
A SINGULAR BOUNDARY VALUE PROBLEM FOR A 
NON-SELF-ADJOINT DIFFERENTIAL OPERATOR 

R. R. D. K E M P 

If (x2 + l)*g(x) Ç Ll{— oo, oo) the differential expression l(y) = — y" 
+ g(x)y generates a closed operator L on L2(— °°, oo), with domain D 
consisting of those functions y Ç L2 with absolutely continuous derivatives 
and such that l[y) £ L2. The case where g(x) is real-valued has been extensively 
investigated and yields an expansion of a n y / Ç L2 in terms of the characteristic 
functions of L. We shall investigate the case where g is complex-valued. 

We shall find that there is a function W(s), analytic for Im s > 0 and 
continuous for Im s > 0, such that the squares of its zeros in Im s > 0 con
stitute a bounded set which is the point spectrum of L. The continuous 
spectrum of L is the set of X > 0. In proving an expansion theorem real zeros 
of W cause difficulties and it is necessary to assume (Case II) that W has 
only a finite number of zeros in Im s > 0. The simplest form of the expansion 
is obtained if W has no real zeros except possibly at 5 = 0, and this must be 
a simple zero (Case I). 

Naimark (2) has considered the same differential operator on [0, » ) with 
a boundary condition at 0 and obtains similar results. He uses a modification 
of a technique for singular self-adjoint problems (1, chap. 9), while we shall 
use a modification of the Cauchy Integral technique used for non-singular 
non-self-adjoint problems (1, chap. 12) and for general self-adjoint prob
lems (3). 

In § 1 we investigate the properties of certain solutions of l(y) = \y and 
introduce W(s). We construct the Green's function and investigate the 
spectrum of L in § 2. An expansion of the Green's function for the general 
case is given in § 3, while in § 4 and § 5 we deal with Cases I and II respec
tively. 

1. Solutions of l(y) = \y. We shall set X = s2 and denote Re s by a and 
Im s by r. Also X̂  will denote the root of X with 0 < argX^ < T and K will 
denote any constant whose value is unimportant. 

It is easily seen by using variation of constants that a solution of l(y) — s2y 
will satisfy an integral equation of the form 
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(1.1) y(x) = Cle
isx + c* 

isx 

e 
~2is 

isx s*x —isx s*x 

and conversely. In estimating solutions of (1.1) we shall make frequent use 
of the following lemma, which we state without proof. 

LEMMA 1.1. If <j> and \[/ are piecewise continuous functions on [a, ft] and x is 
integrable and non-negative on [a, b] then 

implies 

and 

implies 

*(*) < iK*) + Ja x (?)*(£) d£, x 6 [a, ft], 

4>(x) < Hx) + j x(f)lKf) exp [ fxWdu] d£, x e [a, ft], 

4>(x) < *(*) + j x(f)*tt) d£, x 6 [a, ft], 

*(*) < iK*) + f x (*)*(*) exp [ f x(u)du] d£, x e [a, 6]. 
*s X *J X 

LEMMA 1.2. The solutions y {x, s) of (1.1) withci = — c2 = l/2is, x\ = x2 = 0, 
awd y(#» s) °/ (1-1) w ^ Ci = C2 = %, Xi = X2 = 0 exist for all x and s, and 
for any fixed x are entire, and even functions of s. 

As this result follows from well-known theorems we omit the proof. We 
note that y and y satisfy the initial conditions 

n9s y(fl,s)=0 y'(0,s) = l 
U - Z ; 5(0,5) = 1 y'(0,s)=0 

and that a modification of Lemma 1.1 yields the following estimates: 

/i o\ i / M ^ K\x\e TX . ( v , 1 1 i£[xj \ |T2| 

(i.3) iy(*. s)l<nn^î ' | y (*' s ) l <V1 + îTkir • 
LEMMA 1.3. The solutions y\(x, s) of (1.1) withci = 1, c2 = 0, xi = x2 — °°, 

and ^2 (x, s) of (1.1) 7£̂ & c\ — 0, c2 = 1, xi = x2 = — °° exisJ /or a// x and 
for T > 0. For any jfoced x /&e;y are continuous in s for r > 0 and analytic in 
s for T > 0. 

Proof, We shall prove the result for yi(x, s) only as the proof for y2(x, s) 
is similar. Setting <£o(x, s) = 0 and 

*B+1(x, 5) = e<SI - I " S Î n ${* " { ) «(*)*,({, 5) # 

and using the inequality 

^ff^<X|x |e | T l l ( l+ \sx\y1 
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A NON-SELF-ADJOINT DIFFERENTIAL OPERATOR 4 4 9 

we see that the successive approximations exist for all x and for r > 0. For 
fixed x, (t>n(x, s) is continuous in s for r > 0 and analytic in s for r > 0. An 
induction yields 

\4>n+1(x, s) - $n(x, 5)| < [ X Jj\g{i)\dije'n/nl 

for x > 0. This implies the uniform convergence of the successive approxi
mations for x > 0, r > 0. An application of Lemma 1.1 proves the uniqueness 
and when we define 

yi(x, s) = yi(0, s)y(x, s) + y^O, s)y(x, s) 

for x < 0 the regularity follows from the uniform convergence for x > 0 and 
from the known properties of y(x, s) and y(x, s). The fact that the integral 
equation is also satisfied for x < 0 follows from a few manipulations with 
the definition of yi(x, s) for x < 0. 

Applying Lemma 1.1 yields estimates on yi(x, s) and y2(x, s) which allow 
us to draw certain conclusions about the asymptotic behaviour of these two 
solutions: 

(1.4) \yi(x, s)\ < e x p [ - rx +Kf~Z\g(i)\dZj , x > 0, 

(1.5) \yi(x, s) | < exp[ - rx + -~ J j g t t ) I ^ J , s * 0, 

(1.6) b2(x, 5) | < exp[rx + K J |£g($) |df J , x < 0, 

(1.7) \y2(x, 5) | < exp[rx + | i | £ \g(i) | # J , 5 ^ 0 . 

LEMMA 1.4. 77^ solutions yi(x, s) and y2(x, s) have the following asymptotic 
behaviour: 

(1.8) y^x, 5) = eïs*(l + o(l)), yi'(x, s) = eisx(is + o(l)) a s x - > « . 

(1.9) y i (* f s ) = ^ l + o ( i ) ) , y i ' ( x > 5 ) = w ^ l + o ( i ) ) a s M - > » . 

(1.10) y2(x,s) = e'isx(l + o(l)), y2'(x, s) = e~isx(-is + o(l)) a s x - * - » . 

(1.11) ?,(*, 5) = * - i w ( l + o ( j ) ) f ?,'(*, ^) = - ise-isx(l + o ( j ) ) 

as |s| —> °°. 

Formulas (1.8) and (1.10) AoW uniformly in s for r > 0 and (1.9) awd (1.11) 
A0W uniformly in x, for all x. 

Proof. For (1.8) and (1.10) we use (1.4) and (1.6) respectively in the 
appropriate form of (1.1) and its derivative. For (1.9) and (1.11) we use 
(1.5) and (1.7) respectively in the same way. 
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LEMMA 1.5. The Wronskian W(s) = yiji1 — Jijz is not identically zero, and 
can be calculated from the formulas 

Xoo 

e~isxg(x)y1(x1 s) dx 
-co 

/»co 

= — 2is + I elsxg(x)y2(x1 s) dx. 
«/-co 

Proof. It follows immediately from the regularity properties of yi and y2 
that W(s), which is independent of x, is continuous in 5 for r > 0 and analytic 
in s for r > 0. Direct computation with the integral equations defining y\ 
and J2 yields 

(1.12) w{s) = ~2is + £ eUii®y*&s) <* 

Xco 

e-isig(ï)yi(ï, s)d£ + R 

where 

| * | = - f°°sin 5(* " f ) g(£)yi({, 5) # • | " cos 5(x - {)g(t)y,(£, 5) di 
I t/a- o «/-co 

+ f"cos s(x - $)g(É)yi(É, s) # • f S1" * (* ~ { ) gtt)y,tt, 5) # 

<i!i[Jjg(^ | exp(r'i/r ig (M) l"M)^] 
{Jjgtt) |exp(^jjjg(«) |d«) # ] 

= 2|s|[exp(|^Jjg(«)|d«) - 1]-[exp(|^Jj«(«)ld«) - !J-

Here (1.5) and (1.7) have been used and it now follows that for 5 9^ 0 
lim R= lim R = 0. 
£->co £->—co 

Using (1.4) and (1.6) we see that 1^(0, s)\ < K and |y/(0, s)| < X + |s| for 
7 = 1, 2 and thus using (1.3) we obtain the further estimates 

\e-ia*yi(x, s)\ <K(1 + \x\), \eisxy2(x, s)\ < K(l + \x\) 

for all x and r > 0. Thus 

and 

/»co 

<Tlsxg(x);yi(x, 5) dx 

« / - c o 

/»co 

J ^+is^(^)^2(x, 5) dx converge uniformly in 5 for r > 0 and thus are continuous functions of s. 
Using this fact and the results about R obtained above it follows that we 
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may take the limit of (1.12) a s x - > œ or as x —> — œ and obtain the desired 
formulas for s ^ 0. The result follows for 5 = 0 by continuity. 

To see that W(s) is not identically zero we note that 

i TO i = J00 

e~tsxg(x)yi(x, s) dx\ 
-co I 

> 2\s\ - J \g(x) |exp( -rrj |g(w) |dwj dx 

= |s|| 3 - exp( r r j \g(u)\du ) J . 

Thus for large \s\, W(s) cannot be zero. 

COROLLARY 1.1. The zeros of W(s) form an at most countable, bounded sub
set of T > 0, with limit points only on the real axis r = 0. 

This follows immediately from the analyticity of W(s) in r > 0 and the 
fact that W(s) = 0 implies 

Joo 

\g(x)\dx. 
-oo 

s < 

We now complete our discussion of the asymptotic behaviour of yi(x, s) 
a n d ^2 (ff, s). 

LEMMA 1.6. 

(1.13) 

(1.14) 

yi(x, s) = e% 

<-^+^) 
*(*.)-.--(-.Sgl + .(i)) 

as x —» — oo 

asx—> + 

uniformly in s for r > 5 > 0. 

Proof. We shall prove only (1.14) as (1.13) is similar. 

3>2(x, 5) = e~isx + 

= e 

= e 

J
x sin 5 (x - « «(«yitt, *) # 

sin s(s — g) 
g(€)y«tt, *) # 

['-X 
+x 

£tt)y«tt, *) # 
X 2is(l-{) "1 

6 ' - ««*.../> „ W * 
2is gfâe'^fcî)^ 

L 2*s " ' " J , 
J'i 
2^«(f)y»tt, *) # 

+ X •2ttVf^.tt,^)«J. 2is 

Now, the integral over the range from x to oo approaches zero as x —» oo 
uniformly in s for r > ô > 0 from the proof of Lemma 1.5, and for x > 0 
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I 
x 2is(x— £) 

«/-co «Js/2 

<£«-** f/2|g(|)|^ + K f | g ( « , 
t / -oo */a;/2 

which certainly approaches 0 as x —> °° . 

2. The Green's Function. If W(s) ^ 0 we may define 

1 fyijx, s)y2& s) £ < x 

THEOREM 2.1. If X is wo/ rea/ and non-negative, and W(X*) 9e 0 /feerc the 
Green's function G(x, £, X) /or Z(y) — Xy = f on the interval — oo < x < oo is 
K(x, J, X*), **a* « , i f / Ç L 2 ( - » , °°) *Ae» y = j™œK(x, £, X*)/ (£)df tefcwgs 
ta D awd l(y) — Xy = f almost everywhere. 

Proof. Let X* = 5 = a + ir as usual. By assumption r > 0 and W(s) 9e 0 
so yi(x, s) and ^ ( x , s) are linearly independent solutions of l(y) = Xy. I t 
follows from variation of constants that the general solution of l{y) — Xy = / i s 

y (a) = ciyi(x, s) + c2y2(x, s) 

/»oo 

= ciyi(tf, ^) + c2y2(x, 5) + i£(x, £, s)/(£) d£, 

where the existence of the integrals is trivial. As \K(x, £, s)| < K exp[ — T\X — £|], 
y(#) = J*^œi£(x, £, 5) / (£)d£ is bounded by the convolution of a function in L1 

and a function in L2. Thus y G L2( — 00 ? 00). As W(s) 7^ 0 it follows from 
(1.14) and (1.15) that 

ciyi(x, s) + c2y2(x, s) $ L2(— 00, œ ) 

unless Ci = c2 = 0. So y is the unique L2 solution of l(y) — Xy = / and y £ D 
follows easily from direct considerations. 

COROLLARY 2.1. L is a closed operator. 

Proof. If yn 6 D, yn—+ y, and Lyn —>/ both in Z,2, then we must show that 
y £ D and Ly = / . As W(s) ^ 0 there is an So = <?o + iro with TO > 0 and 
PF(so) 7̂  0, and we have 

/»oo 

yn(x) = I i£(x, £, 50)[Lyn - s0
2yn] </f. 
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Thus 

y(x) = f K(xy£,so)[f - So2y]d£ 

almost everywhere. 
As the convergence is in L2 we may replace the limit y by an equivalent 

member of L2 so that the above relation is an equality and we have y £ D 
and Ly = / . 

LEMMA 2.1. The adjoint L* of L is the operator with domain D defined for 
y Ç D by 

L*y= -y" + J&)y = l*(y). 

Proof. We first note that if y 6 D then y and yr both tend to 0 as x approaches 
either + °° or — co. This follows from 

y(x) = CK(X, É, s0)[Ly - s0
2y] # for y 6 B. 

«J--co 

Thus if z Ç L2 and there exists s* G L2 such that (Ly, z) = (y, z*) for all 
y (z D then 

(?, 2 * ) - 0<>2y, «) = (y, * * - so2z) 

= J ~ |_ S"K(*> t> so)(Ly(^) - s0
2y(a)) # J (? f r ) - s 0

2 ^ ) ) dx 

= £ (Ly(t) - so2y(H)) [ £ ^ 7 Û ) ( 2 * W - ^s(*))dxj dl 

= (Ly - s0
2y, zi). 

However (Ly — s0
2y> z) = (y, 0*) — (so2y, 2) = (Ly — s0

2y, zi) so 2 = 21 al
most everywhere. Thus the domain D* of L* consists of functions in L2 of 
the form 

JCO 

ÏC(£,x,So)(z*(£) - s o 2 * i ( É ) ) # 
- 0 0 

and L*2i = 2*. This implies that Z\ Ç L>, and an easy calculation shows that 
— 21" + gM^i = 2*, which completes the proof. 

THEOREM 2.2. L&e spectrum of L consists of an at most countable, bounded 
set of characteristic values and a continuous spectrum on the non-negative real 
axis X > 0. 

Proof. If X is not real and non-negative we have seen that X is in the resolvent 
set of L unless WQs£) = 0. If W(\*) = 0, X is obviously a characteristic value 
with characteristic function yi(x, X*). Corollary 1.1 immediately yields the 
statement about the point spectrum except for X = 0. 

If y(x) is a characteristic function for X = 0 then by using a representation 
in terms of the Green's function it is easy to see that y is bounded and approach
es 0 at ± °°. Thus 
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y(x) = - J (x - {)£({)?(£) # 

and using Lemma 1.1 we see that y = 0 and thus X = 0 cannot be a charac
teristic value. 

We see that (L — a2)~l is not bounded for a > 0 by attempting to con
struct y0 Ç L2( — oo, GO) such that 

l(yo)-*y« = \ 0 | x | > a > 

Thus we see that the positive real axis is in the spectrum, and as the spectrum 
is closed zero belongs to the spectrum. 

To see that the residual spectrum is empty we note that it must lie in the 
non-negative real axis and if a2 is in the residual spectrum it is in the point 
spectrum of L*. This would mean that l*(y) = cr2y has a solution belonging 
to L2. Taking the conjugate of this solution we see that a2 lies in the point 
spectrum of L, which contradicts the assumption. 

3. An Expansion of the Green's Function. We shall first use the 
Cauchy Integral to obtain an expansion of the Green's function, and then 
use this to obtain our expansion theorem. 

Let CB>s denote the contour in the s-plane consisting of the straight line 
r = 8 > 0 from a = - (R2 - Ô2)* to a = (R2 - Ô2)*, and the circular arc 
s = Reie from 6 = rj = sin^d/R to 0 = w — rj. We choose 8 and Ro so that 
if X0 is a characteristic value Im \^ 9^ 8 and Ro2 > |X0|; and consider 

(3.1) /».. - f ZÇ^sds 

for R > R0j and X* within the contour. 
In evaluating (3.1) by residues we see that the singularities of the integrand 

occur at s = X*, and at the square roots of the characteristic values. If Xi, 
X2, . . . are the characteristic values arranged in order so that Im Xi* > Im X2* 
> . . . ; we see that for any 8 and R > Ro there is an integer n{8) such that 
Im (Xw(8))* > 8 > Im (Xw(5)+i)*, and the value of IR,Ô is thus independent of 
R for R > Ro. As K(x, £, s) is the ratio of two functions, each of which is 
analytic for r > 0 we see that the singularities at 

must be poles. If we have 
mi 

K(x, £, s) = £ Gv
{i\x, £){s2 - Xi)'* + F(x, £, s) 

for s2 sufficiently close to X* where F is analytic in s at 5 = X**, it is easily 
seen that the residue of the integrand in (3.1) at 5 = X^ is 

mi 

- I E G9
ii>(x,S){\-\t)-*. 

https://doi.org/10.4153/CJM-1958-043-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1958-043-1


A NON-SELF-ADJOINT DIFFERENTIAL OPERATOR 455 

Since the residue at s = X* is JG(x, £, X) we have 
w(5) mi 

(3.2) J B J = «G(*, {, X) - « £ Z G,(<>(*, f)(X - X,)"*. 

Now if we evaluate IBt$ directly we have 

IR'8 ~ J , i?V" - x 
)iR e 

dS 

+ 1, 
<B2_52>i («r + t5)g(«, g, (<r + id)) 

da. 
_(B2_j2)i (a- + id) — X 

Since |if(x, £, s)| <,\K\W(s) |_1exp [— r|£ — x|], and, for |s| sufficiently large, 
\W(s)\ > \s\; we see that 

1 *"'!g(«, g, Rete)iRVie 

R\™ - X 
<Z0 

for i? sufficiently large, and 

(a- + ibf - X < ( 7 2 + l 

Thus we have 

lim IR 
P" ((T + ^) i f (*, {, (<T + #) ) -

, 5 = 1 7Z~T~7^ ^ d<r, 0 + iô)2 - X 

where the integral converges absolutely and uniformly for Im X* > ôi > ô 
and any x, £. Combining this result with (3.2) and the remark that IBit is 
independent of R for R > i£0 we have the following theorem. 

THEOREM 3.1. With the notation introduced above, and under the restrictions 
on ô introduced above, we have 

n(ô) rrij 

(3.3) G(x, & X) = £ E G,<0(*, €)(X - X,)-* 

, JL r (o- + iS)K(x, f, («r + # ) ) _7 

+ x j_ œ (, + i5)2-X ^ 
It will be convenient to write this in a different form, which will exhibit 

the symmetry between L and L*. 

LEMMA 3.1. There are sets of functions xj(i)(x)> I A / ^ M for 3 — 0> 1, 
nii — 1 swcA £to 

(3.4) /(x/4>) - X < x / ° = x & , W / " ) - X,*$° = * & 

/or j = 0, 1, . . . , nii — 1, where x-i(i) — ^-i(i) = 0, awd 

(3.5) 
}-0 
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Also, each Xj(i) and xj/^ is bounded by K exp [— Ti|x|/2] where r* = ItnXf, 
and 

Joo 

-oo 

Proof. Let T(x, £, X) denote the function which is given by y(x} X*)3>(£, X*) 
for £ < x and by y(£, \^)y(x, X*) for x < £. This is trivially an entire function 
of X and G(x, £, X) — T(x, £, X) is of class C2 as a function of # or £. Thus if 
Ci is a circle with centre at X*, enclosing no other points of the spectrum of 
L we see that 

GP
U)(x, t ) = ~ £ (X - ^Y-'lGix, ç, X) - r(x, & X)] dX. 

Zwi J Ci 

From this we see that Gp
(i)(x, £) is of class C2 as a function of x or £, and 

from this it is easily seen that as a function of x, l(Gp
(i)) — XiGp

(t) = Gp+i(l), 
and as a function of £ 

' (G> ) — \iGp = Gp+i , 

where 

Gmi+i = 0. 

From these equations it follows that Gp
{i) can be given in the form (3.5) by 

functions xj(i) and ^ / i } satisfying (3.4). 
Now we also have 

Gp™(x, Ç) = ~~. S (X - Xi)
P"1G(x, É, X) dX, 

from which we see, by taking the radius of Ct sufficiently small, that 
\Gp

{i)(x, £)| < K exp [— Tt\x — £|/2]. Using this and an induction we find that 
Xj(i) and \pj{i) are both bounded by K exp [— TJ |X | /2 ] . In order to prove (3.6) 
we note that 

(j (0 # (*)\ ^ ( ( 0 / (fc)\ i / ( 0 / (*)\ 
( L X ; , Vr ) = Xi(Xy , Wr ) + (Xj-h Wr ) 

and 
/ (0 r* , (fc)\ \ / (0 / (fc)\ . / (0 t(*) \ 
(X; ,L?WT ) = A r (X; , YT ) + (Xj , YV-l), 

so that 
(\ \ \r (0 i(*K / (0 /(*) \ / (0 i (k)\ 
(Ai - K)(Xj , Vr ) = (Xj , YV-l) - CXi-li V'r )• 

From the fact that X-i(i) = t-i(Jc) = 0 it follows that (xo(*\ to(k)) = 0 for 
^ i so an easy induction yields (x/*\ ^r(A:)) = 0 if k ^ i. To deal with the 
case k = i note that 

(* - X)(- Z x£°(*)(x - x^*"'"1) = xf (x); 
\ k=0 / 

and thus 
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- i x*(0(*)(X - A,)*-'-1 = f°°G(x, t, \)x<°(£) dt 

as the right hand side is the unique L2 solution of l{y) — \y = Xj(i) and the 
left hand side is such a solution. Thus 

- £ x^OcXx-xo^'-1 

mi /»oo 

= Z (X - \i)~P G(;\x, Ê)x$°(É) ^ + F(x, X) 
p=l « / - c o 

where F(#, X) is analytic at X = Xt-. From this we have 
mj—p 

E x^Hx^Wit,-*) 
fc=0 

•/-co \Xj+l-p(X) P <J + 1. 

As 

XO , • • • , X m t - l 

are easily seen to be linearly independent we have 

f 0 p>j+l 
(x$°, ^LP-K) = 10 p < j + 1 £ ^ i + 1 - p 

Combining this with the result for functions corresponding to different 
characteristic values we have (3.6). 

We might remark that it can be shown that 

k=o kl d\K 

for suitable constants ak
(i\ and a similar result for \(/j(i). 

4. The Expansion in Case I. In order to obtain an expansion analogous 
in form to that which holds when L is self-adjoint, we must modify the integral 
in (3.3) so that it involves only solutions of l(y) = \y for X > 0. The obvious 
way to do this is to evaluate the limit as <5 —> 0, but this may lead to two 
difficulties: 

(i) n(S) may become infinite and the discrete portion of the expansion may 
diverge. 

(ii) The integral in (3.3) may not exist for 8 = 0 if W has real zeros. 
Although the convergence difficulties do not arise, n($) may become infinite 

even if L is self-adjoint. We shall construct two examples, both with g(x) = 0 
for \x\ > b, to show that W can have real zeros of sufficiently high order that 
the integral in (3.3) will not exist even as a principal value for 5 = 0. 

As g{x) = 0 for |*| > ô, W(s) = - eisb[yi'(- b, s) + isyi(- b, s)] and if 
W is to have a zero of order m at s = s0 we find that we must have 
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y ? v ( - b, so) + *s0y(iB(- *. *>) + iji~\- b, s„) = 0, « = 0, 1 m - 1 

where 
oo 

yi(^i 5) = 23 yiw)(^» *>)($ - s0)
n and ;yi-1) (x, s0) = 0. 

Example 1. Third order zero at 5 = 0. We set y\(x, 0) = eid(x) so that 
g(x) = id"(x) - [6'(x)]2 for |x| < b and require that S € COT, 0 ( - i ) = -%w, 
0(0) = 2TT, 0<n>(- b) = $W(b) = 0 for w > 0, and Jl&sin 20 (*)<£* = 0. 

Example II. Second order zero at s = 1. We set yi(x, 1) = eibf(x) so that 
g(x) = 1 + f"\x)/f{x) for |x| < b and require that f{x) 9^ 0 for |x| < b, 
f W(6) = **,/<»>(- J) = ( - *)»/(- J), / 6 C», and 

[/(- Ô)]2 = - 1 + 2ijU[f(x)Ydx. 

Here we may obtain an explicit f(x) as a polynomial if we do not require that 
g Ç C°° at x = ± by that is, set 

4J»/(*) = 6(2 - * ) [a(x - 6) 2+ (x + &)2] + x(l - iJ) [<x(x - b)2- (x+b)2] 

and choose a so that 

a2 = - 1 + 2*7!»[/(*)]2<k. 

Thus, even if g is a C°° function of compact support, the integral in (3.3 
may still not exist for 5 = 0. We shall now add the assumptions of Case I 
that, for sufficiently small |s|, |W(s)| > K\s\ and that W has no real zeros 
except possibly 5 = 0. 

With these assumptions n (ô) must remain finite as ô —> 0 and we shall 
suppose that n(S) = n (its maximum) for ô < 50. Thus for ô < ô0 the integral 
in (3.3) is independent of ô, and for ô < p 0 the integrand is bounded by 
K(a2 + 1)_1 where K is independent of d. Thus we may set ô = 0 in (3.3) to 
obtain 

n mi 

(4.1) G{x, £, X) = £ E G™{x, MX - ^ r * 

+ _^ . '[aK(x, S, <r) -< rg (* ,g , - « 0 1 ^ 
7T W 0 C7 — X 
_L fœ 

iri Jo 

LEMMA 4.1. T7e toe 

(TX(X, £, ô-) — o-i£(x, f, — <r) 

2icr2 

Proof. From the definition of i£(x, J, a) we have 

o"iT(x, £, a) — aK(x, £, —or) 

___a_____iW{- a)yi(x, <r)y2(f, o-) - T^(o-)^i(x, - o-)y2(S, - <0, £ < * 
' W(<r)W(- a) \W(- er)yi(£, ^ ^ ( x , <r) - WV)yi(£, - cr)y2(*, - cr), X < £. 
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If we denote y^x, ± o)y/(x, ± a) — ?/(#, ± o)yj(x, =fc cr) by W(yi(±cr), 
^ ( i o-)) and note that 

ï ^ ( y i W , y i ( - *)) = - W(y2(a),y2(- a)) = - 2ia, 

then 

and 

yi(x, - IT) = — ^ — ^ yx(x, a) - W^r)y2(x1 + a). 

Thus 

W{- *)yi(x, o-)y2(£, cr) - W(o)yi(x, - <r)y2(ï, - *) 

= 2i<ry1(x, (j)yi(f, - cr) - W(y2(+ a), y ^ - <r))yi(x, a)y2(^ ~ cr) 

- W(yi(- cr), ;y2(+ <r))yi(^, (r)y2(f, - cr) + 2i<ry2(tf, cr);y2(£, ~ ex) 

= 2icr[yi(x, tr)yi(f, - cr) + ;y2(tf, <r)y2(è, - cr)]. 

A similar computation yields the same result for x < £. 

COROLLARY 4.1. G(x, J, X) caw be written in the form 
n mj mj—p 

(4.2) G(*,{,X) = - £ S E x / ( ) W l ^ , ( a ( A - \ l ) - ' 
i = l JJ==1 ^=0 

+ 2 T y 4>i(x,a)0t(t, cr) ^ 
7T t / 0 i = l C7 — X 

where 

<t>i(x, o-) = j ^ y ?<(*, <0 and 0*(x, cr) = ^ . y ^ f e <0-

Here * denotes the corresponding quantity associated with the adjoint equation. 

Proof. As 

yi*(x, a) = e»' - p " L £ J * n i ) ^ ) y i * ( ? ) „) dj 
« / * C7 

it follows immediately that 

yi*(x, o) = yi(x, - a). 

Similarly 

y2*(x, a) = y2(xf - a) 

so 

W*(<r) = W(- a) 

and using these relations with Lemma 4.1 in (4.1) we obtain (4.2). 
We are now in a position to prove an expansion theorem. 
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THEOREM 4.1. / / / 6 Lv for p > 1 then 
n mi—1 

(4.3) /(*) = £ E x/VW.^-i) 
i = l ; = 0 

+(/- x)-1"/® r s ^ ^ p w 
X * / _ œ Jo î==l (7 — A 

almost everywhere, for any X no/ iw /&e spectrum. 

Proof. If / G Z,p for £ > 1 it is easily seen that if X is not in the spectrum 
of L then 

f G(x, f, X)/({) dt 

exists and is the unique I? solution of l(y) — Xy = f. Using (4.2) to calculate 
the integral and applying / — X we immediately obtain (4.3). 

The last term of (4.3) is not in a very convenient form, but in order to 
simplify it we must impose some restrictions on / . If / Ç L1 then the order 
of integration in the last term may be inverted, and setting 

Joo 

f(x) 6i(x, a) dx 
- D O we obtain 

n mi—1 

(4.4) / ( * ) = E Ex/ f ,W(/,tf!-M) 
1=1 j=0 

+ (/ _ x) ~ f°° y ^'^ ^fMd(r 

7T J 0 i = l CT — X 

We define Di to be the class of functions f (z L1 with derivatives which 
are absolutely continuous on every finite interval and such that / ( / ) G L1. 
Then for / Ç P i choose — a2 < 0 not in the spectrum of L and set h = 1(f) 
+ a2f. Then it is easily seen that / and / ' approach 0 as x approaches ±oo so 

f*CQ /»0O 

I h(x) di(x, a) dx = (cr2 + a2) I f(x) 0*(x, a) dx 
J-co J—ca 

and thus 

JCO 

\h(x)\dx. 
-oo 

So for / Ç Z>i the operation of / — X in (4.4) may be perfomed under the 
integral sign to obtain 

n mi—1 cy /»co 2 

(4.5) /(*) = E E x/°(*)(/.*»t*-i) + - E *«(*, <o/i(<o <**. 
1 = 1 ; = 0 7T * / 0 i = l 

We also have an analogue of the Parseval equality, and a corresponding 
expansion theorem associated with L*. 
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THEOREM 4.2. As well as (4.5) we have, for / € 2?i 

(4.6) /(*) = E E */°(*)Cf,xi.ti-i) + - E ««(*, «O/.*0O ^ 
i = l j = 0 7T %/ o z= l 

Joo 

f(x)4>i(x,<r) dx; 
-co 

<WK* if f,g€ Di 

(4.7) (/, f) = E E Cf. *ï.t/-i)(x?\ g) + - E M*)gi*i*) d* 

= E E (/- xL'.Ui)^, g) + - E fi*(<r)gt(<r) dc. 

Proof, The proof of (4.6) is analogous to that of (4.5) and to obtain the 
two forms of (4.7) we note that if / £ Di it is in L2 as well as L1 and take 
the inner products of (4.5) and (4.6) with g. In doing this the order of inte
gration in the last term can trivially be inverted to obtain the results. 

5. The Expansion in Case II. Here we may assume that for some a > 0, 
e
a\x\g(x) £ L1, but it is a consequence of this about the zeros of W{s) which 

we use. If ealxlg(x) Ç Ll\ yi(x,s), y2(x,s), and thus W(s) are analytic for 
r > — \a. In conjunction with Corollary 1.1 this implies that W has only 
a finite number of zeros in r > 0, and this is the assumption we make. 

Suppose that the real zeros of W are ai, <72, . . . , <rq, and perhaps a0 = 0, 
arranged so that 0 = a0

2 < ai2 < . . . < aq
2. Choose r so that r < 2(<ri+i2 — <rt

2) 
for i = 0, 1, . . . , q — 1 and so that r < min [Im(\f)]2 for all A* in the point 
spectrum (Xi, X2, . . . , Xn). We define the contour C by r = f(a) where 
f(cr) = 0 for \<r2 — <jj2\ > r (j running from 0 to q or 1 to q according as 
W(0) is or is not 0), and f(a) = (r2 - {a2 - o-/)2)* for \a2 - <r,2| < r. Now 
if ô < min [ira (X^)] the integral in (3.3) along r = 8 is equal to the integral 
along C. 

As the portion of C lying along r = 0 is symmetric about 0 we may trans
form it to an integral over L = {a\a > 0, \a2 — <r/| > r\ with the same 
integrand as (4.1). The sum of the integrals over the indentations about o-t-
and — di can be transformed by a change of variable into \ faG{x,%, y) 
(u — \)~1dfi where Ct is the circle of radius r about at

2. Note that G(x, £, M) 
is discontinuous where Ct crosses the real axis. This proves 

THEOREM 5.1. Under the hypothèse of Case II we have: 
n mi mj—p 

(5.1) G(pc,i, X) = - E E E xi'W&W*) (X - \iU 
i=l p=l j=0 

irJLi=i <T — A j lirlj Cj M — X 

The only change from (4.2) is that the integral in the second term is taken 
over L rather than over [0, <»), and an extra sum is introduced. The other 
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results carry over in the same way, replacing [0, œ) by L and adding a new 
summation. We shall merely indicate the forms these sums must take by 
considering a sample term 

Zivi J Cj /x — A 

In expanding / £ D\ we have 

J _ œ ZirtJcj M "~ A. 

= (L - X) ̂  <f — — P G(*f f, /*)/(«) ^ <fo 

Z7TW CjJ-oo 

and in the analogue of the Parseval equality we have 

~hi JT *w §c £G(x'*• M)/(?) ̂  ̂  ̂  

The formulas arising from L* are the same with G replaced by G*. 
A transformation of 

yields 
9 /»((ry2+r)* 2 

# , (*) = [ i - cry2]" - , (** - * / ) ' E *>(*. *)/*(*) ^ 
7T */ (<ry2_r)5 fc=l 

where / is sufficiently large that (s2 — aj2)lK(x, £, s) is continuous at ± o-y, 
but one cannot carry the (unbounded) operator [L — cr/]~' under the integral 
sign. In particular cases one can also evaluate the limit as r —> 0 in terms 
of the principal value of Jo . . . da and a sum of terms which appear to involve 
characteristic functions, but do not. 
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