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ABSTRACT

Probabilities of ruin are solutions of differential or integrodifferential equations.
Solving such equations numerically can be performed by means of approximate
quadrature formulae for the convolution part of the equation. In this contribution
it is shown how applicable recursion formulae, giving results within a prescribed
tolerance level, can be obtained. Some numerical results are displayed.
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1. INTRODUCTION

Gerber (1982) introduced a method for approximating the distribution of aggre-
gate claims and their corresponding stop-loss premium by means of a discrete
compound Poisson distribution and its corresponding stop-loss premium. This
discretization is an important step in the numerical evaluation of the distribution
of aggregate claims, because recent results on recurrence relations for prob-
abilities by PANJER (1981) and SUNDT and JEWELL (1981) only apply to discrete
distributions. The discretization technique is efficient in a certain sense, because
a properly chosen discretization gives raise to numerical upper and lower bounds
on the stop-loss premium, giving the possibility of calculating the numerically
estimates for the error on the final numerical results. For calculating the infinite
time ruin probability numerically one has to solve the following integral equation,
according to GERBER (1979):

(1) <M*) = - [ Mc-y)( l -F(y))dy+-f (\-F(y))dy
c Jo c J

with

(2)
c

and where

(3) p=\ (1-F(y))dy.
Jo

* We would like to thank the referees for some remarks on an earlier draft of the paper.
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In the sequel we write h(x) for

(4) h{x)=\ (l-F(y))dy

such that h (0)= p.
In fact, for solving equation (1), use could be made of a discretization technique

for approximating the integrals in the equation in order to get a system of linear
equations in the unknown probabilities i/>(xi), iM*2), • • •» "A0O- However, not
every discretization.js effective to get numerically stable results, on the contrary
the propagation of the error induced by the discretization technique provides
us, in general, with unstable numerical results. In this contribution we will derive
an efficient discretization technique which allows us to calculate t{/(x) numerically
within a given tolerance by means of a stable recusive algorithm. As by-product
of the method an estimate for the error in the numerical result is obtained.

2. AN EFFICIENT DISCRETIZATION FOR THE CONVOLUTION INTEGRAL

In the sequel we define the convolution product by

<p*H(x)=[ <p{x-y)dH(y)
Jo

where the integral is taken over the closed interval. The iterative procedure for
calculating numerically the infinite time ruin probabilities is based on the follow-
ing result:

THEOREM. The function i// (denoting the infinite time ruin probability) is a
solution of the equation

(5) 4,*{p-h) = p(l + JiW-h.

In that equation or in any equivalent equation replace (h,p) by (ho,Po) and let
</f0 be the corresponding solution. Then i/f =£ «̂ 0(«A ^ >Po) if h0 is decreasing h0 > 0,
and hip *s ho/po{h/p s* ho/po)-

PROOF. See appendix.

COROLLARY. In case p = p0 the inequality condition of the theorem reduces to

REMARKS. For the proof of the theorem to hold it is not necessary that h0

can be written as ho{x) = £° (1 -F0{x)) dx where Fo is a distribution function.
In this extended version of the theorem, we do not have the additional

assumption ho(O) = p. Indeed, h(0) = p, so in order to get an upper bound we
have to suppose p =s ho{0) and in order to get a lower bound we have to suppose
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The theorem, or another version of it, has given us a possibility to obtain
analytical upper and lower bounds on infinite time ruin probabilities in case of
constraints on claim size distribution, as explained in GOOVAERTS and D E
VYLDER (1983). Now it will enable us to deduce numerical bounds on infinite
time ruin probabilities because an application of the theorem will provide us
with a stable recursive algorithm. Our aim consists in calculating >{f(x). In order
to obtain numerical upper and lower bounds (to obtain an error estimate) the
following procedure is applied. The underlying motivation of it follows directly
from an inspection of figure 1 and an application of the theorem.

FIGURE 1.

Practical Procedure

(i) Consider the following subdivision of the interval [0, x]

(ii) As indicated in fig. 1 we consider
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Consequently

h(y)»h,(y) Vy^O.

(iii) Let ipu(x) be the solution of

( A P 1 \ A / A P 1 \ i f '

1-—)=-(l-—)M*)-- *'u(k-y)hu(y)dy.
C I C \ C I C Jo

Because hu(y) is a piecewise constant function, the integral appearing in the
r.h.s. can be worked out as follows: let k =j{x/n), then:

This equation can be cast into the form:

nl c \ nl c ,=i L V n) \ n

We also get, proceeding along the same lines,

with of course

(8) ^ ( 0 ) = <A,(0) = —.
c

Starting from (8) we calculate recursively by means of (6) and (7) the couple
(il/u(j(x/n)), (/f;(/(x/rt)) for; = 1, 2 , . . . , n to obtain two approximations to tj/(x),
namely (^!,"'(*), 4>\n\x) where we added explicitly the index n to denote the
dependence on n. The following inequalities are obtained

(9) 4>\n\x)^4'(x)^il>in)(x).

Also from the result of the above quoted theorem we conclude that

(Apn) (x) is not decreasing in n

J^IT'CX) is not increasing in n

Hence i/r(x) can be approximated by
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with an upper bound for the error given by

In order to obtain a result within a prescribed tolerance level e, n is chosen
large enough such that

and n=2k {k integer).
In order to examine the stability of the numerical procedure, in fact, in order

to examine the propagation of errors induced by this recursive algorithm, we
suppose that tp(x/n),..., tp((j-l)x/n) are calculated with an error e\,..., e;-i.
Let e = max {ei , . . . , e;_i} then the error e, on ift{j(x/n)) is bounded by:

Consequently there is no cumulative effect of propagation of errors. Let us
compare the kind of recursion relation with the recursive algorithm of PANJER
(1981) and SUNDT and JEWELL (1981) for the calculation of the distribution
function of a compound Poisson variable, where

A v -t
1 '=i

In case A is relatively small no problem arises as far as the propagation of errors
is concerned.

In case A is relatively large however (and this is exactly the case where it is
interesting to apply such kind of a scheme) the recursive algorithm is unfortu-
nately not very stable as far as the propagation of errors is concerned. Indeed
let ei, . . . , Ej-\, Ej, denote the errors on g i , . . . , g, respectively. In case e =
max ( e i . . . , e,-i) then

^ A v -t A

7 i = i /

Consequently as long as / < A the upper bound of the error behaves like

which of course can cause a lot of unexpected difficulties in actual application
of the recursion algorithm.

3. ILLUSTRATION OF THE METHOD

In VAN WOUWE, D E VYLDER and GOOVAERTS (1982) the present results are
successfully applied to the numerical calculation of bounds on infinite time ruin
probabilities in case of constraints on claim size distributions. Use has been
made of some of the analytical upper and lower bounds on stop-loss premiums.
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Let us still remark that the rate of convergence of the recursive algorithm is
determined by the rate of convergence to zero of the ruin probability when
x-+oo. Therefore we have selected an application which from the numerical
point of view has a relatively low speed of convergence.

We consider the case of Pareto claims, Fx(x) = 1 -1 / (1 +x)2, p = 1, r\ = 0.2
and of course h(x) = 1/(1 +x). The following results are obtained.

Upper Bound

n ^^\^

20
40
80
160

10 50 100

0.455529 0.193577 0.119406
0.449979 0.164704 0.087263
0.439944 0.153144 0.076432
0.439944 0.148211 0.072358

Lower Bound

^ ^ \ ^ X

n ^^^^

20
40
80
160

10 50 100

0.411083 0.121643 0.058221
0.422112 0.129821 0.061631
0.428309 0.135709 0.064429
0.431619 0.139413 0.066421

APPENDIX: PROOF OF THE TH E O R E M

Use will be made of the following result well known from renewal theory:

LEMMA. / / H is a strictly defective distribution function and if f is bounded,
then the renewal equation

(Al) £=f+{xH

has a unique bounded solution g. Iff^O, then £ 2* 0. Iff^O, then f «£ 0.

By means of one partial integration the equation (1) can be cast into the form

(A2) ifr*(p-h)

This relation can still be displayed as:

(A3) p-p(l + r1)il,

By the definition of <̂ 0, we still have

(A4) Po-
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From (A3) and (A4) we deduce

Then the above mentioned lemma can be applied with

(A6) f = a-<l>o)*(h/p-ho/p)/(l + v).

Then of course / is bounded. Moreover because h/p s* /to/Po we have / 5* 0. The
function H is a distribution function (it is increasing and H 3= 0), in fact it is a
strictly defective distribution function because H(oo) = 1/(1+ 17). Hence the
result of the theorem follows.
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