-adjointness of the system with respect to a standard duality relation, a
property that all non-conservative systems lack (Vainberg 1964). Within the last 80
years, many alternative methods have been developed in an attempt to circumvent the
non-self-adjointness of dissipative systems (Prigogine & Glansdorff 1965; Biot 1970;
Finlayson 1972a; Lebon & Lambermont 1973; Tonti 1973; Magri 1974; Telega 1979; Tonti
1984; Filippov 1989; Sieniutycz 2000; Robinson 2001; Galley 2013; Kim, Dargush &
Lee 2016; Mottaghi et al. 2019; Taroco et al. 2020; Bersani & Caressa 2021; Junker &
Balzani 2021). The mathematical study of alternative variational methods as applied to
the Navier–Stokes equations in particular remains an ongoing endeavour (Oseledets 1989;
Vujanovic & Jones 1989; Doering & Gibbon 1995; Fukagawa & Fujitani 2012; Jones 2015;
Gay-Balmaz & Yoshimura 2017; Hieber, Robinson & Shibata 2017; Hochgerner 2018;
Gay-Balmaz & Yoshimura 2019a,b; Rashad et al. 2021; Gonzalez & Taha 2022; Taha &
Gonzalez 2022; Sanders 2023b).

Oseledets (1989) attempted to express the Navier–Stokes equations using Hamiltonian
formalism. He was able to formalize the incompressible Euler equation but stated that
his result is not valid for a compressible fluid. More recent attempts, such as Fukagawa
& Fujitani (2012), Jones (2015) and Gay-Balmaz & Yoshimura (2017, 2019a,b), have
enforced dissipation using a non-holonomic constraint on the entropy. Hochgerner (2018)
attempted to obtain a Hamiltonian interacting particle system that could accurately model
the fluid dynamics. His research separated the dynamics into slow (deterministic) and
fast (stochastic) components to capture fine-scale effects. The study was able to derive
the Navier–Stokes equation from a stochastic Hamiltonian system but ignored the stress
tensor, was unable to separate configuration and momentum variables and did not establish
energy conservation or dissipation.

Rashad et al. (2021) modelled the incompressible Navier–Stokes equations in so-called
‘port-Hamiltonian’ framework rather than the standard Hamiltonian framework. Their
model used vector calculus instead of exterior calculus to minimize the number
of operators. While the main goal of this research was increasing the interest of
computational researchers in using vector calculus, they also demonstrated that vector
calculus can help in the formulation of individual subsystems of Navier–Stokes equations
and boundary ports of the model.

Gonzalez & Taha (2022), Taha & Gonzalez (2022) and Taha, Gonzalez & Shorbagy
(2023) have recently applied Gauss’s principle of least constraint (Gauss 1829) to the
Navier–Stokes problem. Using Gauss’s principle, Taha et al. (2023) have shown that,
for an incompressible fluid, the magnitude of the pressure gradient is minimum over
the domain, which they term the principle of minimum pressure gradient (PMPG).
When applied to an inviscid fluid in two dimensions, the PMPG provides a closure
condition based in first principles that could be considered a generalization of the Kutta
condition to smooth geometries. It should be noted that Gauss’s principle (Gauss 1829) is
fundamentally different from Hamilton’s principle (Hamilton 1833, 1834, 1835). Whereas
the Hamiltonian framework involves an invariant action integral and employs variations
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in the coordinates (or, in continuum mechanics, the field quantities), Gauss’s principle
employs variations in the accelerations. As a result, the framework of Gauss’s principle
does not lead to canonical transformations.

Particularly relevant to the present work, Sanders (2021, 2022, 2023a,b) has shown that
the higher-order dynamics are ‘intrinsically variational’, in the sense that higher-derivative
versions of the classical equations of motion can be derived from a minimum-action
principle even for dissipative systems, thus allowing inherently non-Hamiltonian problems
to be treated as though they are Hamiltonian. This discovery has already led to two
applications: the direct modal analysis of damped dynamical systems (Sanders 2022)
and, subsequently, a new and more efficient algorithm for computing a damped system’s
resonant frequencies (Sanders & Inman 2023). Higher-derivative theories had been studied
before in the realm of quantum gravity physics (Pais & Uhlenbeck 1950; Van den Berg &
VanderVorst 2002; Kalies & VanderVorst 2004; Bender & Mannheim 2008; Smilga 2009;
Mostafazadeh 2010; Baleanu et al. 2012; Chen et al. 2013) but until now they have not
been applied to classical fluids. While the Navier–Stokes equations, in their standard form,
may be unsuited to Hamiltonian formalism (Millikan 1929; Finlayson 1972a,b; Doering
& Gibbon 1995; Hieber et al. 2017; Lemarie-Rieusset 2018), it will be shown here that
the higher-order dynamics can be used to restate the problem in a form consistent with
Hamiltonian and Hamilton–Jacobi formalism.

In conclusion, although the body of research surrounding the Navier–Stokes equations is
extensive, it would appear that no canonical Hamiltonian formulation of the Navier–Stokes
problem has been found to date. That is what the present work aims to achieve.

3. Lagrangian formulation of the problem

Although we are primarily interested in the incompressible form of the equations given by
(1.16) and (1.17), here we will begin with the compressible form of the equations, with the
understanding that we will eventually take the incompressible limit. For the compressible
case, the linear momentum balance and continuity equations are given by

Ri[uj, p, ρ; xk, t] ≡ ρu̇i + ρui,juj + p,i − μui,jj − (μ + λ)uj,ji − ρbi = 0, (3.1)

R4[uj, ρ] ≡ ρ̇ + ρ,iui + ρui,i = 0, (3.2)

where ρ = ρ(xj, t) is the density field (now one of the unknown field quantities along with
ui and p), and λ is an additional viscosity coefficient which, under Stokes’s (Stokes 1845)
hypothesis, is related to μ as λ = −2μ/3, ensuring that the mechanical pressure agrees
with the thermodynamic pressure. Henceforth, we will assume that all quantities have
been suitably non-dimensionalized. The non-dimensional (constant) viscosities in (3.1)
and (3.2) may be regarded as inverse Reynolds numbers, and the non-dimensional pressure
may be considered to be normalized by the inertial scale ρ0U2, with ρ0 and U appropriate
density and velocity scales. As we will see later, starting from the compressible form of
the equations will allow us to treat the pressure as a dynamical field variable alongside
the velocities, rather than simply a Lagrange multiplier. Crucially, this will reveal in no
uncertain terms what becomes of the momentum conjugate to the pressure (which will be
identified later) in the incompressible limit.

In general, (3.1) and (3.2) would be appended with the energy equation, which
introduces additional thermodynamic variables, such as temperature and enthalpy or
entropy. Two of the thermodynamic variables are designated as ‘primary’, and equations
of state are required to relate the remaining variables to the primary variables.
Typically, pressure and temperature are chosen as the primary variables, and the equation
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A canonical Hamiltonian formulation of Navier–Stokes problem

of state for the density, for example, is expressed as ρ = ρ( p, T). The conservation
equations along with the equation of state constitute six equations for the six unknowns
fields (ui, p, T, ρ). Henceforth in the present work, we will take the temperature to be
constant, though we intend to consider variations in temperature in future work.

An incompressible flow is one for which the material derivative of the density vanishes,
i.e. dρ/dt = ρ̇ + ρ,iui = 0, and this condition serves as an equation of state. It is usually
also assumed, for the sake of simplicity, that the density is both constant and uniform,
further reducing the equation of state ρ = ρ( p, T) to specification of ρ = ρ0 as a system
parameter. Consequently, (3.2) reduces to ρui,i = 0 and the energy equation is decoupled
from the system. Accordingly, in the incompressible limit there are only four unknown
field quantities (ui, p) and the momentum balance and continuity equations suffice for the
governing field equations.

We pause here to remark that all four field equations (3.1), (3.2) are first order in time
with respect to the field quantities ui and ρ. This will be important shortly, when we
double the order of the equations. It should also be noted, as mentioned previously, that
the first-order problem described above is inherently non-Hamiltonian, in that there is no
action S for which Hamilton’s principle (δS = 0) yields the first-order field equations
(Millikan 1929; Finlayson 1972a,b). Finally, we note that in the incompressible limit, R4
becomes independent of ρ̇ and is no longer first order in time.

3.1. Second-order formulation
Although the first-order formulation of the problem is intrinsically non-Hamiltonian
(Millikan 1929; Finlayson 1972a,b), nevertheless a Hamiltonian for the system may be
found by considering a second-order formulation. Following Sanders (2023b), we observe
that the actual motion of the fluid corresponds to the particular fields (ui, p, ρ) for which
the following action achieves a local minimum:

S∗[uj, p, ρ] =
∫

d4x(1
2RiRi + 1

2R4R4), (3.3)

where d4x = dx1 dx2 dx3 dt, and the integral is carried out over both the control volume
V occupied by the fluid (xj ∈ V) and the time period of interest (t ∈ [t1, t2]). It must be
emphasized that this action contains no new physics. Again, this is simply the principle of
least squares (Finlayson 1972b) averaged over the space–time occupied by the fluid. The
entire physics of the problem are already contained in the residuals (Ri, R4).

Without an equation of state relating ρ to p, the problem is underconstrained with five
unknown field quantities and only four dynamical field equations. Anticipating the case of
incompressible flow, where the density is constant and the four field quantities are ui and
p, henceforth we will assume an equation of state of the form ρ = ρ̂( p), with ρ̂ a known
function determined either from first principles or empirically. In this way, the density
field may be eliminated in favour of the pressure field, and the field equations assume the
following form:

Ri[uj, p; xk, t] ≡ ρ̂u̇i + ρ̂ui,juj + p,i − μui,jj − (μ + λ)uj,ji − ρ̂bi = 0, (3.4)

R4[uj, p] ≡ ρ̂′ṗ + ρ̂′p,iui + ρ̂ui,i = 0, (3.5)

where ρ̂′ = dρ̂/dp. We note that, under equilibrium conditions, ρ̂′ is related to the speed
of sound c and the bulk modulus K as ρ̂′ = 1/c2 = ρ/K (for incompressible fluids,
ρ̂′ ≡ 0 and the speed of sound and bulk modulus are both infinite). Having specified
ρ̂( p), μ, λ and bi(xj, t), and having prescribed appropriate auxiliary conditions (initial and
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J.W. Sanders and others

boundary conditions), one seeks the four field quantities (ui, p) satisfying the governing
field equations and the auxiliary conditions. To recover the case of incompressible flow,
we will eventually take ρ̂′ ≡ 0.

We pause here to note that, even though the residuals (Ri, R4) vanish for the actual
motion, they are not trivially zero. That is, the residuals only vanish for the particular
fields (ui, p) which satisfy the first-order field equations (3.4) and (3.5); they do not vanish
for every conceivable (ui, p). Thus it is not appropriate to take Ri ≡ 0, R4 ≡ 0. We will
return to this point later when we discuss the Hamiltonian formulation of the problem.

For now, we note that the action S∗ = S∗[ui, p] defines a Lagrangian

L∗[ui, p; t] =
∫

d3x(L∗), (3.6)

where the integral is carried out over the volume V only (d3x = dx1 dx2 dx3), with
Lagrangian density

L∗[uj, p; xk, t] = 1
2RiRi + 1

2R4R4. (3.7)

Because the residuals (Ri,R4) have been non-dimensionalized, the Lagrangian density
is also dimensionless. Once again, even though the Lagrangian vanishes for the actual
motion, it is not trivially zero, and it is not appropriate to take L∗ ≡ 0.

As noted above, the actual motion of the fluid corresponds to the particular fields (ui, p)

for which S∗ achieves a local minimum. To obtain the Euler–Lagrange equations, the
conjugate momenta and the natural auxiliary conditions, we insist that S∗ not vary to first
order (δS∗ = 0) under small variations in the fields (δui, δp). Evaluating δS∗, integrating
by parts, and collecting like terms, we find that

δS∗ =
∫

d4x
{[

− ∂

∂t

(
ρ̂Ri

) − ∂

∂xj

(
ρ̂Riuj

) + ρ̂Rjuj,i − μRi,jj (3.8a)

− (μ + λ)Rj,ij + ρ̂′R4p,i − ∂

∂xi

(
ρ̂R4

)]
δui (3.8b)

+
[
ρ̂′Riu̇i + ρ̂′Riui,juj − Ri,i − ρ̂′Ribi + ρ̂′′R4ṗ (3.8c)

− ∂

∂t

(
ρ̂′R4

) + ρ̂′′R4p,iui − ∂

∂xi

(
ρ̂′R4ui

) + ρ̂′R4ui,i

]
δp

}
(3.8d)

+
∫

d3x
[
ρ̂Riδui + ρ̂′R4δp

]t2
t1

(3.8e)

+
∫

d2x dt
{[

ρ̂Riujnj + μRi,jnj + (μ + λ)Rj,inj + ρ̂R4ni
]
δui (3.8f )

+ [−μRinj − (μ + λ)Rjni
]
δui,j + [Rini + ρ̂′R4uini

]
δp

}
, (3.8g)

where the purely volumetric integral (d3x) is carried out over V , the surface integral (d2x)
is carried out over the boundary ∂V and ni is the unit outward normal vector to ∂V . Note
that, because we are using Eulerian coordinates xj, the volume element d3x is not to be
varied.
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The Euler–Lagrange equations (which hold for all xj ∈ V) may be read directly from the
space–time (d4x) integral

δui : − ∂

∂t

(
ρ̂Ri

) − ∂

∂xj

(
ρ̂Riuj

) + ρ̂Rjuj,i − μRi,jj

− (μ + λ)Rj,ij + ρ̂′R4p,i − ∂

∂xi

(
ρ̂R4

) = 0, (3.9)

δp : ρ̂′Riu̇i + ρ̂′Riui,juj − Ri,i − ρ̂′Ribi + ρ̂′′R4ṗ

− ∂

∂t

(
ρ̂′R4

) + ρ̂′′R4p,iui − ∂

∂xi

(
ρ̂′R4ui

) + ρ̂′R4ui,i = 0. (3.10)

It should be noted that all four Euler–Lagrange equations (3.9), (3.10) are second order
in time, as they involve time derivatives of the residuals. By doubling the order of the
equations, we have put the problem in Hamiltonian form, consistent with the general
result of Sanders (2023b). We also note that all four Euler–Lagrange equations of the
second-order formulation are automatically satisfied by the solution to the first-order
formulation (i.e. the actual motion), for which Ri = 0 and R4 = 0 everywhere and at
all times.

Corresponding to each of the four field quantities is a canonically conjugate
‘momentum’ field, which can be read from (3.8e). The momenta conjugate to the velocities
ui are

πi ≡ ρ̂Ri, (3.11)

and the momentum conjugate to the pressure p is

π4 ≡ ρ̂′R4. (3.12)

In the forthcoming Hamiltonian formulation, the conjugate momenta will be used to
eliminate the (partial) time derivatives (u̇i, ṗ) of the field quantities from the Hamiltonian.
In general, Hamilton’s principle would insist that the variations (δui, δp) vanish at the
endpoints t = t1 and t = t2 to ensure that the purely volumetric integral (3.8e) vanishes
identically. Interestingly, for the actual motion (Ri = 0,R4 = 0), the volumetric integral
(3.8e) already vanishes even without taking (δui, δp) to vanish at t1 and t2. We interpret
this to mean that the actual motion is the natural evolution of the second-order formulation
(Sanders 2023b).

Although the conjugate momenta (πi, π4) do not coincide with conventional linear
or angular momenta, there is nonetheless a curious mathematical connection between
the conjugate momenta and the linear momentum density Pi = ρui, which we will see
presently from the natural boundary conditions. These are read directly from the surface
(d2x) integral

δui : ρ̂Riujnj + μRi,jnj + (μ + λ)Rj,inj + ρ̂R4ni = 0, (3.13)

δui,j : −μRinj − (μ + λ)Rjni = 0, (3.14)

δp : Rini + ρ̂′R4uini = 0. (3.15)

This last condition, (3.15), establishes a connection between the new conjugate momenta
and the conventional linear momenta. Multiplying (3.15) by ρ̂, and noting that
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ρ̂ui = ρui = Pi, we find that

(πi + π4Pi)ni = 0. (3.16)

Evidently, boundary condition (3.15) states that the flux of the vector Πi ≡ πi + π4Pi
through the boundary ∂V should vanish. It is interesting that this new vector Πi contains
both old and new momenta, with π4 ‘carried’ (i.e. given direction) by Pi. The actual
physical meaning of these natural boundary conditions is less clear and may require further
investigation.

3.2. Equivalence of the first- and second-order formulations
The first- and second-order formulations are mathematically equivalent, in the sense
that imposing identical auxiliary conditions on the two formulations will yield identical
solutions (ui, p). In other words, with identical auxiliary conditions, (ui, p) is a solution to
the first-order formulation if and only if the same (ui, p) is a solution to the second-order
formulation.

The proof is straightforward. Consider the two formulations separately, and impose
on the second-order formulation identical auxiliary conditions to those of the first-order
formulation. In particular, just like the simple example given in § 1.1, the second-order
formulation requires additional auxiliary conditions over and above those applied to
the first-order formulation. These include initial conditions making Ri(xk, 0) = 0 and
R4(xk, 0) = 0 for all xk ∈ V ∪ ∂V , along with boundary conditions making Ri(xk, t) = 0,
Ri,j(xk, t) = 0 and R4(xk, t) = 0 for all xk ∈ ∂V and all times t. By supposition, the
auxiliary conditions applied to the two formulations are identical, so it suffices to show
that (ui, p) satisfies the governing field equations (3.4), (3.5) of the first-order formulation
(Ri = 0 and R4 = 0) everywhere in V and at all times if and only if (ui, p) satisfies the
Euler–Lagrange equations (3.9), (3.10) of the second-order formulation everywhere in V
and at all times.

Suppose first that (ui, p) satisfies the governing field equations (3.4), (3.5) of the
first-order formulation everywhere in V and at all times. Then Ri = 0, R4 = 0, and (ui, p)

is a trivial solution to the Euler–Lagrange equations (3.9), (3.10) of the second-order
formulation.

Conversely, suppose that (ui, p) satisfies the Euler–Lagrange equations (3.9), (3.10)
of the second-order formulation everywhere in V and at all times. We note that (Ri =
0,R4 = 0) constitutes an equilibrium solution of the Euler–Lagrange equations (3.9),
(3.10). Thus, because the initial conditions are chosen such that Ri(xk, 0) = 0 and
R4(xk, 0) = 0 for all xk ∈ V ∪ ∂V , and because the boundary conditions are chosen such
that Ri(xk, t) = 0, Ri,j(xk, t) = 0 and R4(xk, t) = 0 for all xk ∈ ∂V and all times t, then
Ri and R4 will remain identically zero everywhere in V for all future times. Thus, (ui, p)

satisfies the governing field equations (3.4), (3.5) of the first-order formulation everywhere
in V and at all times. This completes the proof, and we have established that the two
formulations are equivalent.

4. Hamiltonian formulation of the problem

We are now ready to proceed with the Hamiltonian formulation of the problem. The
Lagrangian L∗ has a corresponding Hamiltonian

H∗ =
∫

d3x(H∗), (4.1)
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with the Hamiltonian density H∗ obtained from the Lagrangian density L∗ via the
Legendre transform

H∗ = πiu̇i + π4ṗ − L∗ = πiu̇i + π4ṗ − 1
2RiRi − 1

2R4R4. (4.2)

Again, this H∗ has nothing to do with the total mechanical energy of the system, although
it is a conserved quantity, since H∗ = 0 for the actual motion – just as in the example of
§ 1.1. In order to write down Hamilton’s equations, we must express H∗ in terms of the
fields and the conjugate momenta, eliminating u̇i and ṗ.

Observe that Ri = πi/ρ̂, and ignoring for the moment the incompressible limit, we may
write R4 = π4/ρ̂

′ (ρ̂′ /= 0). In this way, using the functional expressions for the residuals
given by (3.4) and (3.5), we find that

u̇i = 1
(ρ̂)2 πi − 1

ρ̂

(
ρ̂ui,juj + p,i − μui,jj − (μ + λ)uj,ji − ρ̂bi

) ; (4.3)

ṗ = 1
(ρ̂′)2 π4 − 1

ρ̂′
(
ρ̂′p,iui + ρ̂ui,i

)
, ρ̂′ /= 0; (4.4)

and

H∗[ui, p, πj, π4; xk, t] = 1
2

1
(ρ̂)2 πiπi − 1

ρ̂
(ρ̂ui,juj + p,i − μui,jj − (μ + λ)uj,ji − ρ̂bi)πi

+ 1
2

1
(ρ̂′)2 π4π4 − 1

ρ̂′ (ρ̂
′p,iui + ρ̂ui,i)π4, ρ̂′ /= 0. (4.5)

Hamilton’s equations (Hamilton 1834, 1835) are as follows:

u̇i = δH∗

δπi
, ṗ = δH∗

δπ4
, (4.6a,b)

π̇i = −δH∗

δui
, π̇4 = −δH∗

δp
, (4.7a,b)

where δH∗/δui, δH∗/δp, δH∗/δπi and δH∗/δπ4 are the Volterra (Volterra 1930)
functional derivatives of H∗ with respect to the field quantities and the conjugate momenta.
Equations (4.6a,b) reproduce (4.3) and (4.4), respectively. Equations (4.7a,b) in turn
reproduce the Euler–Lagrange equations (3.9), (3.10) of the second-order formulation.

We return now to our previous observation concerning the vanishing of the residuals.
While H∗ vanishes for the particular fields (ui, p) that satisfy the governing field equations
(3.4), (3.5) of the first-order formulation, it does not vanish for every conceivable (ui, p).
The latter would imply, according to (4.6a,b), that u̇i ≡ 0 and ṗ ≡ 0, which is not
generally the case. This observation, and the fact that (4.7a,b) faithfully reproduce the
Euler–Lagrange equations (3.9), (3.10) of the second-order formulation, confirm that the
Hamiltonian formulation described above is, in fact, a legitimate reformulation of the
problem. In the following section, we develop the Hamilton–Jacobi theory as it relates to
the present formulation, the goal being to find a canonical transformation to a new set of
fields (φi, φ4) and conjugate momenta for which the Hamiltonian does vanish identically.

To obtain the Hamiltonian for incompressible flow, we set ρ̂′ ≡ 0 from the beginning,
in which case R4 reduces to ρ̂ui,i and π4 vanishes identically, consistent with the fact that
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R4 becomes independent of ṗ. The Hamiltonian density in turn reduces to

H∗ = πiu̇i − 1
2RiRi, ρ̂′ ≡ 0, (4.8)

or, in terms of the conjugate momenta,

H∗[ui, p, πj; xk, t] = 1
2

1
ρ2 πiπi − 1

ρ
(ρui,juj + p,i − μui,jj − ρbi)πi, ρ̂′ ≡ 0, (4.9)

where the density ρ̂ = ρ is a constant and we have used the fact that ui,i = 0.
Hamilton’s equations u̇i = δH∗/δπi, π̇i = −δH∗/δui and 0 ≡ π̇4 = −δH∗/δp still apply
(and reproduce the corresponding equations in the incompressible limit), but ṗ =
δH∗/δπ4 must be replaced by the constraint that ui,i = 0. That the incompressibility
condition should take the place of the pressure equation ṗ = δH∗/δπ4 is consistent with
the well-known result that the pressure usually serves as the Lagrange multiplier for the
incompressibility constraint (Lanczos 1970; Badin & Crisciani 2018).

4.1. Hamilton–Jacobi equation
One of the most significant aspects of the Hamiltonian formalism is that it leads to the
transformation theory of Hamilton (1833, 1834, 1835) and Jacobi (1837, 1842–1843) (see
Whittaker (1904) and Lanczos (1970)), celebrated both for unifying particle mechanics
with wave optics (Hamilton 1833) and for its relationship to the Schrödinger equation
of quantum mechanics (Schrödinger 1926a,b). Here, we will obtain a Hamilton–Jacobi
equation representing the Navier–Stokes problem.

In the context of discrete mechanics, Hamilton’s principal function is obtained as the
solution to the Hamilton–Jacobi equation, which is in turn defined by the functional form
of the Hamiltonian. Hamilton’s principal function provides the generating function for a
canonical transformation to a new set of generalized coordinates and conjugate momenta
for which the Hamiltonian vanishes identically, in which case Hamilton’s equations do, in
fact, become trivial. The new coordinates and their conjugate momenta are simply equal
to their initial values.

In the present context, the role of Hamilton’s principal function is played by a
characteristic functional S∗ = S∗[ui, p, t] (not to be confused with the action S∗, although
they are related; see Appendix A), which is the solution to the following Hamilton–Jacobi
equation:

H∗
[

ui, p,
δS∗

δuj
,
δS∗

δp
; t

]
+ ∂S∗

∂t
= 0, (4.10)

where δS∗/δui and δS∗/δp are the Volterra (Volterra 1930) functional derivatives of S∗
with respect to the field quantities. Interested readers will find the derivation of (4.10)
in Appendix A. Henceforth, we will refer to S∗ as ‘Hamilton’s principal functional’.
Substituting for the conjugate momenta in (4.5), we obtain for the Hamilton–Jacobi
equation∫

d3x
[

1
2

1
(ρ̂)2

δS∗

δui

δS∗

δui
− 1

ρ̂

(
ρ̂ui,juj + p,i − μui,jj − (μ + λ)uj,ji − ρ̂bi

) δS∗

δui

+ 1
2

1
(ρ̂′)2

δS∗

δp
δS∗

δp
− 1

ρ̂′
(
ρ̂′p,iui + ρ̂ui,i

) δS∗

δp

]
+ ∂S∗

∂t
= 0, ρ̂′ /= 0. (4.11)

In contrast to the four original field equations – (3.1) and (3.2) – the Hamilton–Jacobi
equation (4.11) is a single equation in Hamilton’s principal functional S∗. This constitutes
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an equivalent formulation of the problem, as a complete and non-trivial solution to (4.11)
is tantamount to an integration of Hamilton’s equations (4.6a,b) and (4.7a,b) (note that it is
not appropriate to take S∗ ≡ 0 for the same reason that it is not appropriate to take H∗ ≡ 0).
In this way, we have reduced the problem of finding four separate field quantities to that of
finding a single functional in those field quantities. One need only deduce (or even guess)
the general form of S∗ in order to solve the problem. If an analytical expression for S∗
can be obtained, it will lead via canonical transformation to a new set of fields (φi, φ4)
and conjugate momenta which are simply equal to their initial values, giving analytical
expressions for the four original fields (ui, p).

The case of incompressible flow requires care, as ρ̂′ ≡ 0 and ρ̂′ appears in the
denominators of terms in (4.11). Even so, the Hamiltonian formulation remains well posed
in the incompressible limit. Recall that, with ρ̂′ ≡ 0, R4 reduces to ρ̂ui,i, π4 vanishes
identically and the Hamiltonian density reduces to (4.9). Substituting for the conjugate
momenta πi in (4.9), the corresponding Hamilton–Jacobi equation is∫

d3x
[

1
2

1
ρ2

δS∗

δui

δS∗

δui
− 1

ρ
(ρui,juj + p,i − μui,jj − ρbi)

δS∗

δui

]
+ ∂S∗

∂t
= 0, ρ̂′ ≡ 0,

(4.12)

with δS∗/δp = 0, since again π4 vanishes identically for incompressible flow. Here, the
merit of starting from the compressible form of the equations becomes fully evident, as
it would not necessarily have been clear that δS∗/δp should vanish in the incompressible
limit without knowing that in general π4 = ρ̂′R4. This is the form of the Hamilton–Jacobi
equation as it relates to the traditional Navier–Stokes problem. In this case, the pressure
is determined last of all, and is whatever it needs to be to enforce the incompressibility
constraint ui,i = 0 (again consistent with the role of pressure as Lagrange multiplier
Lanczos 1970; Badin & Crisciani 2018).

It must be acknowledged that the Hamilton–Jacobi equation developed above (either
(4.11) for the compressible case or (4.12) in the incompressible limit) contains Volterra
(1930) functional derivatives and is thus by no means trivial to solve. Indeed, it appears
that solving such equations is itself a long-standing open problem in mathematics, which
has received very little attention since the first half of the twentieth century (Michal
1926; Jordan & Pauli 1928; Levy 1951; Tatarskii 1961; Syavavko & Mel’nichak 1974;
Dieudonne 1981; Koval’chik 1993). Nevertheless, if a rigorous theory of such equations
can be developed, the present formulation of the Navier–Stokes problem might be solved
as one special case. The present authors submit that such an endeavour is worthwhile and
merits further study.

We conclude this section by remarking that, in the inviscid limit (μ = λ = 0), all
of the preceding formalism remains perfectly well posed. In that limit, the present
approach yields a mathematically equivalent second-order formulation of the inviscid
Euler equations, as one would expect. Interested readers will find the full details in
Appendix B.

5. Discussion

In this section we provide some qualitative interpretations of the developments of § 3.
More specifically, we investigate the incompressible form (via constant, uniform density)
of the Euler–Lagrange equations (3.9) and (3.10) when the residuals Ri and R4 are
substituted.

Our motivation is again the simple example of § 1.1 for which the first-order
non-Hamiltonian system v̇ = −v was converted to the second-order Hamiltonian system
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v̈ = v by (manual) elimination of the non-conservative ‘damping’ term v̇ (see Sanders
(2022) for a similar result for the damped harmonic oscillator converting from
second-order to fourth-order dynamics). Sanders (2023b) showed that the elimination
process is ‘automated’ by the definition of the action in the first integral of (1.3), which is
generalized to the action in (3.3) for our current continuum dynamics problem containing
fields.

First consider the pressure equation (3.10) and corresponding natural boundary
condition (3.15), which take the following incompressible forms:

−Ri,i = 0 ∀xj ∈ V, subject to Rini = 0 ∀xj ∈ ∂V . (5.1)

This higher-order field equation is simply the divergence of the residual Ri. Upon
substituting for Ri from (3.1) and subsequently imposing the incompressible continuity
condition ui,i = R4/ρ = 0 from (3.2), we obtain

p,ii = −[ρujui,j],i + ρbi,i, (5.2)

which is a Poisson equation for the pressure. The boundary condition is a Neumann type
requiring the specification of the normal pressure gradient, nip,i = p,n ≡ f (xj, t), on the
boundary, where

f (xj, t) = −ni[ρu̇i + ρujui,j − μui,jj − ρbi]. (5.3)

Equation (5.2) and boundary condition (5.3) evolve the pressure in a manner that ensures
the velocity field is solenoidal. This is a well-known pressure–velocity-based formulation
commonly used in the numerical solution of incompressible flows (e.g. Ferziger & Peric
2002; Pozrikidis 2009).

Next, we consider the velocity equations (3.9) which, at present, have a more elusive
physical interpretation. Here, we instead begin with the natural boundary conditions (3.13)
and (3.14), which are due to the δui and δui,j variations. The incompressible versions of
these equations are

ρRiujnj + μRi,jnj = 0 and − μRinj = 0 ∀xj ∈ ∂V . (5.4a,b)

The boundary conditions involving the residual Ri are those compatible with the
first-order Navier–Stokes equations, such as the no-slip and no-penetration conditions.
Indeed, if we specify the velocity vector of the actual motion on the boundary, then Ri ≡ 0
there. Note that the pressure of the actual motion on the boundary will be known from the
simultaneous solution of (5.2).

However, the gradient terms Ri,j will introduce up to third-order spatial derivatives
that must be specified. These represent the additional boundary conditions that must
accompany the higher-order governing equation, which will be seen shortly to be second
order in time and fourth order in space. Again, recall the example of § 1, whereby the
system (1.2a–c) must be appended with a second (initial) condition specifying the (time)
derivative of the coordinate v(t). In the present context, these boundary conditions are
ostensibly tantamount to specification of the viscous stress on the boundary by way of
velocity gradients.

In general, the conditions at a boundary require two transition relations (Batchelor 2000;
White 2006) to ultimately describe the momentum transport. Mathematically speaking,
these conditions are the jump in velocity (momentum intensity) and the jump in stress
(momentum flux). Under ordinary physical circumstances the velocity and stress are
assumed to be continuous. However, this is one particular form of the transition relations,
and there are familiar examples to which they do not apply. For example, at a liquid–gas
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interface the stress relation is modified to account for a non-zero jump in the normal
stress that is balanced by a force due to surface tension (the tangential stress component
usually still taken to be continuous). Similarly, in the event that molecular slip occurs,
the typical transition relation gives an expression for the slip velocity (e.g. Thompson &
Troian 1997; Thalakkottor & Mohseni 2016). In the case of energy transport, analogous
conditions are needed regarding jumps in temperature (intensity) and heat flow (flux),
which are recognized as the concept of thermal contact resistance.

We now turn our attention to the Euler–Lagrange equations (3.9), which upon imposing
incompressibility and expanding derivatives of product terms yields

ρṘi + ρujRi,j = ρRjuj,i − μRi,jj ∀xj ∈ V . (5.5)

The left-hand side is the material derivative of the residual Ri. Our purpose here is to
observe which terms from the first-order Navier–Stokes equation are ‘eliminated’ in the
higher-order formulation. Specifically, we are interested in the non-conservative viscous
terms; while the body force bi could also be non-conservative, we will not concern
ourselves with this possibility. Direct substitution of Ri into (5.5) generates many terms,
but it is found that only one is cancelled: the viscous Laplacian of the (time derivative of
the) velocity, namely μu̇i,jj. This term mutually appears from the ρṘi and −μRi,jj terms
in (5.5). To maintain notional clarity, we write the residual as

Ri = ρu̇i − μui,kk + R̃i, (5.6)

where index k has been used to avoid confusion with gradient operators in (5.5) having
index j, and R̃i = ρukui,k − ρbi are the remaining terms in the residual. Substituting the
above into the first and last terms of (5.5), cancelling the aforementioned μu̇i,jj term and
then dividing out by the density gives

ρüi + ˙̃Ri + ujRi,j = Rjuj,i − ν[−μui,kkjj + R̃i,jj], (5.7)

where ν = μ/ρ is the kinematic viscosity (recall that all variables are non-dimensional).
We see that this equation is second order in time and fourth order in space. Viscous
terms still appear in the equation including second- and third-order spatial derivatives.
Nevertheless, the technique detailed by Sanders (2023b) and employed here evidently
ensures that (5.7) has a corresponding Hamiltonian structure.

6. Case study

We can explore how this method can be applied by considering a simplified example with
a known field solution. In looking at the variety of cases in which the Navier–Stokes
equations have a known analytical solution, the simplest are those involving steady flows.
While the Euler–Lagrange equations (3.9), (3.10) can be written for these cases, the
corresponding Hamilton–Jacobi equation is trivial because for steady flows the fields are
already equal to their initial values.

It is therefore worthwhile to examine the simplest unsteady flows, which should result
in a non-trivial Hamilton–Jacobi equation. Indeed, there exists a class of flows for which
the Navier–Stokes equations take the same simplified form: those in which the flow is
incompressible and unidirectional (Batchelor 2000). This class of problems include both
of Stokes’s flows (Stokes 1851), in which a semi-infinite fluid is influenced by a boundary
moving in its own plane. In the first of these cases, the boundary is impulsively started and
in the second, the boundary oscillates. We can also include developing flow in a channel or
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pipe. The only difference between these flows results from initial and boundary conditions,
but the Navier–Stokes equations and therefore the present Hamilton–Jacobi equation take
the same form.

Here we will examine the case in which there is motion only in the x1 direction, and
the velocities take the form {ui} = {u1(x2, t), 0, 0}. In the absence of a body force, our
pressure gradient in the x1 direction is solely a function of time and the pressure gradients
in the x2 and x3 directions are zero. There are thus only two unknown field quantities:
u1(x2, t) and p(x1, t), where p is linear in x1. The field equation of primary interest is

R1 ≡ ρu̇1 + p,1 − μu1,22 = 0, (6.1)

and the remaining field equations are satisfied automatically by the assumed form of the
fields. Following the procedure described above, the momenta conjugate to u1 and p are
given by

π1 ≡ ρR1, π4 ≡ 0. (6.2a,b)

This results in a Hamiltonian density given by

H∗ = 1
2

1
ρ2 π1π1 − 1

ρ
( p,1 − μu1,22)π1. (6.3)

Hamilton’s principal functional S∗ = S∗[u1, p, t] can be expressed as an integral over x2
only, since the other spatial coordinates do not appear and may be integrated out. In this
way, we may write the Hamilton–Jacobi equation as follows:∫

dx2

[
1
2

1
ρ2

δS∗

δu1

δS∗

δu1
− 1

ρ
( p,1 − μu1,22)

δS∗

δu1

]
+ ∂S∗

∂t
= 0, (6.4)

with δS∗/δp = 0. The solution to (6.4) would provide a canonical transformation to a new
set of coordinates, giving analytical expressions for (u1, p).

Despite knowing the analytical solution for these fields in this particular example,
the present authors have not been able to solve this Hamilton–Jacobi equation, since
again the solution of such equations is itself an open problem (Michal 1926; Jordan &
Pauli 1928; Levy 1951; Tatarskii 1961; Syavavko & Mel’nichak 1974; Dieudonne 1981;
Koval’chik 1993). This example therefore appears to be a good place to start for tackling
the general problem. Another interesting example to consider might be a two-dimensional
Taylor–Green vortex such as that considered by Wu, Ma & Zhou (2006).

7. Conclusion

This paper has presented a novel Hamiltonian formulation of the isotropic Navier–Stokes
problem for both compressible and incompressible fluids. This canonical formulation
opens several previously unexplored avenues toward a final resolution of the problem,
which we briefly describe below.

Perhaps the most obvious route would be to solve the Hamilton–Jacobi equation – either
(4.11) for the compressible case or (4.12) for the incompressible case – for Hamilton’s
principal functional S∗[ui, p, t] directly. If a complete solution for S∗ can be found, it will
lead via canonical transformation to a new set of fields which are equal to their initial
values, thereby giving analytical expressions for the original velocity and pressure fields.
Alternatively, if one can simply establish based on emerging analytical techniques that
a complete solution to this Hamilton–Jacobi equation does (or does not) exist under the
usual assumptions, that will also settle the question of existence of solutions.
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An alternative strategy might be to investigate the corresponding Lagrangian
formulation based on the action S∗ as given by (3.3). Because the first- and second-order
formulations are mathematically equivalent (recall the proof in § 3.2), S∗ must have
as many local minima as there are solutions to the traditional, first-order formulation.
Intuitively, it seems as though it ought to be possible to determine – or at least to
establish bounds on – the number of critical points an action has based on the form of
the Lagrangian (Van den Berg & VanderVorst 2002; Kalies & VanderVorst 2004). If one
can establish that, under the usual assumptions, S∗ always has exactly one local minimum,
or else demonstrate that there are cases where it fails to achieve a local minimum, that too
will resolve the question of existence and uniqueness.

By no means is either of the above programs trivial. As pointed out in § 4.1, solving
equations containing Volterra (1930) functional derivatives is itself a long-standing open
problem in mathematics, which has received very little attention since the first half of the
twentieth century (Michal 1926; Jordan & Pauli 1928; Levy 1951; Tatarskii 1961; Syavavko
& Mel’nichak 1974; Dieudonne 1981; Koval’chik 1993). One might even go so far as to
call it a ‘forgotten’ open problem (as did one of the reviewers of the present paper, who
generously drew our attention to Jordan & Pauli 1928; Levy 1951; Tatarskii 1961; Syavavko
& Mel’nichak 1974; Dieudonne 1981; Koval’chik 1993). We see the lack of work on such
equations as a challenge, yes, but at the same time we also see it as a significant opportunity
for advancing the field of analytical continuum mechanics. Perhaps, despite an apparent
increase in complexity, a rigorous theory of such equations can be developed after all, in
which case the present formulation of the Navier–Stokes problem might be solved as one
example. We submit that, at the very least, such an endeavour merits further study, which
we intend to continue in future work.

Finally, it is worth noting that the techniques employed here are by no means specific
to the Navier–Stokes problem, nor are they restricted to the field of classical mechanics.
The suitably averaged principle of least squares (Sanders 2021, 2022, 2023a,b; Sanders
& Inman 2023) can be applied to any traditionally non-Hamiltonian dynamical system
in order to formulate a mathematically equivalent higher-order Hamiltonian system. It is
believed that this fundamental result will also find uses in other branches of pure and
applied mathematics.
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Appendix A. Derivation of the Hamilton–Jacobi equation

In what follows, it is important to distinguish between two sets of solutions: solutions to
the second-order Euler–Lagrange equations (3.9) and (3.10), and solutions to the first-order
field equations (3.4) and (3.5). The latter are a subset of the former, but not vice versa.

We define Hamilton’s principal functional S∗[ui, p, t] as

S∗[ui, p, t] ≡
∫ t

t0
dt(L̃∗), (A1)

where t is the current (variable) time, t0 is an arbitrary initial time and L̃∗ denotes
the Lagrangian (3.6) evaluated for fields satisfying the second-order Euler–Lagrange
equations (3.9) and (3.10) – not necessarily the first-order field equations (3.4) and (3.5).
Crucially, because the fields do not necessarily satisfy the first-order field equations, it is
not appropriate to take S∗ ≡ 0. We imagine that the time integral has already been carried
out, so that the functional S∗ may be regarded as an integral over V , that is

S∗[ui, p, t] =
∫

d3x(s∗), (A2)

where s∗ is the Lagrangian density (3.7) evaluated for fields satisfying the second-order
Euler–Lagrange equations (which will be denoted L̃∗) integrated over time from t0 to t.

Starting from (A1) and evaluating the first variation of S∗ as we did with the action S∗
in § 3, we find that

δS∗ =
∫

d3x
[
πiδui + π4δp

]t
t0
, (A3)

where we have used the fact that the second-order Euler–Lagrange equations (3.9) and
(3.10) are satisfied by definition and we have also enforced the natural boundary conditions.
But, by the definition of Volterra (1930) functional derivatives, we have that

δS∗ =
∫

d3x
[
δS∗

δui
δui + δS∗

δp
δp

]
. (A4)

In this way, we may identify the conjugate momenta with the functional derivatives of S∗:

πi = δS∗

δui
, π4 = δS∗

δp
. (A5a,b)

Now, starting from (A1) and evaluating the time derivative, we find that

dS∗

dt
= L̃∗ =

∫
d3x

(L̃∗). (A6)
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But, by the chain rule,

dS∗

dt
= ∂S∗

∂t
+

∫
d3x

[
δS∗

δui
u̇i + δS∗

δp
ṗ
]

. (A7)

In this way, we find that∫
d3x

[
δS∗

δui
u̇i + δS∗

δp
ṗ − L̃∗

]
+ ∂S∗

∂t
= 0. (A8)

Here, the integral is simply the Hamiltonian H∗, with the conjugate momenta replaced
by the functional derivatives in accordance with (A5a,b). Hence, we arrive at the
Hamilton–Jacobi equation

H∗
[

ui, p,
δS∗

δuj
,
δS∗

δp
; t

]
+ ∂S∗

∂t
= 0, (A9)

as claimed in (4.10).

Appendix B. Inviscid flow

In this appendix, we consider what becomes of the present formulation in the inviscid
limit, i.e. upon setting the viscosities μ = λ = 0. While this is a relatively simple exercise,
it is of interest by virtue of its relationship to the classical Euler equations, which of course
are already conservative and so do not require a higher-order formulation to put them in
Hamiltonian form (Olver 1982).

The vanishing of viscous forces affects the residuals of the momentum balance
equations

R̄i[uj, p, ρ; xk, t] ≡ ρu̇i + ρui,juj + p,i − ρbi = 0, (B1)

where we are using a bar to distinguish the inviscid residuals (R̄i) from their more general
forms given in (3.1). Applying the equation of state ρ = ρ̂( p), we obtain

R̄i[uj, p; xk, t] ≡ ρ̂u̇i + ρ̂ui,juj + p,i − ρ̂bi = 0. (B2)

The residual R4 of the mass balance is unaffected by viscous effects and will remain as it
was in the main text.

The Lagrangian density is now

L̄∗[uj, p; xk, t] = 1
2R̄iR̄i + 1

2R4R4, (B3)

and the associated Euler–Lagrange equations are as follows:

δui : − ∂

∂t
(ρ̂R̄i) − ∂

∂xj
(ρ̂R̄iuj) + ρ̂R̄juj,i + ρ̂′R4p,i − ∂

∂xi
(ρ̂R4) = 0, (B4)

δp : ρ̂′R̄iu̇i + ρ̂′R̄iui,juj − R̄i,i − ρ̂′R̄ibi + ρ̂′′R4ṗ

− ∂

∂t
(ρ̂′R4) + ρ̂′′R4p,iui − ∂

∂xi
(ρ̂′R4ui) + ρ̂′R4ui,i = 0. (B5)

Again, all four Euler–Lagrange equations are second order in time, as they involve time
derivatives of the residuals. This is a mathematically equivalent second-order formulation
of the inviscid Euler equations, as claimed in the main text.
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The momenta conjugate to the velocities ui are now

π̄i ≡ ρ̂R̄i, (B6)

and the momentum π4 conjugate to the pressure p remains as it was in the main text. For
compressible flows, the resulting Hamiltonian density takes the form

H̄∗[ui, p, π̄j, π4; xk, t] = 1
2

1
(ρ̂)2 π̄iπ̄i − 1

ρ̂
(ρ̂ui,juj + p,i − ρ̂bi)π̄i

+ 1
2

1
(ρ̂′)2 π4π4 − 1

ρ̂′ (ρ̂
′p,iui + ρ̂ui,i)π4, ρ̂′ /= 0. (B7)

Once again, the higher-order Hamiltonian has nothing to do with the total mechanical
energy of the system, but rather vanishes for the actual motion ( just as it does in the case
of viscous flows). With this Hamiltonian density, Hamilton’s equations assume the usual
canonical form

u̇i = δH̄∗

δπ̄i
, ṗ = δH̄∗

δπ4
, (B8a,b)

˙̄πi = −δH̄∗

δui
, π̇4 = −δH̄∗

δp
, (B9a,b)

where H̄∗ denotes H̄∗ integrated over the volume V . Equations (B9a,b) reproduce
the Euler–Lagrange equations (B4) and (B5). In the case of incompressible flows, the
Hamiltonian density reduces to

H̄∗[ui, p, π̄j; xk, t] = 1
2

1
ρ2 π̄iπ̄i − 1

ρ
(ρui,juj + p,i − ρbi)π̄i, ρ̂′ ≡ 0. (B10)

Hamilton’s equations u̇i = δH̄∗/δπ̄i, ˙̄πi = −δH̄∗/δui and 0 ≡ π̇4 = −δH̄∗/δp still apply,
but ṗ = δH̄∗/δπ4 must be replaced by the constraint that ui,i = 0, once again consistent
with the fact that the pressure serves as Lagrange multiplier for the incompressibility
constraint (Lanczos 1970; Badin & Crisciani 2018).

The Hamilton–Jacobi equation

H̄∗
[

ui, p,
δS̄∗

δuj
,
δS̄∗

δp
; t

]
+ ∂ S̄∗

∂t
= 0 (B11)

assumes the following forms for compressible and incompressible flows, respectively:∫
d3x

[
1
2

1
(ρ̂)2

δS̄∗

δui

δS̄∗

δui
− 1

ρ̂
(ρ̂ui,juj + p,i − ρ̂bi)

δS̄∗

δui

+ 1
2

1
(ρ̂′)2

δS̄∗

δp
δS̄∗

δp
− 1

ρ̂′ (ρ̂
′p,iui + ρ̂ui,i)

δS̄∗

δp

]
+ ∂ S̄∗

∂t
= 0, ρ̂′ /= 0, (B12)

and ∫
d3x

[
1
2

1
ρ2

δS̄∗

δui

δS̄∗

δui
− 1

ρ
(ρui,juj + p,i − ρbi)

δS̄∗

δui

]
+ ∂ S̄∗

∂t
= 0, ρ̂′ ≡ 0, (B13)

where in the latter case we have δS̄∗/δp = 0, since π4 vanishes identically for
incompressible flow.

The second-order formulation described above is fundamentally different from –
although again still mathematically equivalent to – the classical Hamiltonian formulation
of the first-order Euler equations (Olver 1982).
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