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Inverse Laplace Transforms Encountered in
Hyperbolic Problems of Non-Stationary
Fluid-Structure Interaction

Serguei Iakovlev

Abstract. The paper offers a study of the inverse Laplace transforms of the functions In(rs){sI
′

n (s)}−1

where In is the modified Bessel function of the first kind and r is a parameter. The present study

is a continuation of the author’s previous work on the singular behavior of the special case of the

functions in question, r=1. The general case of r ∈ [0, 1] is addressed, and it is shown that the inverse

Laplace transforms for such r exhibit significantly more complex behavior than their predecessors,

even though they still only have two different types of points of discontinuity: singularities and finite

discontinuities. The functions studied originate from non-stationary fluid-structure interaction, and

as such are of interest to researchers working in the area.

Introduction

We analyze the functions ξn(r, t) for which the Laplace transforms are

(1) Ξn(r, s) =
In(rs)

s I′n(s)
,

where In is the modified Bessel function of the first kind, n is an integer, and r ∈
[0, 1]. They are a two-dimensional generalization of the functions ψn(t) which were
addressed in [7], the Laplace transforms of which are

(2) Ψn(s) =
In(s)

s I′n(s)
.

Both functions appear in problems of mathematical physics involving the wave equa-
tion in cylindrical coordinates being solved using the Laplace transform technique

applied to the time variable combined with separation of the spatial variables. Such
methodology has proven to be efficient when one is concerned with analysis of the
interaction between cylindrical structures and acoustical pulses or weak shock waves
(e.g., [4–6, 9]). The functions ξn and ψn can be referred to as the response functions,

and knowing these functions reduces solving the respective fluid-structure interac-
tion problems to a series of mostly routine computations.

The functions ψn allow one to compute the pressure on the surface of the struc-
ture, whereas their two-dimensional counterparts ξn allow for simulation of the en-

tire hydrodynamic field inside the structure, r being the dimensionless radial distance
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in cylindrical coordinates. Since the latter provides the researcher with qualitatively
different information about the interaction between structures and hydrodynamic

loads, analysis of the functions ξn and developing efficient algorithms for their nu-
merical evaluation seems to be of considerable applied value. Specifically, knowing
the functions ξn will allow for obtaining high-accuracy converged analytical solutions
for rather complex non-stationary problems of fluid-structure interaction. Such so-

lutions can be successfully used as benchmarks for verification of various numerical
codes [10].

The one-dimensional counterparts, ψn, were found to have infinitely many regu-
larly distributed singular points of two different types [7], an irregular behavior that
definitely deserved some attention. Since the functions ξn are closely related to ψn,

it seems reasonable to suggest that their behavior is at least as irregular as that of ψn.
However, to the best of the author’s knowledge, the functions ξn have not yet been
addressed. It therefore appears to be of theoretical interest to establish their main fea-
tures, especially in light of the discontinuous nature of their one-dimensional coun-

terparts. Of special interest here is the analysis of the effect that a seemingly insignif-
icant change (multiplying the argument of the Bessel function in the numerator of
(2) by a parameter r) has on the behavior of the functions.

It should be mentioned that the approach where certain functions independent

of the physical parameters of the system modelled are considered as separate math-
ematical entities was first introduced in the fluid-structure interaction context by
Geers [4] who considered an external hydrodynamic loading on a circular cylindrical
shell. The present work can therefore be seen as part of an attempt to extend the now

classical methodology to make it applicable to a wider variety of problems, specif-
ically to studies where entire hydrodynamic fields are simulated, not only surface
pressures. Along with two-dimensional simulations, such an extension enables one
to model three-dimensional non-stationary hydrodynamic fields induced by the in-

teraction between fluids and structures, at least theoretically (see [8] for information
on obtaining three-dimensional solutions using the corresponding two-dimensional
ones).

Series Representation of Inverses

The analytical inversion procedure based on the application of the residue theory to
Mellin’s integral for Ξn can be successfully used to obtain the inverses of (1). Since
Ξn has the same denominator as Ψn, we can utilize some of the results obtained

earlier [7]. Specifically, the functions Ξn can be shown to have infinitely many pure
imaginary simple poles given by

(3) sn
±k = ±iωn

k , k = 1, 2, . . . ,

where ωn
k is the k-th positive zero of the derivative of Jn, the Bessel function of the

first kind of order n. Furthermore, s = 0 can be shown to be a removable singular
point for Ξn when n ≥ 1 and a second order pole when n = 0.
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Figure 1: The integration contour Γ.

Mellin’s integral for Ξ
i
n is

(4) ξn(r, t) =
1

2πi

∫ ǫ+i∞

ǫ−i∞
Ξn(r, s) est ds,

where ǫ is such that all the singular points of the integrand Zn(r, s, t) = Ξn(r, s) est lie
in the half-plane Re s < ǫ (since all the singularities of Zn(r, s, t) are pure imaginary,

any positive ǫ satisfies this condition). We consider a simple closed curve Γ consisting
of the segment P of the line Re s = ǫ and the arc C of the circle of radius R (Figure 1)
and apply Cauchy’s residue theorem to obtain ξn in terms of the residues of Zn(r, s, t).
If Γ is such that it does not pass through any of the poles defined by (3), we have

(5)

∫

C

Zn(r, s, t) ds +

∫

P

Zn(r, s, t) ds = 2πi
∑

sn
k
∈D

Rn
sn
k
,

where Rn
sn
k

is the residue of Zn at the point sn
k and D is the domain bounded by Γ. Nor-

mally, the next step would be to apply Jordan’s lemma to show that the first integral

on the left-hand side of (5) tends to zero as R → ∞. However, in the present case the
integrand has infinitely many poles (Figure 2) and Jordan’s lemma cannot be used.
To get around this difficulty, we will apply Jordan’s modified lemma [7], but first we
will consider ξn on a circle of a large radius R.
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Figure 2: Poles of Ξn(r, s) in the proximity of the origin.

Using the asymptotic expansions of In(s) and I ′n(s) for large |s|,

In(s) =
1√
2πs

(

es +(−1)ni e−s
) (

1 + O(s−1)
)

,

I ′n(s) =
1√
2πs

(

es −(−1)ni e−s
) (

1 + O(s−1)
)

,

respectively [3], we have

Ξn ∼ ers +(−1)ni e−rs

s(es −(−1)ni e−s)
, |rs| ≫ 1.

From here on we assume that n is even. The case of odd n can be addressed in a very
similar manner (even though the function χ introduced below will be slightly differ-
ent in that case, the approach to obtaining estimates for χ outlined in Appendix A

remains the same, as do the estimates themselves). If we express s in polar form
s = R eiφ, we obtain

(6) |Ξn| ∼
1

R
χ(r,R, φ),

where

χ(r,R, φ) =

{

e2rR cos φ + e−2rR cos φ +2 sin(2rR sinφ)

e2R cos φ + e−2R cos φ−2 sin(2R sinφ)

}

1
2

.
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Now we choose a family of circles that does not pass through any of the poles of Ξn

or close proximities of them. The family

(7) Rk = πk, k = 1, 2, . . . ,

for example, satisfies this condition, which can be shown by comparing (7) with the

asymptotic formulae for the zeros of J ′n (see [1]). From here on, we consider the
family of contours Γk constructed from the arcs Ck of radii Rk and corresponding
segments.

It can be shown (Appendix A) that χ is uniformly bounded on the family of circles

(7). Then it follows from (6) that the functions Ξn(r, s) uniformly tend to zero (with
respect to arg s) on the infinite family of arcs Ck, and hence Jordan’s modified lemma
can be applied to demonstrate that limk→∞

∫

Ck
Zn(r, s, t) ds = 0. Then, considering

the limit of (5) when k → ∞ and Γ = Γk and recalling Mellin’s integral (4), the

following residual expression for ξn can be obtained,

ξn(r, t) =

∑

k=±1,±2,...

Rn
sn
k
,

where sn
k are the poles defined by (3) as well as s = 0 for n = 0.

It can be easily shown that the residues of Zn(r, s, t) at s = 0 and the poles s = sn
k

are given by

R0
0 = 2t,

Rn
iωn

k
, k=1,2,... =

Jn(rωn
k )

Jn(ωn
k )

iωn
k

{n2 − (ωn
k )2} {cos(ωn

k t) + i sin(ωn
k t)} ,

Rn
−iωn

k
, k=1,2,... = − Jn(rωn

k )

Jn(ωn
k )

iωn
k

{n2 − (ωn
k )2} {cos(ωn

k t) − i sin(ωn
k t)} .

Then the following series representation of ξn(r, t) can be obtained,

ξ0(r, t) = 2t + 2

∞
∑

k=1

J0(rω0
k )

J0(ω0
k )

1

ω0
k

sin(ω0
kt),(8)

ξn(r, t) = 2

∞
∑

k=1

Jn(rωn
k )

Jn(ωn
k )

ωn
k

{(ωn
k )2 − n2} sin(ωn

k t), n ≥ 1.(9)

The series expressions (8) and (9) appear to be very similar to those for the func-

tions ψn [7]. This similarity, however, is not at all indicative of the nature of the
functions ξn. As we will demonstrate shortly, the ξn exhibit much more complex be-
haviour than their one-dimensional counterparts ψn, and computational challenges
one is faced with evaluating ξn and/or using them in subsequent computations are

numerous and sometimes rather non-trivial.
Before we analyze any specific details, the following fundamental questions have

to be answered. Do the functions ξn have points of discontinuity as their one-dimen-
sional counterparts did? If yes, what are the types of those discontinuities, their
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number, and their location? If there are any points of finite discontinuity, what is
the behaviour of ξn in the proximity of those points and what are the magnitudes of

the finite discontinuities? The following two sections address these questions.

Series Convergence and Singular Points

To study the convergence of the series (9), we first consider the general term of (9),

γk(n, r, t) = 2αn
k (r)

ωn
k

((ωn
k )2 − n2)

sin(ωn
k t),

where

αn
k (r) =

Jn(rωn
k )

Jn(ωn
k )
,

at large k. Recalling [1] that

ωn
k = βn

k − µ + 1

8βn
k

+ O
( 1

k3

)

, k ≫ 1,

where µ = 4n2 and βn
k =

(

k + n
2
− 3

4

)

π, and that

Jn(z) =

√

2

πz
cos

(

z − nπ

2
− π

4

)

+ O
( 1

z
3
2

)

,

the following asymptotic expressions can be obtained,

Jn(ωn
k ) =

√

2

πβn
k

(−1)k−1 + O
( 1

k
3
2

)

,

Jn(rωn
k ) =

√

2

πrβn
k

(−1)k−1 cos(βn
k (r − 1)) + O

( 1

k
3
2

)

.

Then

(10) αn
k (r) =

1√
r

cos(βn
k (r − 1)) + O

( 1

k

)

, k ≫ 1,

and it can also easily be shown that

ωn
k

((ωn
k )2 − n2)

=
1

πk
+ O

( 1

k2

)

, k ≫ 1,(11)

sin(ωn
k t) = sin(βn

k t) + O
( 1

k

)

.(12)

Hence,

(13) γk =
cos(βn

k (r − 1)) sin(βn
k t)√

rπk
+ O

( 1

k2

)

, k ≫ 1,
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and the N-th remainder of the series in (9) can be written as

2

∞
∑

k=N

Jn(rωn
k )

Jn(ωn
k )

ωn
k

{(ωn
k )2 − n2} sin(ωn

k t) = I1 + I2,

where

(14) I1 =
2

π
√

r

∞
∑

k=N

cos(βn
k (r − 1)) sin(βn

k t)

k
,

(15) I2 =

∞
∑

k=N

O
( 1

k2

)

,

and it is assumed that N ≫ 1. The series I2 is absolutely convergent for any n on any
finite t-interval. The convergence of the series I1, however, needs to be studied. To

do so, we rewrite (14) as I1 = G1 + G2, where

G1 =
1

π
√

r

∞
∑

k=N

sin(βn
k (t + r − 1))

k
, G2 =

1

π
√

r

∞
∑

k=N

sin(βn
k (t − r + 1))

k
,

and analyze the series G1 and G2. By virtue of Dirichlet’s test, G1 and G2 converge for
all t except for the points

t s
1 = 2(2 j + 1) − r + 1, j = 0, 1, . . . ,(16)

t s
2 = 2(2 j + 1) + r − 1, j = 0, 1, . . . ,(17)

respectively. (Owing to the physics of the problems from which the functions ξn

originate, we are only interested in non-negative values of t .) Therefore, the series I1

diverges at t defined by (16) and (17), and so does the series in (9), which implies that
the functions ξn have singularities at the points t s

1 and t s
2. A few initial t-values given

by (16) and (17) are 1+r, 3−r, 5+r, 7−r, 9+r, 11−r, . . . . The values at the singular
points follow a regular pattern which depends on n. Specifically, the singular points

form pairs which produce infinity of the same sign, and the pairs producing positive
infinity alternate with those producing negative infinity. For odd n, the first pair of
singular points produces negative infinity, i.e., one observes the following pattern,

(18)
t : 1 + r 3 − r 5 + r 7 − r 9 + r 11 − r . . .
ξn(r, t) : −∞ −∞ ∞ ∞ −∞ −∞ . . .

.

For even n the first pair produces positive infinity, i.e., the pattern is

(19)
t : 1 + r 3 − r 5 + r 7 − r 9 + r 11 − r . . .
ξn(r, t) : ∞ ∞ −∞ −∞ ∞ ∞ . . .

.
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Finite Discontinuities

Even though G1 and G2 converge at all t other than (16) and (17), it is possible that
they have finite discontinuities. Namely, when t is such that all terms in G1 or G2

are zero, the respective series obviously converges to zero. However, the side limits
of G1 or G2 at such t may differ from zero, which would imply that ξn has finite
discontinuities at the points in question. Since sin(βn

k (t + r − 1)) = 0 when

(20) t = t
f
1 = 4m − r + 1, m = 0, 1, . . . ,

and sin(βn
k (t − r + 1)) = 0 for

(21) t = t
f
2 = 4(m + 1) + r − 1, m = 0, 1, . . .

(we are still only interested in positive values of t), the points t
f
1 and t

f
2 should be

analyzed as potential points of finite discontinuity of ξn.
We note that the set (20) only produces the zero general term for the series G1 and

not for G2. This can be shown as follows. The set (20) will produce the zero general
term for G2 if

(22) r = 2l + 1, l = 0, 1, . . . ,

which means that r would have to be not only an integer but also odd. We are only
considering r ∈ [0, 1], and the only value that satisfies (22) is r = 1. Such r, however,

implies that we are dealing with the functions ψn addressed earlier [7] (setting r = 1
reduces ξn(r, t) to ψn(t)), and there is no need for the present analysis. In a similar
fashion it can be shown that (21) does not produce the zero general term of G1 for
the values of r of interest. We have therefore demonstrated that at any given value of

t only one of the series G1 and G2 can potentially be a source of finite discontinuity
of ξn, a rather important fact that ensures that any finite discontinuity of G1 or G2 is
that of ξn.

To determine whether ξn are discontinuous at the points t
f
1 and t

f
2 , we analyze the

behaviour of the series G1 and G2 in the close proximity of those points. We first
consider G1 and assume that t = 4m − r + 1 ± δ, 0 < δ ≪ 1. Then

(23) G1|t=4m−r+1±δ = ± (−1)m

π
√

r
Q(δ,N),

where

Q(δ,N) =

∞
∑

k=N

sin
(

δπ
(

k + n
2
− 3

4

))

k
.

The function Q can be expressed in terms of the Lerch transcendental function Φ

[2, 7], where

Φ(z, p, a) =

∞
∑

k=0

zk

(a + k)p
,
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as

Q(δ,N) =
eiδπ

(

N+ n
2
− 3

4

)

2i
Φ(eiδπ, 1,N) − e−iδπ

(

N+ n
2
− 3

4

)

2i
Φ(e−iδπ, 1,N).

If we recall [2] that Φ(z, 1, a) ∼ − log(1 − z) as z → 0, it can be easily established
that

(24) Q(δ,N) → π

2
as δ → 0.

Then it follows from (23) and (24) that G1 has different side limits at the points t
f
1 ,

namely

lim
t→(4m−r+1)−

G1 = − (−1)m

2
√

r
,(25)

lim
t→(4m−r+1)+

G1 =
(−1)m

2
√

r
.(26)

In a similar manner it can be shown that G2 has finite discontinuities at the points t
f
2 ,

namely

lim
t→(4(m+1)+r−1)−

G2 =
(−1)m

2
√

r
,(27)

lim
t→(4(m+1)+r−1)+

G2 = − (−1)m

2
√

r
.(28)

Thus, we have shown that the series I1 has finite discontinuities at the points t
f
1 and

t
f
2 . The functions ξn, however, are also determined by the finite series I0,

I0 = 2

N−1
∑

k=1

Jn(rωn
k )

Jn(ωn
k )

ωn
k

{(ωn
k )2 − n2} sin(ωn

k t),

and the infinite series I2. The series I0 is a continuous function of t , so it does not
contribute to the discontinuous nature of ξn. Is it possible that I2 has discontinuities?
The answer to this question is no (Appendix C). Thus, we have shown that I1 is
the only source of finite discontinuity of ξn, and we can state now that ξn have an

infinite number of points of finite discontinuity at t defined by (20) and (21). We
have also demonstrated that the magnitudes L = 1/

√
r of those discontinuities are

independent of the parameters t , n, and N .
Furthermore, we have established that, regardless of n, all ξn follow the same pat-

tern in terms of the behaviour in the proximity of the points of finite discontinuity.
Except for the first point of the set (20), all other points defined by (20) form pairs
with the neighboring points defined by (21), and the points of each pair produce the
same difference between the left- and right-side limits of ξn. Specifically, the first
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point of the set (21), 3 + r, and the second point of the set (20), 5 − r, form a pair
such that the difference between the left- and right-side limits of ξn is positive at both

points. The second point of the set (21), 7 + r, and the third point of the set (20),
9 − r, produce a pair such that the difference between the left- and right-side limits
is negative, and so on. This pattern can be summarized as follows,

t f : 1 − r 3 + r 5 − r 7 + r 9 − r 11 + r 13 − r . . .
L : − 1√

r
1√

r
1√

r
− 1√

r
− 1√

r
1√

r
1√

r
. . .

where L = limt→t−
f
ξn(r, t) − limt→t+

f
ξn(r, t) is the difference between the left- and

right-side limits of ξn at t f . We note that the first point of the set (20), t f = 1 − r, is
“unique” in a sense that it has no pair, and that the magnitude of this very first finite
discontinuity is still 1/

√
r.

At the points of finite discontinuity, I1 = 0 and the value of ξn is completely
determined by two continuous functions, I0 and I2. Recalling (25)–(28), it can be

easily shown that

(29) ξn(r, t)|t=t f
=

1

2

{

lim
t→t−

f

ξn(r, t) + lim
t→t+

f

ξn(r, t)
}

,

where t f is any of the points of finite discontinuity defined by (20) and (21).

Thus, we have demonstrated that the functions ξn have infinitely many singular-
ities and infinitely many points of finite discontinuity that form a regular pattern in
which pairs of singularities alternate with the pairs of finite discontinuities. The lo-
cations of the points of discontinuity, td, are given by (16), (17), (20), and (21) and

can be described by one equation, td = (2 j + 1) ± r, j = 0, 1, . . . . The distribution
of discontinuities can be summarized as follows, S standing for singular points and F

for points of finite discontinuity,

1 − r 1 + r 3 − r 3 + r 5 − r 5 + r 7 − r 7 + r 9 − r . . .
F S S F F S S F F . . .

Numerical Results

Having understood the most important features of the functions ξn, we will now
look at their graphs for various r and n. We start with n = 1 and r = 0.5 (Figure 3).
The pattern of discontinuities discussed can be clearly identified in the figure. The

pairs of points of finite discontinuity alternate with singular points except for the first
finite discontinuity at t = 1 − r = 0.5. The sign of the infinity is the same for each
pair of singularities and it alternates between the pairs. The finite discontinuities
always have the same magnitude of 1/

√
0.5 = 1.41 . . . , and the sign of the difference

between the left- and right-side limits is the same for both points of each pair, and
it alternates between the pairs as well. The solid dots show the values of ξn at the
points of finite discontinuity which are given by (29). We mention that the presence
of finite discontinuities and singularities has a clear physical interpretation in the
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Figure 3: Function ξ1(0.5, t).
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Figure 4: Function ξ1(r, t) for r = 0.10, 0.20, and 0.40.
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Figure 5: Function ξ1(r, t) for r = 0.60, 0.80, 0.90, and 1.00.
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context of the corresponding fluid-structure interaction problems (e.g., [9]). This
aspect, however, is beyond the scope of this paper.

Now we focus on the influence of r on the appearance of ξn, and consider ξ1(r, t)
for various r, (Figures 4 and 5; to make the graphs easier to visualize, the functions
are shown as continuous, with dots still representing the values at the points of finite
discontinuity). Even though the sequence of the discontinuities remains the same for

all r, their location changes depending on r. Specifically, the closer r is to unity the
closer any two neighboring discontinuities of the same type (either two singularities
or two finite discontinuities) are to each other, except for the very first one. Eventually
(at r = 1) they merge to form one point of discontinuity of the respective type. As

r becomes smaller and smaller, any two neighboring discontinuities of different type

are getting closer and closer to each other and eventually merge at r = 0 to produce
a discontinuity point of “mixed” nature with a singularity on one side and a finite
discontinuity on the other (not shown, see Appendix C).

It appears so far that for the n and r values considered, the computational chal-
lenges one faces dealing with the “irregularity” of the functions ξn should not be any
different from those encountered for the functions ψn: even though the number of
points of discontinuity is different, we are still dealing with piecewise smooth func-

tions defined on a (infinite) set of finite intervals. This seeming similarity vanishes as
r decreases and n increases. To demonstrate what exactly is happening and to show
clearly the difference between ξn(r, t) for the same n but different r, we look at the
graphs of ξn for r = 0.2 and n = 5 and 20, and compare those to the graphs of ψn

at the same two values of n, (Figures 6 and 7; ψn(t) = ξn(1, t)). First of all, it is clear
that even if n remains unchanged, decrease of r leads to a significantly less regular
behaviour of ξn. Specifically, instead of being relatively evenly distributed along the
real axis, the “mass” of the function tends to accumulate in the intervals formed by

any two neighboring points of discontinuity of different type, and outside those in-
tervals the values of the function are very close to zero. This tendency becomes more
and more pronounced as n increases, and even for a relatively small value of n = 20,
one observes a pattern where high-frequency intervals alternate with those where the

function has a constant value (zero or almost so). We mention that the frequency in-
side the “problem” intervals is not uniformly distributed and increases significantly
as t approaches the ends of the intervals, i.e., the points of discontinuity.

The phenomena mentioned are a clear indication of the fact that one has to deal

with much more challenging numerical difficulties computing ξn than was the case
for ψn. The most dramatic and computationally challenging scenario occurs when r

is very small and n is very large. As an example, Figure 8 shows ξ150(0.02, t). This is
an extremely interesting and beautiful function. It is zero virtually everywhere except

for an infinite number of very narrow intervals where it oscillates with extremely
high frequency. Inside the high-frequency intervals (insets 1 and 2), the frequency of
oscillations is not uniform and it continuously increases as t approaches the ends of
the intervals. In the close proximity of the ends it becomes so high that it is possible to

define the “ultra-high-frequency” regions, insets 3 and 4. The frequency of oscillation
in the ultra-high-frequency intervals can be as much as 20 times higher than that in
the high-frequency ones. It is important to mention that in spite of the very high
frequency of oscillations, their magnitude is still finite throughout the intervals in
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Figure 6: Functions ξ5(0.2, t) and ψ5(t).

questions. The singular points visible in Figure 8 are located at t = 1.02 and 2.98, and
finite discontinuities with the magnitude of 1/

√
0.02 = 7.07. . . occur at t = 0.98,

3.02, and 4.98.

Conclusions

An analytical inversion procedure based on the use of the residue theory was ap-
plied to obtain the series expressions for the functions ξn(r, t), and the convergence
of those series was studied. It was demonstrated that the functions ξn have infinitely
many points of discontinuity of two types, namely singular points and points of fi-
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Figure 7: Functions ξ20(0.2, t) and ψ20(t).

nite discontinuity. Unlike the case of the functions ψn, which are a special case of ξn

at r = 1, the location of the points of discontinuity of ξn is not fixed and changes

depending on r, as do the magnitudes of the finite discontinuities. The latter always
remains equal to r−0.5 regardless of n and t , and any two consecutive points of finite
discontinuity, except for the first one, form a pair such that ξn exhibits similar be-
haviour in the proximity of the both points. Consecutive singular points form pairs

as well, and the points of each pair produce the infinity of the same sign. The signs
of the infinity alternate between the pairs of singularities. For any r ∈ (0, r), on any
given t-interval the functions ξn have at least twice as many points of discontinuity
as the functions ψn. In the case of r = 0, the number of points of discontinuity of
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Figure 8: Function ξ150(0.02, t).
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ξn is the same as that for ψn, but all of them have the “mixed” nature with one side
limit being finite and the other being infinite. In their intervals of continuity, the

functions ξn exhibit regular behavior when n is small and r is relatively large. How-
ever, as n increases and r decreases, the appearance of ξn changes dramatically. Their
values become closer and closer to zero in the intervals between any two neighboring
points of discontinuity of the same type, and in the intervals formed by the neighbor-

ing points of discontinuity of different types, the functions oscillate with frequency
that increases significantly as n increases and r decreases, and is much higher in the
proximity of the ends of the intervals.

Appendix A χ(r,R, φ) on a Circle of a Large Radius

We consider the function

(A1) χ(r,R, φ) =

{ e2rR cos φ + e−2rR cos φ +2 sin(2rR sinφ)

e2R cos φ + e−2R cos φ−2 sin(2R sinφ)

}
1
2

on the family of circles Rkeiφ of radius

(A2) Rk = πk, k ≫ 1,

and we intend to show that χ is uniformly bounded on such a family.
We first consider such values of φ that | cosφ| > δ, δ =

1
R

, and assume that

cosφ > 0 (the case of negative cosφ can be addressed in a similar manner). Then it
is easy to see that

e2rR cos φ + e−2rR cos φ +2 sin(2rR sinφ) < e2rR cos φ(1 + e−4r +2 e−2r),

e2R cos φ + e−2R cos φ−2 sin(2R sinφ) > e2R cos φ(1 − 2 e−2).

Hence

(A3) χ2 <
(1 + e−4r +2 e−2r)

1 − 2 e−2
e2(r−1) .

The estimate (A3) allows for analysis of χ as a function of r. For our purposes, how-
ever, all we need is to show that χ is bounded on the family (A2). To that end, we can
write

(A4) χ(r,R, φ) <
√

2, cosφ >
1

R
, R ≫ 1, r ∈ [0, 1].

Note that the estimates (A3) and (A4) are valid for any R, not only for R = Rk.

Now we consider the values of φ such that | cosφ| ≤ δ, δ =
1
R

, and assume again
that cosφ > 0. In this case, φ =

π
2
− γ, 0 < γ ≤ 2δ, and the following asymptotic

expressions can be easily obtained,

e2rR cos φ
= e2rRγ

{

1 + O
( 1

R2

)}

, e−2rR cos φ
= e−2rRγ

{

1 + O
( 1

R2

)}

,

sin(2rR sinφ) = sin(2rR) + O
( 1

R

)

.
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Then the numerator and denominator in (A1) can be estimated as (here we do make
use of the fact that R = Rk = πk)

e2rR cos φ + e−2rR cos φ +2 sin(2rR sinφ) < 3 + e4r,

e2R cos φ + e−2R cos φ−2 sin(2R sinφ) >
3

4
+ e−4,

and we have for χ2,

(A5) χ2 <
4(3 + e4r)

3 + 4 e−4
.

Again, the right-hand side of (A5) depends on r. We, however, only need to know its

maximum value, which occurs when r = 1, and the estimate for χ can be written as

χ(r,R, φ) < 9, 0 < cosφ ≤ 1

R
, R = Rk = πk, k ≫ 1.

The estimate for negative φ can be obtained in a similar manner.
We have therefore demonstrated thatχ(r,R, φ) is uniformly bounded on any circle

of a large enough radius given by (A2).

Appendix B Continuity of I2

The general term of the series in (9) can be written as

γk =

{

α∗ +
1√

r
cos(βn

k (r − 1))
}{

ω∗ +
1

πk

}

{s∗ + sin(βn
k t)},

where we define α∗, ω∗, and s∗ as follows,

α∗
= αn

k (r) − 1√
r

cos(βn
k (r − 1)), ω∗

=
ωn

k

(ωn
k )2 − n2

− 1

πk
,

s∗ = sin(ωn
k t) − sin(βn

k t).

The term γk can be expressed as γk = γ1
k + γ2

k , where

γ1
k =

1√
rπk

cos(βn
k (r − 1)) sin(βn

k t)

is the general term of the series I1, and

γ2
k =

1√
r

cos(βn
k (r − 1))

{

ω∗ sin(βn
k t) + s∗

{

ω∗ +
1

πk

}}

+ α∗{s∗ + sin(βn
k t)}

{

ω∗ +
1

πk

}
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is the general term of I2. Taking into account the asymptotic expressions (10)–(12),
we can easily see that

α∗
= O

( 1

k

)

, ω∗
= O

( 1

k2

)

, and s∗ = O
( 1

k

)

,

which implies that

(B1) γ2
k = O

( 1

k2

)

.

Even though we have already known that (B1) was the case, now we have expressed
the general term of I2 in terms of a finite combination of continuous functions. Fur-

thermore, because of the estimate (B1), it is always possible to find large enough N

such that I2 will be uniformly convergent on any finite t-interval (Weierstrass M-test).
Then, since γ2

k are continuous functions of t , the sum of the uniformly convergent
series I2 is a continuous function as well.

Appendix C Special Case of r = 0

The special case of r = 0 is quite unique because it corresponds to the zero radial

distance in physical applications, and it is quite different from the mathematical point
of view as well. For such r,

Jn(ωn
k r) =

{

0 n ≥ 1,

1 n = 0,

for all k, and ξn(0, t) = 0, t ≥ 0, for all n except for n = 0. If n = 0,

(C1) ξ0(0, t) = 2t + 2

∞
∑

k=1

1

ω0
k J0(ω0

k )
sin(ω0

kt).

Since the function (C1) is a limiting case of ξ0(r, t) when r → 0, the behaviour of

ξ0(0, t) can be assessed based on what we already know about ξ0(r, t). Specifically, we
know that its singularities occur at t s

1 = 4 j−r+3 and t s
2 = 4 j+r+1, j = 0, 1, . . . , and

that finite discontinuities occur at t
f
1 = 4 j − r + 1 and t

f
2 = 4 j + r + 3, j = 0, 1, . . . .

As r → 0, the singularities become closer and closer to the points 4 j + 3 from the left
and to the points 4 j + 1 from the right. At the same time, the finite discontinuities
are becoming closer and closer to the points 4 j + 1 from the left and the points 4 j + 3

from the right. At r = 0, a pair of discontinuities of the two different types merge at
each of the points

(C2) t1
m = 4 j + 1

and

(C3) t2
m = 4 j + 3,
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and the points (C2) and (C3) exhibit a “mixed” nature, i.e., the function ξ0(0, t)
has side limits of different types at those points. Specifically, it has either an infinite

left-side limit and a finite right-side one (points t2
m) or a finite left-side limit and an

infinite right-side one (points t1
m). Figure 9 illustrates these interesting features of

ξ0(0, t).

0 1 2 3 4

0

10

20

30

40

ξ 0
(0
,t

)

t

Figure 9: Function ξ0(0, t).
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