A NEW CHARACTERIZATION OF FINITE PRIME FIELDS

Carlton J. Maxson

(received March 27, 1968)

Let $N \equiv < N$, +, .> be a (right) near-ring with 1 (we say N is a unitary near-ring)[1] and recall that a near-field is a unitary near-ring in which $< N - \{0\}$, .> is a multiplicative group. In [2], Beidelman characterizes near-fields as those unitary near-rings without non-trivial N-subgroups. We show that in the finite case this absence of non-trivial N-subgroups is equivalent to the absence of non-trivial left ideals.

LEMMA. A finite unitary near-ring N is a near-field <=> N has no non-trivial left ideals.

 $\frac{Proof.}{a \neq 0}. \ \ If \ \ N \ \ has \ no \ non-trivial \ left \ ideals, \ then for each \ a \in N, \ a \neq 0$, define a map $\rho_a \colon N \to Na$ by $\rho_a(x) = xa$. It is easily verified that ρ_a is an N-epimorphism and Ker $\rho_a = (0)$. Hence N = Na and consequently N is a near-field. The converse is clear.

We now use the lemma to obtain a new characterization of finite prime fields. (This was obtained independently by Clay and Malone in [3]).

THEOREM. $N = \langle N, +, . \rangle$ is a finite prime field $\langle = \rangle$ N is a finite unitary near-ring and $\langle N, + \rangle$ is a simple group.

<u>Proof.</u> If < N, +> is a simple group then N has no non-trivial left ideals and thus N is a finite near-field. Therefore < N, +> is an abelian p-group and consequently a cyclic group. However, this implies (see [3]) that N is a commutative ring.

Canad. Math. Bull. vol. 11, no. 3, 1968

^[1] See [1] and [2] for basic definitions relative to near-rings.

REFERENCES

- J. C. Beidleman, A radical for near-ring modules. Mich. Math.
 J. 12 (1965) 377-383.
- J. C. Beidleman, On near-rings and near-ring modules.
 (Doctoral dissertation, The Pennsylvania State University, 1964.)
- 3. J.R. Clay and J.J. Malone, Jr., The near-rings with identities on certain finite groups. Math. Scand. 19 (1966) 146-150.

State University College, Fredonia, New York