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Abstract For a closed set E contained in the closed unit interval, we show that the big Lipschitz algebra
Λγ(E) (0 < γ < 1) is sequentially weak∗ generated by its idempotents if and only if it is weak∗ generated
by its idempotents if and only if the little Lipschitz algebra λγ(E) is generated by its idempotents, and
we describe a class of perfect symmetric sets for which this holds. Moreover, we prove that Λ1(E) is
sequentially weak∗ generated by its idempotents if and only if E is of measure zero. Finally, we show
that the quotient algebras

Aβ/Jβ(E)
weak∗

of the Beurling algebras need not be weak∗ generated by their idempotents, when E is of measure zero
and β � 1

2 .
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1. Introduction

A commutative Banach algebra B is said to be generated by its idempotents if the algebra
S of all linear combinations of idempotents in B is norm dense in B. In [8], we showed that
a certain condition on a closed set E contained in the closed unit interval I is equivalent
to the ‘little’ Lipschitz algebra λγ(E) (0 < γ < 1) being generated by its idempotents.
Since the linear combinations of idempotents in λγ(E) are exactly the simple functions,
the result can also be considered as a characterization of the closed sets E ⊆ I for which
every function in λγ(E) can be approximated by simple functions.

In this paper, we continue this investigation, but in the context of weak∗ topologies.
Suppose that B is the dual space of a Banach space and thus is equipped with a weak∗

topology. We say that B is weak∗ generated by its idempotents if S is weak∗ dense in B,
and that B is sequentially weak∗ generated by its idempotents if S is sequentially weak∗
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dense in B. The dual spaces that we shall be concerned with are the ‘big’ Lipschitz
algebras and the Beurling algebras.

2. Lipschitz algebras

For a closed set E ⊆ I and 0 < γ � 1, let Λγ(E) be the Lipschitz algebra of functions f

on E for which

pγ(f) = sup
{

|f(t) − f(s)|
|t − s|γ : t, s ∈ E, t �= s

}
< ∞.

With the norm
‖f‖Λγ(E) = ‖f‖∞ + pγ(f) (f ∈ Λγ(E))

(where ‖ · ‖∞ is the uniform norm on E), it is easily seen that Λγ(E) is a Banach algebra
with character space E. For 0 < γ � 1, let λγ(E) be the closed subalgebra of Λγ(E) of
functions f satisfying

|f(t) − f(s)| = o(|t − s|γ)

uniformly as t − s → 0.
In this paper, we shall make use of the fact that Λγ(E) (0 < γ � 1) is a dual space.

For t ∈ E, let δt ∈ Λγ(E)∗ be the point evaluation functional at t, and let

Yγ(E) = span{δt : t ∈ E}

(norm closure in Λγ(E)∗). Johnson [2, Section 4] proved that

Yγ(E)∗ = Λγ(E)

via the duality 〈ϕ, f〉 = 〈f, ϕ〉 (ϕ ∈ Yγ(E), f ∈ Λγ(E)). Since ‖δt − δs‖Yγ(E) � |t − s|γ
for t, s ∈ E, it follows that Yγ(E) is separable. On bounded subsets of Λγ(E), the
weak∗ topology is thus metrizable (see, for example, [1, Theorem V.5.1]) and agrees
with the topology of pointwise convergence on E. When 0 < γ < 1, we further have
Yγ(E) = λγ(E)∗ and thus Λγ(E) = λγ(E)∗∗ [2, Theorem 4.7]. For γ = 1, this can be
shown to hold exactly when E is of measure zero (see the proof of Proposition 2.3
and [13, Theorem 3.3.3]).

We now turn our attention to the idempotents in Λγ(E). For a closed set E ⊆ I, let
S(E) be the linear span of the idempotents in Λγ(E). A function in Λγ(E) belongs to
S(E) if and only if it assumes only finitely many values on E, so in particular S(E) ⊆
λγ(E). For x, y ∈ E, let

ρE,γ(x, y) = sup{|f(x) − f(y)| : f ∈ S(E) and pγ(f) � 1}.

For a closed set E ⊆ I, we proved in [8, Theorem 3.3] that λγ(E) (0 < γ < 1) is generated
by its idempotents if and only if ρE,γ(x, y) = |x − y|γ for every x, y ∈ E.
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In [8, Proposition 3.1], we observed that Λγ(E) is not generated by its idempotents
when E ⊆ I is an infinite, closed set. It therefore seems natural to study the problem
in the weak∗ topology. As in [8, Proposition 1.1], it is easily seen that E is totally
disconnected if Λγ(E) is weak∗ generated by its idempotents.

Following Weaver [11], we say that a subalgebra B of Λγ(E) separates points uniformly
(in Λγ(E)) if there exists a constant M such that, for every x, y ∈ E, there exists f ∈ B
with |f(x) − f(y)| = |x − y|γ and pγ(f) � M . In particular, S(E) separates points
uniformly if and only if there exists a constant C > 0 such that ρE,γ(x, y) � C|x − y|γ
for every x, y ∈ E. Using the order structure of Λγ(E), Weaver (see [11, Theorem B] and
also [13, Corollary 4.1.9]) proved that if B is a weak∗ closed subalgebra of Λγ(E) which
separates points uniformly, then B = Λγ(E).

We do not know (but doubt) whether multiplication is weak∗ continuous in Λγ(E), so in
order to conclude that the weak∗ closure of S(E) is closed under multiplication, we shall
need the following transfinite induction. For a subspace B of Λγ(E), let B(1) be the sequen-
tial weak∗ closure of B. Inductively, for a non-limit ordinal α, let B(α) = (B(α−1))(1),
and for a limit ordinal α, let B(α) =

⋃
α′<α B(α′). A theorem of Banach (see, for exam-

ple, [1, Theorem V.12.10]) asserts that there exists a countable ordinal α such that B(α)

equals the weak∗ closure of B. Now, suppose that B is an algebra. On bounded subsets
of Λγ(E), the weak∗ topology agrees with the topology of pointwise convergence on E,
so it follows that B(1) is an algebra. Also, an increasing union of algebras is again an
algebra, so we deduce that the weak∗ closure of B is an algebra.

Applying this to B = S(E), it follows from Weaver’s result that if S(E) separates
points uniformly, then Λγ(E) is weak∗ generated by its idempotents. Moreover, we shall
see that in this case Λγ(E) is actually sequentially weak∗ generated by its idempotents.
Weaver’s result (that is, the implication (d) ⇒ (b)) is the main part of the following
result. We link it to generation of λγ(E) by its idempotents and prove that the condition
that S(E) separates points uniformly can be formally weakened. In Theorem 2.5, we
shall see that this allows us to handle the case left open in [8] concerning certain perfect
symmetric sets.

Theorem 2.1. For 0 < γ < 1 and a closed set E ⊆ I, the following conditions are
equivalent.

(a) λγ(E) is generated by its idempotents.

(b) Λγ(E) is weak∗ generated by its idempotents.

(c) Λγ(E) is sequentially weak∗ generated by its idempotents.

(d) There exists a constant C > 0 such that ρE,γ(x, y) � C|x − y|γ for every x, y ∈ E

(that is, S(E) separates points uniformly).

(e) There exists a constant C > 0 such that ρE,γ(x, y) � C|x − y| for every x, y ∈ E.

Moreover, conditions (c) and (d) are also equivalent for γ = 1.

Proof. We prove the implications (a) ⇒ (c) ⇒ (d) ⇒ (e) ⇒ (b) ⇒ (a).
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(a) ⇒ (c). Let f ∈ Λγ(E) and extend f to a function g ∈ Λγ([0, 2π]) with g(2π) = g(0).
For n ∈ N, let σn(g) be the nth Fejér sum of g. It follows from [4, p. 64] or [9, Corollary 2.3
and pp. 150, 151] that σn(g) → g weak∗ in Λγ([0, 2π]) as n → ∞. Moreover, fn =
σn(g)|E ∈ λγ(E) for n ∈ N and (fn) is a bounded sequence in Λγ(E) with fn → f

pointwise on E as n → ∞, so we deduce that fn → f weak∗ in Λγ(E) as n → ∞. Since
S(E) is norm dense in λγ(E), the conclusion follows.

(c) ⇒ (d). For x ∈ E, let fx(t) = |x−t|γ(t ∈ E). Then {fx : x ∈ E} is a bounded set in
Λγ(E), so it follows from a theorem of Banach (see, for example, [1, Theorem V.12.11])
that there exists a constant M such that, for every x ∈ E, there exists a sequence (fxn)
in S(E) satisfying fxn → fx weak∗ in Λγ(E) as n → ∞ and pγ(fxn) � M for n ∈ N. For
x, y ∈ E, we have fxn → fx pointwise on E as n → ∞, so |fxn(x) − fxn(y)| → |x − y|γ
as n → ∞. Hence

ρE,γ(x, y) � M−1|x − y|γ ,

which proves the implication.

(d) ⇒ (e). This implication is obvious.

(e) ⇒ (b). There exists a constant M such that, for every x, y ∈ E, there exists
g ∈ S(E) with |g(x) − g(y)| = |x − y| and pγ(g) � M . Since the polynomials are weak∗

dense in Λγ , it suffices to show that τ belongs to the weak∗ closure of S(E). However, we
shall prove that every function f ∈ Λ1(E) belongs to the weak∗ closure of S(E), since
we will need this below for the case γ = 1. We have

I \ E =
∞⋃

n=1

Vn,

where (Vn) are pairwise-disjoint, open intervals in I, and for N ∈ N, we have

I \
N⋃

n=1

Vn =
N⋃

n=0

[xNn, yNn],

where yNn < xN,n+1 (n = 0, . . . , N − 1). For n = 0, . . . , N , we choose gNn ∈ S(E) with
gNn(xNn) = 0, gNn(yNn) = yNn − xNn and pγ(gNn) � M . We then define fN ∈ S(E)
by

fN =
f(yNn) − f(xNn)

yNn − xNn
gNn + f(xNn) on [xNn, yNn] (n = 0, . . . , N),

and let hN = fN − f . Then hN (xNn) = hN (yNn) = 0 for n = 0, . . . , N , so it follows that

pγ(hN ) � 2 max
n=0,...,N

pγ(hN |[xNn,yNn]).

Since pγ(fN |[xNn,yNn]) � Mp1(f) for n = 0, . . . , N , we thus have pγ(hN ) � 2(M+1)p1(f).
Moreover, it is easily seen that max{yNn − xNn : n = 0, . . . , N} → 0 as N → ∞, so

‖hN‖∞ � pγ(hN ) max
n=0,...,N

(yNn − xNn) → 0

as N → ∞. Hence fN → f weak∗ in Λγ(E) as N → ∞. Since Λ1(E) is weak∗ dense in
Λγ(E) (see the proof of (a) ⇒ (c)), the implication follows.
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(b) ⇒ (a). Let ϕ ∈ λγ(E)∗ = Yγ(E) and suppose that ϕ ⊥ S(E). Since Yγ(E)∗ =
Λγ(E), it follows from (b) that ϕ = 0, so we deduce that S(E) is norm dense in λγ(E),
as required.

For γ = 1, the proof of the implication (c) ⇒ (d) remains valid, and the reverse
implication follows from the proof of the implication (e) ⇒ (b). �

Remark 2.2. It follows from the comment after Theorem 1.4 in [12] that condition (d)
is equivalent to the local condition that, for every x ∈ I, there exist constants Cx, δx > 0
such that ρE,γ(x−δ, x+δ) � Cxδγ for 0 � δ � δx, and it is easily seen that condition (e)
can be ‘localized’ in the same way.

In the case γ = 1, we can simplify the previous theorem.

Proposition 2.3. Let E ⊆ I be a closed set. Then S(E) separates points uniformly
in Λ1(E) if and only if E is of measure zero.

Proof. If E is of measure zero, then it follows from Lemma 2.3 (iii) in [8] that
ρE,1(x, y) = |x − y| for every x, y ∈ E, so S(E) separates points uniformly in Λ1(E).
Conversely, if E is of positive measure, then

m([t − δ, t + δ] \ E)
δ

→ 0 as δ → 0

(where m is the Lebesgue measure on I) for almost every t ∈ E [10, p. 141]. Since
ρE,1(x, y) � m([x, y] \ E) for every x, y ∈ E with x � y, it follows that S(E) does not
separate points uniformly in Λ1(E). �

Combining the proposition with Theorem 2.1 immediately gives us the following result.

Theorem 2.4. Let E ⊆ I be a closed set. Then Λ1(E) is sequentially weak∗ generated
by its idempotents if and only if E is of measure zero.

We do not know whether there exists a closed set E ⊆ I of positive measure for which
Λ1(E) is weak∗ generated by its idempotents. For the little Lipschitz algebras, it follows
from Proposition 2.3 and [13, Theorem 4.4.2] that λ1(E) is generated by its idempotents
when E is of measure zero. Moreover, it is easily seen that λ1(E) is generated by its
idempotents when E is a finite union of closed intervals, but this still leaves open the
question of whether there exists a totally disconnected set E of positive measure for
which λ1(E) is generated by its idempotents.

2.1. Perfect symmetric sets

In [8], we showed that the class of closed sets E ⊆ I for which λγ(E) (0 < γ < 1) is
generated by its idempotents strictly contains the class of closed sets of measure zero and
is strictly contained in the class of closed, totally disconnected sets. This was done partly
by considering the following perfect symmetric sets. (For full details, see [5, Chapter I]
or [8].)
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Let ξ = (ξn) be a sequence with 0 < ξn < 1
2 for n ∈ N and let

Eξ =
{ ∞∑

n=1

εnξ1 · · · ξn−1(1 − ξn) : εn = 0 or 1 for n ∈ N

}
.

Then Eξ is a perfect, closed set with empty interior and Lebesgue measure

m(Eξ) = lim
n→∞

2nξ1 · · · ξn.

We have

Eξ =
∞⋂

n=1

En = I \
∞⋃

n=1

Vn,

where En =
⋃2n

k=1 Enk and En1, . . . , En2n are disjoint, closed intervals each of length
ξ1 · · · ξn, and where Vn =

⋃2n−1

k=1 Vnk and Vn1, . . . , Vn2n−1 are disjoint, open intervals each
of length ln = ξ1 · · · ξn−1(1 − 2ξn). We denote by Vn· (respectively, En·) any one of the
Vnk (respectively, Enk).

When ξn = 1
2 (1 − 2−an) for n ∈ N for some a > 0, we write E(a) for Eξ. Observe that

m(E(a)) > 0 and that

ln = 2−(n−1)(1 − 2−a) · · · (1 − 2−a(n−1))2−an � 2m(E(a))2−(a+1)n

for n ∈ N. For 0 < γ < 1, we showed in [8, Examples 3.6 and 3.15] that if γ(a + 1) < 1,
then λγ(E(a)) is generated by its idempotents, whereas if γ(a + 1) > 1, then λγ(E(a))
is not generated by its idempotents. It follows from Theorem 2.1 that these results also
hold for (sequential) weak∗ generation of Λγ(E(a)) by its idempotents. For γ(a+1) < 1,
the proof of [8, Example 3.15] consists of verifying (a stronger version of) condition (d)
from Theorem 2.1. We shall now show that condition (e) holds for the case γ(a+1) = 1,
and hence that [8, Example 3.15] extends to this case. We have not been able to verify
directly the formally stronger condition (d) in this case.

Theorem 2.5. Let 0 < γ � 1. Then λγ(E(a)) is generated by its idempotents if and
only if γ(a + 1) � 1.

For γ = 1, this result follows from the previous theorem, and as mentioned above,
for γ(a + 1) �= 1, the result follows from [8]. To prove the remaining case, γ < 1 and
γ(a + 1) = 1, we need the following two lemmas.

Lemma 2.6. Let 0 < γ < 1 and let E ⊆ I be a closed set. Let 0 � x0 < x1 < · · · <

xN � 1 be points in E. Suppose that there exists a constant C > 0 such that

ρE,γ(xn, xn+1) � C(xn+1 − xn) (n = 0, . . . , N − 1).

Then

ρE,γ(x0, xN ) � C(C + 4)−1(xN − x0).
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Proof. For n = 0, . . . , N − 1, choose fn ∈ S(E) with fn(xn) = Cxn, fn(xn+1) =
Cxn+1 and pγ(fn) � 2, and define f ∈ S(E) by f = fn on [xn, xn+1] (n = 0, . . . , N − 1).
Let s ∈ [xm, xm+1] and t ∈ [xn, xn+1] with m < n. Then

|f(t) − f(s)| � |f(t) − f(xn)| + |f(xn) − f(xm+1)| + |f(xm+1) − f(s)|
� 2((t − xn)γ + (xm+1 − s)γ) + C(xn − xm+1)

� (4 + C)(t − s)γ .

Hence pγ(fn) � 4 + C. Since fn(xN ) − fn(x0) = C(xN − x0), the conclusion follows. �

The next lemma is similar to [8, Example 3.15]. For n ∈ N and 1 � k � 2n−1, write
Vnk = (ank, bnk) with bnk < an,k+1 (1 � k � 2n−1 − 1). Then

s(n, k) = min{bnk2 − ank1 : 1 � k1, k2 � 2n−1 and k2 − k1 = k}

is the minimum distance spanned by k of the intervals Vn·. For notational convenience,
we let

ρE,γ(F ) = ρE,γ(x, y)

for a closed interval F = [x, y] with x, y ∈ E.

Lemma 2.7. Let 0 < γ < 1 and let a be such that γ(a + 1) = 1. Then there exists a
constant C > 0 such that

ρE(a),γ(Ep·) � Cm(Ep·)

for p ∈ N.

Proof. Let p ∈ N and let F = [0, ξ1 · · · ξp]. Let n � p + 1 and let fn be a continuous
function which is linear with increase 2−(n−p−1)m(F ) on each Vnk (1 � k � 2n−p−1) and
is constant on the contiguous intervals. Then fn ∈ S(E) and fn(ξ1 · · · ξp)−fn(0) = m(F ).
It follows from [8, Lemma 3.7] that

pγ(fn) = max
{

(k + 1)2−(n−p−1)m(F )
s(n, k)γ

: 0 � k � 2n−p−1 − 1
}

� 2 max
{

(k + 1)2−n

s(n, k)γ
: 0 � k � 2n−p−1 − 1

}
.

We have
2−n

s(n, 0)γ
=

2−n

lγn
� (2m(E(a)))−γ .

Let 1 � m � n − p − 1. It follows from [8, Lemma 3.11] that

2m−n

s(n, 2m − 1)γ
=

2m−n

(ξ1 · · · ξn−m−1(1 − 2ξn−m · · · ξn))γ

� 2m−n

(2n−m−2m(E(a)))γ
�

(
4

m(E(a))

)γ

.
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Also, for 2m−1 � k � 2m − 1, we have

s(n, k)
k

� s(n, 2m − 1)
2m − 1

by [8, Lemma 3.13]. Hence

(k + 1)2−n

s(n, k)γ
� 2m+1−n s(n, k)1−γ

s(n, 2m − 1)

� 2m+1−n

s(n, 2m − 1)γ
� 2

(
4

m(E(a))

)γ

.

Consequently, pγ(fn) � 2(4/m(E(a)))γ , which finishes the proof. �

We can now give the following proof.

Proof of Theorem 2.5. Let F ⊆ I be a closed interval. First, suppose that there
exists Vnk such that m(Vnk ∩ F ) � m(F )/3. Then

ρE(a),γ(F ) � ρE(a),γ(Vnk ∩ F ) = m(Vnk ∩ F )γ � m(F )γ/3γ � m(F )/3γ .

Conversely, if m(Vnk ∩ F ) < m(F )/3 for every Vnk, then there exist Vn1k1 , Vn2k2 ⊆ F

with bn2k2 − an1k1 � m(F )/3. With N = max{n1, n2} and U = (an1k1 , bn2k2), we have

U =

( ⋃
EN·⊆U

EN ·

)⋃( ⋃
n�N,
Vn·⊆U

Vn·

)
,

as in [8, Example 3.15]. This is a finite union and ρE(a),γ(Vn·) = m(Vn·)γ � m(Vn·) for
n ∈ N, so it follows from the two previous lemmas that

ρE(a),γ(F ) � ρE(a),γ(U) � C(C + 4)−1m(U) � 1
3C(C + 4)−1m(F ).

Hence λγ(E(a)) is generated by its idempotents by Theorem 2.1. �

3. Beurling algebras

Let T be the unit circle and let

f̂(n) =
1
2π

∫
T

f(eit)e−int dt (n ∈ Z)

be the Fourier coefficients of a function f ∈ L1(T). For β � 0, let Aβ be the Beurling
algebra of functions f on T for which

‖f‖Aβ
=

∞∑
n=−∞

|f̂(n)|(1 + |n|)β < ∞.

Then Aβ is a Banach algebra of continuous functions on T.
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For a closed set E ⊆ T, consider the ideals

Iβ(E) = {f ∈ Aβ : f = 0 on E},

Jβ(E) = {f ∈ Aβ : f = 0 on a neighbourhood of E}.

It follows from [6, Corollary VIII.5.7] that Jβ(E) ⊆ I ⊆ Iβ(E) for every closed ideal I

in Aβ with E as hull (that is, E = {z ∈ T : f(z) = 0 for every f ∈ I}). For β < 1
4 , it

is known [3, p. 65] that synthesis fails in Aβ , that is, there exists a closed set E ⊆ T

for which Jβ(E) is not norm dense in Iβ(E). We do not know whether this extends to
1
4 � β < 1.

Observe that the quotient algebra Aβ/Iβ(E) can be identified with the restriction
algebra

Aβ(E) = {f ∈ C(E) : there exists g ∈ Aβ : f = g|E}.

Zouakia [14, Corollaire 5.13] proved that Aβ/Jβ(E) (and thus Aβ(E)) is generated by
its idempotents whenever E is of measure zero and β < 1

2 . In Corollary 2.8 and the
comment on p. 1122 of [8], we proved that this result is optimal in the sense that, for
β � 1

2 , there exists a closed set E of measure zero such that Aβ/Jβ(E) is not generated
by its idempotents.

The algebra Aβ is a dual space, and, for β > 0 and a closed set E ⊆ T, we shall see
that Jβ(E)

weak∗

and Iβ(E) are weak∗ closed ideals in Aβ . It immediately follows from
Zouakia’s result that the Banach algebra Aβ/Jβ(E)

weak∗

is sequentially weak∗ generated
by its idempotents whenever E is of measure zero and 0 < β < 1

2 . We shall show that,
for β � 1

2 , there exists a closed set E of measure zero such that Aβ/Jβ(E)
weak∗

is not
weak∗ generated by its idempotents.

We write PMβ (pseudomeasures with weight (1 + |n|)β) for the dual space of Aβ . For
T ∈ PMβ and n ∈ Z, let

T̂ (n) = 〈e−int, T 〉.
This identifies PMβ with the set of all sequences (T̂ (n)) for which

‖T‖PMβ
= sup

n∈Z

|T̂ (n)|
(1 + |n|)β

< ∞,

and

〈f, T 〉 =
∞∑

n=−∞
f̂(n)T̂ (−n)

for f ∈ Aβ and T ∈ PMβ . Let PFβ (pseudofunctions with weight (1 + |n|)β) be the
closed subspace of PMβ of those T ∈ PMβ for which

T̂ (n)
(1 + |n|)β

→ 0 as |n| → ∞.

Then

〈T, f〉 =
∞∑

n=−∞
f̂(n)T̂ (−n) (T ∈ PFβ , f ∈ Aβ)

identifies Aβ with the dual space of PFβ and thus induces a weak∗ topology on Aβ .
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It is well known that PMβ is a Banach Aβ-module via the action

〈f, gT 〉 = 〈fg, T 〉 (f, g ∈ Aβ , T ∈ PMβ).

We also have the following lemma.

Lemma 3.1. Let β � 0. Then PFβ is a closed Aβ-submodule of PMβ .

Proof. For m ∈ Z, define ξm ∈ PFβ by 〈ξm, f〉 = f̂(m)(f ∈ Aβ). Then f̂ ξm(n) =
f̂(n+m) for f ∈ Aβ and n ∈ Z, so we deduce that Aβξm ⊆ PFβ . Since span{ξm : m ∈ Z}
is dense in PFβ , the result follows. �

Corollary 3.2. For β � 0, multiplication is separately weak∗ continuous in Aβ .

Proof. Let (fi) be a net in Aβ converging weak∗ to 0. For g ∈ Aβ and T ∈ PFβ , we
have

〈T, fig〉 = 〈fig, T 〉 = 〈fi, gT 〉 = 〈gT, fi〉 → 0,

since gT ∈ PFβ by the previous lemma. Hence fig → 0 weak∗, which proves the result.
�

Let T ∈ PMβ . As usual, we define the support of T (suppT ) in the sense of distribu-
tions, that is, as the complement of the largest open set U ⊆ T for which 〈f, T 〉 = 0 for
every f ∈ C∞(T) with supp f ⊆ U . For a closed set E ⊆ T, let

PMβ(E) = {T ∈ PMβ : suppT ⊆ E}.

Also, for a subset X ⊆ Aβ , let

X⊥ = {T ∈ PMβ : 〈f, T 〉 = 0 for every f ∈ X},

⊥X = {T ∈ PFβ : 〈T, f〉 = 0 for every f ∈ X}.

It follows from [3, p. 29] that

PMβ(E) = (Jβ(E))⊥,

so PMβ(E) is the dual space of the quotient algebra Aβ/Jβ(E).
For a closed set E ⊆ T, let

PFβ(E) = PMβ(E) ∩ PFβ .

Then
PFβ(E) = (Jβ(E))⊥ ∩ PFβ = ⊥(Jβ(E))

and thus
(PFβ(E))⊥ = Jβ(E)

weak∗

.

For ε > 0 and z ∈ T, let fε(z) = (1−z)/(1+ε−z). It is easily seen that fε → 1 weak∗ in
A0 as ε → 0. In particular, I0({1}) is not weak∗ closed in A0. In the weighted algebras,
the situation is different.
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Proposition 3.3. Let β > 0 and let E ⊆ T be a closed set. Then

Jβ(E)
weak∗

and Iβ(E)

are weak∗ closed ideals in Aβ .

Proof. It follows from the previous corollary that Jβ(E)
weak∗

is an ideal. For z ∈ T,
define Tz ∈ PFβ by T̂z(n) = z−n(n ∈ Z). Then

〈Tz, f〉 = f(z) for f ∈ Aβ .

Hence weak∗ convergence in Aβ implies pointwise convergence on T, so we deduce that
Iβ(E) is weak∗ closed. �

It follows that

Aβ(E) = (⊥(Iβ(E)))∗,

Aβ/Jβ(E)
weak∗

= (PFβ(E))∗

are dual spaces as well as Banach algebras with E as their character space. We shall need
the following version of [8, Proposition 2.7].

Proposition 3.4. Let β > 0 and let E ⊆ T be a closed set. Suppose that there exists a
non-zero measure µ with support contained in E such that µ̂(n) = o(|n|β−1) as |n| → ∞.
Then

Aβ/Jβ(E)
weak∗

is not weak∗ generated by its idempotents.

Proof. In the proof of [8, Proposition 2.7], we showed that

0 �= µ′ ∈ PMβ(E) = (Aβ/Jβ(E))∗

(where µ′ is defined in the sense of distributions), and that 〈e, µ′〉 = 0 for every idem-
potent e in Aβ/Jβ(E). Our condition on µ implies that µ′ ∈ PFβ(E), so 〈µ′, e〉 = 0 for
every idempotent e in Aβ/Jβ(E)

weak∗

, which proves the result. �

Using the Ivasěv–Musatov Theorem (or Körner’s improvement thereof), we can now
prove our result.

Theorem 3.5. For β � 1
2 , there exists a perfect, closed set E ⊆ T of measure zero

such that
Aβ/Jβ(E)

weak∗

is not weak∗ generated by its idempotents.
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Proof. It follows from [7, Theorem 1.1 or Theorem 1.2] that there exists a perfect,
closed set E ⊆ T of measure zero and a non-zero measure µ with support contained in
E such that

µ̂(n) = O((|n| log |n|)−1/2) = o(|n|β−1)

as |n| → ∞. The result thus follows from the previous proposition. �

For β � 1
2 , we do not know whether there exists a closed set E ⊆ T of measure zero

for which Aβ(E) is not weak∗ generated by its idempotents. If weak∗ synthesis holds,
that is, if

Jβ(E)
weak∗

= Iβ(E)

for every closed set E ⊆ T, then this is of course the case, but we suspect that weak∗

synthesis fails.
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