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As the length-scales of materials decrease, heterogeneities associated with interfaces approach the 

importance of the surrounding materials. The importance of interfaces, or interface-like planes, has led 

to extensive studies combining electron energy-loss spectroscopy (EELS) in a scanning transmission 

electron microscope (STEM) that relate local atomic structure to emergent electronic and magnetic 

properties of superlattices. Previous studies have focused on electronic characterization because the 

energy resolution limitations of STEM-EELS precluded losses of tens to hundreds of meV. Energy 

resolution is now less limiting, allowing for local characterization of lower-energy-loss electronic 

excitations and atomic vibrations in materials with closely spaced interfaces. 

A cross-over exists where the description of repeating crystals separated by interfaces loses meaning and 

the structure is better described by a single crystal structure. Examples include artificially grown short 

period superlattices [1] or the naturally occurring Ruddlesden-Popper crystal structure [2]. Here we 

combine STEM imaging, monochromated EELS, and density-functional-theory (DFT) calculations to 

explore the cross-over of hierarchical lattices such as SrTiO3-CaTiO3 superlattices and Ruddlesden-

Popper Ban+1ZrnS3n+1. In Figure 1 we show period-dependent vibrational response of SrTiO3-CaTiO3 

superlattices that is related to the local atomic arrangements of oxygen octahedra tilting. In Figure 2, we 

show energy-losses resulting from the superlattice structure of Ruddlesden-Popper Ba3Zr2S7 [3] 
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Figure 1. SrTiO3-CaTiO3 large period superlattice (a) atom model, (b) HAADF, and (c) tilt angle 

compared to small period superlattice (d) atom model, (e) HAADF, and (f) tilt angle. Vibrational EELS 

line scans in the (g) large and (i) small period superlattices with layer averaged spectra shown in (h) and 

(i). 

 

Figure 2. (a) Perovskite BaZrS3 and (b) Ba3Zr2S7 Ruddlesden-Popper models and the low energy loss 

spectra. 
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