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FIRST ORDER OPERATORS ON MANIFOLDS 
WITH A GROUP ACTION 

H. D. FEGAN AND B. STEER 

ABSTRACT. We investigate questions of spectral symmetry for certain first order 
differential operators acting on sections of bundles over manifolds which have a group 
action. We show that if the manifold is in fact a group we have simple spectral symmetry 
for all homogeneous operators. Furthermore if the manifold is not necessarily a group 
but has a compact Lie group of rank 2 or greater acting on it by isometries with discrete 
isotropy groups, and let D be a split invariant elliptic first order differential operator, 
then D has equivariant spectral symmetry. 

1. Introduction. Let D be a first order differential operator on a complex vector 
bundle E over a compact Riemannian manifold M. The purpose of this work is to show 
that D has spectral symmetry when certain conditions are satisfied. These conditions 
are either M is a Lie group and D is a homogeneous operator; or a Lie group of rank 2 
(or greater) acts suitably on M and D is an invariant elliptic operator. A more detailed 
description is given later. 

For a self adjoint elliptic differential operator D on a compact Riemannian manifold 
M the eta function is defined as 

(1.1) 1,(5)= £ sign(A)|A|-
AG spec' (D) 

where spec(D) is the spectrum of D and spec'(D) = spec(Z)) — {0}. This converges 
for Re(s) sufficiently large and the resulting function has a memomorphic extension, 
with simple poles, to the whole plane. The //-invariant is essentially the value of this 
function at s = 0, r/(0). The //-function and //-invariant were introduced in [1], where the 
//-invariant is the most important boundary contribution in the extension of the Atiyah-
Singer index theorem to manifolds with boundary. Clearly if D has spectral symmetry 
then r](s) = 0 for all s and the //-invariant vanishes. Since its introduction much work 
has been done on the //-invariant, see [5] for further comments on this. 

Our first result on spectral symmetry occurs in Section 5. Here we use the inversion 
map. The idea is similar to that in [2] but the details are somewhat different. The result 
is proved as Theorem 5.3. 
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FIRST ORDER OPERATORS ON MANIFOLDS 759 

THEOREM 1.1. Let D be a first order homogeneous invariant differential operator 
on a homogeneous bundle over a compact Lie group. Then D has spectral symmetry. 

In order to state and prove this theorem we need some background material. In Sec­
tion 2 we give the construction of homogeneous operators and show that a first order 
operator splits into a first order part and a constant part. This is followed by Section 3 
where we give a classification of the invariant operators both of first order and higher 
order. While the spirit of this is well known, many of the details are particular to this 
work; especially the characterization in the first order case in terms of the Hopf algebra 
structure on the symmetric algebra 5(9). 

The main interest in 77-invariants is for elliptic operators, see [ 10] for more information 
in this case. The series (1.1) converges for Re(s) sufficiently large and has a meromorphic 
continuation for such operators. In general this is not the case for non elliptic operators, 
see [4] for an example of such. In Section 4 we give a characterization of first order 
elliptic operators over a compact Lie group, see Theorem 4.2, which is interesting in its 
own right. 

THEOREM 1.2. Let D be an invariant elliptic first order homogeneous differential 
operator over a simply connected Lie group. Then D is a twisted Dirac operator plus a 
bundle map. 

If D is an operator over a compact Lie group, G, there is an associated operator D' 
over the homogeneous space G/T. A natural question to ask is under what condition 
does spectral symmetry of D transfer to spectral symmetry of D'. In Section 6 we give 
an example to show that the conditions of Section 5 are too weak for this transfer. We 
then show that a stronger condition, equivariant symmetry where the eigenspaces are 
isomorphic as G-spaces, is sufficient. However, an other example of an operator (R) from 
[4] shows that there are interesting operators which have symmetry but not equivariant 
symmetry. Thus the work of later sections does not make that of Section 5 redundant. 

This raises the question which operators have equivariant symmetry. The answer is 
given in Sections 7, 8, and 9. In Section 7 we prove: 

THEOREM 1.3. Let D be a first order, elliptic, invariant differential operator on a 
homogeneous bundle over a compact simply connected Lie group of rank > 2. Then D 
has equivariant spectral symmetry. 

This is actually proved in the case where D is a twisted Dirac operator. Then the result 
of Section 4 is used to show that the class of twisted Dirac operators is essentially the 
same as that of elliptic operators over a group. 

In Section 8 we treat the more general case of a manifold which has a group action. 
Specifically, we consider the case of a compact, simply connected nonabelian Lie group 
of rank 2 or greater acting on a manifold by isometries with discrete isotropy groups. 
To illustrate the type of group action which is considered here let n > 4. Then regard 
SO(2« — 4) as a subgroup of SO(2«). If T is a discrete, and hence finite, subgroup of 
SO(2«) then we take T \ SO(2n)/ SO(2« - 4) as the manifold. The group which acts is 
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SO(4). This is regarded as a subgroup of SO(2n) complimentary to SO(2« — 4), that is 
so that SO(2« - 4) x SO(4) embeds in SO(2w). The main result, Theorem 8.12, can be 
summarized as 

THEOREM 1.4. Let D be a split, invariant elliptic first order differential operator. 
Then D has equivariant spectral symmetry. 

The notion of a split operator is given in Definition 8.3. A special case of split opera­
tors is that of twisted Dirac operators defined using a split connection. 

In Section 9 we see that the same result holds when the group acting is the £-dimen-
sional torus with I > 2. The statement of the result is then the same as Theorem 1.4. 
However, the proof has some notable differences from that in Section 8. 

2. Invariant first order homogeneous operators. We start by describing the gen­
eral construction, following [ 12]. Let K be a compact Lie group and H a closed subgroup 
with Lie algebras f and I) respectively. Let TX: H —> Aut(E) be a finite dimensional repre­
sentation of//. Then on K x E we have the equivalence relation (k, v) ~ {kh~x, 7r(/z)v). 
The homogeneous bundle E is constructed by making the following diagram commute: 

KxE —> KxnE = KxE/ ~ = E 

(2.1) J I 
K —> K/H. 

A section of E is represented by a map s:K —> E which satisfies s(kh~l) = ir(h)s(k) 
for all h G H and k G K. Then the section s: K/H —• E is such that s is its pullback. 
The map s is equivariant. Let */://—> Aut F be another representation which defines the 
bundle F. Then a homogeneous operator/): C°°(E) —> C°°(F) is defined as follows. Let 
D be an equivariant operator on K: that is Ds is an equivariant map into F whenever s is 
an equivariant map into E. The operator D is homogeneous if Ds is the pullback of Ds. 
Symbolically we write Ds = Ds/H. 

In this paper we are interested in the case when K/H = G is a compact Lie group. In 
particular we require that K = GxG and H = G where H is represented as the diagonal 
subgroup ofK: H = {(g,g) : g G G}. The group K acts on K/H. In this particular case 
when K = G x G the left factor acts as left multiplication G and the right factor as right 
multiplication. If we embed G —* K by g —+ (g, 1) we obtain a trivialization. In this 
context the homogeneous operators are the bi-invariant operators on E over G. 

Now restrict attention to the case when D is a first order bi-invariant operator. Then 
D is a linear map on the first jet bundle D: / (E) —> F. Since D is bi-invariant this is 
equivalent to giving an invariant map on the fibre over the identity: D:jl (E) —* F. Let g 
denote the Lie algebra of G and g* the dual of g. Then, as in [3], D is a splitting of the 
projected jet bundle sequence (2.2): 

0 — > ' £ ® f l * - ^ j\E) —> E —> 0 

( 2 . 2 ) | ^ | | 

0 — • F — > Q — > E — • 0. 
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The symbol is D o o\ E <g> g* —> F. The lie algebra g acts on E <g> q* and E while the 
action on jl(E) is by q © g(1) where g(1) is the first prolongation of g, see [11]. Thus 
the action of g(1) gives rise to an obstruction to find a first order invariant differential 
operator. However, since G is a compact we have g(1) = 0. Thus we have proved: 

THEOREM 2.1. A first order homogeneous differential operator D can be constructed 
from any pair of invariant maps 

S:E<g> g* —> Fand T:E-> F. 

REMARK 2.2. These maps are projections which can be found by using Schur's 
lemma. The main application of this result is that the top order part ofD is a bi-invariant 
first order operator in its own right. 

3. Classification of first order bi-invariant operators. Since we are interested 
in questions relating to the eigenvalues of the operators involved we only consider 
D: C°°(E) - • C°°(E). That is we take E = F. 

In the first instance let us only consider the case when IT: G —* Autis is an irreducible 
representation. Then the map T: E —* E is a multiple of the identity. The interest is in the 
mapS:£(g>g*—•£. 

LetXj,. . . ,X„ be an orthonormal basis for g relative to the Killing form innerproduct. 
Then using this basis we see that if S: E®q*—*E then 

(3.1) S = 5 > , ® A ) 
i 

here tp:E —* E and A!),: g* —» R. Note that the linear maps <pt are not invariant: invariance 
only holds for the whole sum not the individual terms. Let U be the universal enveloping 
algebra of g. Then by the Jacobson density lemma, which is a form of a theorem of 
Burnside see [8], we have that <pt = ir(pi) for suitable/?, E U and n has to be lifted to g 
and extended to U. 

Let I denote the rank of G and Z the centre of 11. Then Z = C[Qi,... ,Q^] is a 
polynomial algebra on I generators, the Casimir operators. Define py so E/A>^' = fy 
and let Dj = E/ 7r(p,y) <g> Xt. 

THEOREM 3.1. The operators Dj span the vector space of invariant first order dif­
ferential operators. 

PROOF. By the previous discussion we first need to describe all pt such that EPi ®Xi 
is invariant. Now as vector spaces we can identify 11 = 5(g*), the polynomial algebra 
on g. Thus the problem is to identify (5(g*) 0 g) . Now G acts on g by the adjoint 
representation so by Schur's lemma we need only identify subrepresentations of S(q*) 
which are equivalent to g. By the results of [7] these representations occur in degrees 
mj which are the eigenvalues of a particular operator on qT. Since qT has dimension I it 

follows that dim(5(g*) <g> qf = L 
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Under the identification U ^ 5(9*) we have Z ^ 5(9*)G. Thus we can identify the 
Casimirs as elements Qj G 5(9*)G. There are £ of these and since they are algebraically 
independent they are also linearly independent. Using the Killing form inner product we 
can identify I,- G 9 as a degree one polynomial on 9, i.e., we can identify Xt G 5(9*). 
This gives a multiplication map m: 5(9*) ® 9 —• 5(9*) with m(J2iPij ® Xt) = T^iPij^i-
Thus Ei Ay ® A/ are £ linearly independent elements of (5(9*) ® 9) and by counting 
dimension they form a basis. 

While the elements Eyty ® AJ- are a basis for (5(9*) ® 9) the Dj = E; n(Pij) ® ^ 
need not be linearly independent but they still form a spanning seat for the invariant first 
order operators. 

We can now write down the symbol oDf.E ® 9* —> E. This is 

(3.2) <r(Y,(Py) ® *})(v ® *) = £ T T ^ M ^ ) . 

In more traditional notation 

(3- 3) <rfe *r(p,;) ® Ai)(0 = £ &*<Py), 
I 

where £ = E£/^i £ 9 a nd we identify 9 with 9* using the Killing form. 
The above results have been given for first order operators. It is routine to generalize 

them to operators of any order. We shall describe the results here but leave the proofs 
largely to the reader. 

THEOREM 3.2. The invariant differential operators on E all have the form D = 

E/7r(p/) ®XI where pi G 11 « 5(9*) and Xj = Xh • • -Xik G 5(9), which satisfy the 

condition £,/>/ ® A7 G (5(9*) ® 5(9))G 

REMARK 3.3. The operator described here with Xi — Xix--- Xik is a k-th order op­
erator. Here the upper case subscript is a multi-index while a lower subscript is a single 
index: / = (i\,..., /*). 

From [7], we see that 5(9) = Z ® / / where Z = 5(9)G and//is the space of harmonic 
polynomials. Then we can decompose H = E//*, where if is the component which is 
homogeneous of degree k. If V\ is the irreducible representation with highest weight A, 
let V% denote the zero weight space of V\. There is an operator on V°x with eigenvalues 
my (A) which are the generalized exponents of V\. These give the decomposition 

(3.4) if = YJ * W A ) = k for somey. 
A 

It is convenient to use the notation V1^ to denote the copy of V\ occurring in if- with 
k — mj(\). 

THEOREM 3.4. (5(9*) ® 5(9))° = Z ® Z(EA £y, Ey2 C), where the sum is over all 
eigenvalues mjx (A), mj2(X)for each highest weight A. 

PROOF. Since 5(9) = Z ® H we have 

(3.5) (5(9*)®5(9))G = Z ® Z ® ( / / ® / / ) G . 
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By (3.4) we have H=J2x £/ ^ and by Schur's lemma 

(3-6) OiaFW-U £ £ 
otherwise 

Thus we calculate 

(#®#)G=(££K'®££^)C 

A j \ n h 

(3.7) =EEEDn'®^) G 

= £££c. 
A 7i 72 

This completes the proof. 
From this we can write down the symbol of these operators. 

THEOREM 3.5. afevtpi) ® Jf/)(0 = HitiMpi) where £ = E&A/ 0m/ £7 = 

si"i ' * * s/ 'r 

The algebra 5(9) is a Hopf algebra with comultiplication given by 

(3.8) df(x) =/(JT® 1 + 1 ® A), 

where </: 5(9) —> 5(G) <8> 5(g). The algebra 5(9) (8) 5(9) has a bigrading and let 

(3.9) Py. 5(9) ® 5(9) - 5'(g) ® tf (fl) 

be the projection. Then the invariant elements YJPIJ ® ̂ C/ are given by 

(3.10) YsPu ®XJ = piJd^k = &ij 
J 

for / +j = degree Clk and \I\ = i, \J\ = j . Let PdZ be the algebra spanned by {Q,y}. In 
the case of G = SU(2) it happens that PdZ = (5(9) ® 5(9)) . However, the situation is 
more complicated for SU(3). 

The group SU(3) has two Casimirs: Qi of degree 2 and Q2 of degree 3. Thus PdZ has 
7 generators Qi (g> 1, On, 1 ® Qi, O.2 ® 1, Q21, ^12 and 1 (8) Q2 in the above notation. 
A calculation shows that, for G = SU(3), in addition to these there are at least 3 more 
generators, one in 52(9) ® 52(9) and two in 53(9) ® 53(9). Furthermore since F"3p, the 
irreducible representation with highest weight 3p, occurs uniquely in H6 it follows that 
Q^(l ® Q2) = ^12(^2 ® 1) G 56(9) ® 56(9) and so PdZ is not a polynomial algebra. 

4. Elliptic first order operators. We have that the symbol of a first order operator 
is a bilinear map 

(4.1) <7:g®£—•£. 

In the case of a homogeneous operator, E is a complex representation space of G while 
the Lie algebra is, of course, a real vector space. The operator is elliptic if and only if a 
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is a nondegenerate bilinear map, that is for each nonzero X E Q the map v —> o(X <g> v) 
is invertible. Equivalently if a(X® v) = 0 then either X = 0 or v = 0. Thus we need to 
study nonsingular bilinear maps a: Rk <g> Cn —* Cw. 

First we need to define the Clifford algebra. Let T(Rk) be the tensor algebra: 

(4.2) T(Rk) = R 0 R* 0 R* ® R* 0 • • • 

Let J be the ideal in T(Rk) generated by elements of the formX(g)X+ (X,X)\ where (,) 
is an innerproduct on R*. Then the Clifford algebra is defined as 

(4.3) Cliff(R*)=r(R*)/J, 

see [6]. 
The spin group Spin(&) = Spin(R*) which is a subgroup of the group of units of 

Cliff (R*), is a double cover of SO(&). This group, Spin(A:), has a complex representation 
space S. Further S is a module for Cliff (R*) and the action of spin(«) is given by Clifford 
multiplication. If n is even then S = S?(&S~ and dim S? = dim S~. Clifford multiplication 
by a single element X e Rk acts by interchanging S* and S~. The elements of Cliff (R*) 
which generate Spin(&) have the formX® Y for Zand Y G R*. 

We rewrite the bilinear map a: Rk ® Cn - * Cn as a: Rk —> End(Cw), where End(Cw) 
is the space of n x n complex matrices. The nondegeneracy condition is a(Rk — 0) C 
GL(«, C), the invertible matrices. 

LEMMA 4.1. If the nonsingular bilinear map a: Rk —> End(C") satisfies the condition 
(j(5*-1) C U(n) then a induces an action ip o/spin(&) on Cn. Further <p is the standard 
action so that Cn = mS (ifk is odd) or Cn = m+S* 0 mS~ (ifk is even). 

PROOF. AS we noted earlier the group Spin(&) is generated by elements of the form 
X® Y in the Clifford algebra. Thus we need to define if. Rk ® Rk —> End(C"). We do this 
by 

(4.4) v(X®Y) = -a(X)oiY)t. 

Then 

(4.5) <p&®Y) = -\\X\\ II Y\\o(exWfid, 

where ex = ^/IWI ^ Sk~l for x ^ 0 and is not defined forX = 0. Thus, since o(ex) G 
U(n) we have 

(4.6) <p(X® Y) = -\\X\\ ||Y\\a(ex)a(eYrl. 

Now this gives (p(X®X) + (X,X)l = 0 and so cp is an action of spin(&) on Cn. 
Furthermore since a is nonsingular and linear this construction gives that Cn is just 

a number of copies of the basic spin representation. In the case when k is odd there is 
only one such representation and Cw = mS. If k is even Cn splits as copies of *S* and 
ST:Cn =m+S¥®m-S-. 
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THEOREM 4.2. Let (D be an invariant, elliptic first order homogeneous differential 
operator on E over a simply connected group G. Then D is a twisted Dirac operator plus 
a bundle map. 

PROOF. Let 7r: G —> Aut E be the representation which defines E and let a: g ®E —> E 
be the symbol D. 

First we consider the case when dim G is odd. Then the spin representation A: 
Spin(g) —» Aut(5) is irreducible. Since G is compact we define an invariant innerproduct 
on E and scale it so that <J{&~X ) C U(E). This is possible since a and n commute by the 
invariance of D. By Lemma 4.1 a induces an action Spin(g) on E and E = mS, that is E 
is m copies of S with the action of Spin(g) induced by a being A on each summand. 

Since G is simply connected the adjoint representation Ad: G —+ SO(g) lifts to spin 

(4.7) £Ad:G->Spin(g). 

Differentiating this gives a map s Ad: g —» spin(g) and then the spin representation 
x:g —End(S)by 

(4.8) X(X) = A{sAd(X)). 

Since a and IT commute and A is induced from a it follows that \ and TT commute. Thus on 
each summand TT is a multiple of x- This can be restated as E = S <S> V, with dim V = m, 
and 7r = x ® ̂  for a representation .STT: G —* Aut K. Thus E is a twisted spin bundle. 

The symbol D is the same as that of a twisted Dirac operator, see Section 7, and the 
result follows from Lemma 2.1. 

The case when dim G is even is similar. Here the spin bundle splits: S = S* 0 S~ and 
we have two Dirac operators P* and P~. The result is now D = P*' ® STT+ + P~ (8) sir- + <p 
for twistings sn+ and 57r_ and bundle map </?. 

5. The inversion map. On the Lie group G define the inversion map i:G —» G by 
i(x) = x~l. For x € g let L* be the Lie derivative in the direction X. Then we have 

A/"fe) = 4/(exp(dr-g))|^) 
(5.1) <w v ' 

= l im/ (exp(^ .g ) - / (g ) ) / r . 

If the homogeneous bundle E is trivialized by using left translation we can decompose 
the space of sections as 

(5.2) CO0(E) = Co°(G)(g)E. 

Relative to this decomposition the operator D = £, </?/ ® Xt, as given in (3.1), becomes 

(5.3) D = YJLXi^iPi. 
i 

The Lie derivative and inversion map interact as follows. 
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THEOREM 5.1. Lxif o i)(g) = -(LAdgXf) o i(g). 

PROOF. By the Baker-Campbell-Hausdorff formula 

(5.4) exp(Z • g)-1 = exp(-rAd(g)X) • g"1 + 0(f). 

The lemma now follows by using the definition (5.1). 
The representation TT: G —» Aut£ which gives rise to the homogeneous bundle E, can 

be lifted to the Lie algebra g and extended to the universal enveloping algebra U. This 
gives an action of q, and hence Zl, on E. ¥ovX E q we have the map ir(X): E —> E which, 
by the trivialization of E using left translation, induces a map TT(X): E —•* E. If s: G —• E 
is a section then s o i is another section. The relationship between 7T(JC) and i is given by 
the next result. 

THEOREM 5.2. ir(X)(s O 0(g) = (it(MgX)s) o i(g). 

PROOF. Let ty and ry be left and right translation by y G G, that is 

(5-5) W = . K & , O-fe) = ©;-'. 

Then we have / o ty — ry o /. Now 7r(Z) on E is defined by left translation so we have 

(5.6) -K(X)ry-x = ly-x (Ad.y o X). 

The result of the lemma follows from the computation: 

<X){s o /)(g) = €g7r(X>/V1 &) 

= (7T(AdgX)s)lfe). 

We can now prove the main theorem of this section. 

THEOREM 5.3. Let D be a first order invariant differential operator on E of the form 
D = £/ Lxt <g) 7r(pi). Then D has spectral symmetry. 

PROOF. By applying Lemma 5.1 and Lemma 5.2 we have 

(5.8) D(f o 0(g) = - ( (Adg • DY)i(g). 

Since D is invariant Ad gD = D ad so we have 

(5.9) D(foi) = -(Df)oi 

Thus / intertwines the positive and negative eigenspaces. 

REMARK 5.4. The same proof gives that any odd order operator D of the form D = 
53 -£>Xi ''' -Lxt <8>ir(pi) has spectral symmetry. The results of Section 3 using theJacobson 
density lemma show that in the case when TT: G —> Aut E is irreducible all operators have 
the appropriate form. Here the upper case subscript is a multiindex: I = {i\,..., /*). 
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6. Spectral symmetry and equivariant symmetry. 
Let T be a closed subgroup of G. Then, by integration, if D is an operator on a bundle 

E over G we obtain an operator D' on the induced bundle E' over G/T. However, it is 
possible for D to have spectral symmetry while D' does not. It follows from [6] that the 
Dirac operator on SU(2) has spectral symmetry while it is well known that the Dirac oper­
ator on SO(3) does not have spectral symmetry. Since the adjoint of SO(3) does not lift to 
spin, the spin bundle on SO(3) is not homogeneous for SO(3) = SO(3) x SO(3)/ SO(3). 
The two spin structures on SO(3) are homogeneous for SO(3) = S0(3)/{1}, the trivial 
structure, and SO(3) = SU(2)/{1, — 1}, the nontrivial structure. To answer the question 
of the descent of spectral symmetry we need the notion of equivariant symmetry. 

Let the spectrum of D have eigenvalues {k} with associated eigenspaces {£/*}. Then 
since D is invariant we have an action of G on each Uk. The spectrum of D has equivariant 
symmetry if U^ — U-k as representations of G for all k. 

THEOREM 6.1. IfD has equivariant spectral symmetry on a homogeneous bundle E 
over G then D' has spectral symmetry on E' over G/T. 

PROOF. By left translation we decompose the space of sections 

(6.1) L2(E) = J2xnxVx®E, all A, 

here the sum is over all highest weights A with n\ its multiplicity and the ~ over the sum 
denotes completion. From this we get the decomposition 

(6.2) L2(E') = X > A Vx ® E, A such that T C Ker TTA, 

where the sum is over those highest weights A such that 7r\\T is trivial, or equivalently 
T C Ker7rA. We then have 

(6.3) &\nxVx®E=lD\n*V*®E r c K e ™ A 
I not defined otherwise. 

Since D has equivariant symmetry D\n\ V\<g)Eis symmetric and so D' is symmetric. 
To complete this section we give the following example to show that there are op­

erators on groups other than SU(2) which have spectral symmetry but not equivariant 
symmetry. 

The simplest first order differential operator to write down is R = E/ Lxt ® ^(^i) 
summed over a basis {Xf} of g. Decompose C°°(E) as follows: 

(6.4) L\E) = L\G)®E = f:xVx®E=Y:9Ve(x). 

Here V\ is irreducible representation with highest weight A (and V^X) has highest weight 
0) with each term repeated as often as its multiplicity. Now by invariance VQ is an invari­
ant space for R and indeed for any invariant operator. By completing the square we see 
R is constant on VQ: 

(6.5) R\V<KX)=\(U+P\\2 + \\I* + P\\2-P + P\\2-\\P\\2) 
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where || ||2 is the square of the Killing form norm (with the positive sign), [i is highest 
weight of 7r: G —• Aut E (now taken to be irreducible) and 0 is a highest weight in 7rA ®7r̂ . 
In fact 8 has the form 6 = A+a where a is a weight of /i (not all such weights necessarily 
occur). Then the eigenvalue of R is 

-2(a ,A) + 2(/i - a,p) + ||M||2 - ||a||2 = -2(a,\) 
(o. o) 

+ (/i — a,/i + a + 2p). 

Note that (/i — a, /i + a + 2p) is bounded and nonnegative. It is clear from this that R 
does not have equivariant symmetry. 

7. Twisted Dirac operators over a lie group. Let G be a compact simply con­
nected nonabelian Lie group and let x: G —+ Aut S be the spin representation of G. The 
spin bundle over G is denoted by S and has fiber S. Let IT: G —» Aut V be another repre­
sentation of G and let V be the homogeneous vector bundle of G associated with ir with 
fiber V. By left translation we can trivialize both S and V as S = G x S and V = G x V. 
Let g be the Lie algebra of G and then, using left translation, we trivialize the tangent 
bundle T(G) = GXQ. Thus we can regard elements X E g a s a left invariant vector field, 
s G S as a left invariant spinor and vG F as a left invariant section of V. 

The bundle V has a connection V which is associated to the Levi-Civita connection 
of G. This map 

(7.1) V: T(T(G) x V ) - » T(V), 

which restricted to left invariant section to give a map: 

(7.2) V:q®V^V. 

The twisted spin bundle if S®V which has the connection given by 

(7.3) Vxis ® v) = V;Ks) (8) v + 5 (8) V^(v), 

where Vjr(s) is the spin connection and V^(v) is the connection of (7.1). If X, s and v 
are left invariant we can identify them as elements of g, S and V. Thus we have the spin 
connection as a map. 

(7.4) V:Q®S®V->S®V. 

An easy calculation simliar to one in [5], gives the following result. 

LEMMA 7.1. a. The associated connection V when restricted to left invariant section 
is given by V^(v) = ^TT(X)V. 

b. The twisted spin connection on S ® V when restricted to left invariant sections is 
given by Vjrfa ®v)=\ (x(A>) ® v + \s <g> 7r(A>. 

Let £i , . . . , £„ be an orthonormal basis of g with respect to the Killing form. Then the 
twisted Dirac operator is given by 

(7.5) P='£EiVEt, 
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where Et acts by Clifford multiplication oh S and V^ is the twisted spin connection. For 
a vector field X let Lx be a Lie differentiation in the direction X. Using left invariance 
we can trivialize the setions of the twisted spin bundle: 

(7.6) T(S ® V) ^ C°(G) (8) S® V. 

PROPOSITION 7.2. Relative to the trivialization of (7.6) the twistedDirac operator is 
given byP(f®s®v) = E/(Xff|/)®£/J®v+^ E/ /® (£/x(£/>)<8>v+± £,•/»£**»*(£,>. 

PROOF. This is a routine calculation using Lemma 7.1. 
Define the operators Q, Mand Tby the following formula relative to the trivialization 

(2.6): 

0 = £££l<g>£,®l, 
i 

(7.7) M=£l®£, - X (£ / )®1, 

i 

Then Proposition 7.2 can be restated as follows. 

COROLLARY7.3. P=Q+\M+\T. 

A key step in establishing spectral symmetry of P is to calculate the anticommutators 
of Q, M and T. Recall that for two operators, A and B, the anticommutator is {A9B} = 
AB + BA. We need some notations: A is the Laplacian, Q is the Casimir element of the 
universal enveloping algebra and three other operators are defined as follows: 

fo = E-£*,®x(£/)®i, 

(7.8) *„ = £ I*, ®1<8> *<£/), 

i 

i 

The anticommutators are then given by: 
LEMMA 7.4. /. {Q9M} = -6Rx 

il {Q,T} = -2R„ 
iil {M, T} = -6RT 

iv. Q1 = - A ® 1® 1+2/fr 
v. M2 = 9\\p\\2 

vi. T2 = 2RT + 1 ® 1 (8) TT(Q), 

w/zere p is half the sum ofthepostive roots and || || is //ze negative of the Killing form. 

PROOF. Parts i., iv. and v. can be found in [5]. The other parts follow by direct cal­
culation. We shall illustrate this in the case of ii. and omit the others. The calculation 
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is: 

{& T} = E ( ^ / ® EiEj ® ir(Ej) + X£/ ® £y£, ® TT(JS») 

= E ̂  ® W + W ® <Ej) 
(7.9) ,y 

= - 2 X ) ^ , ® l « ) ^ i ) -

Now decompose the sections of S®V under the action of G. First note that we have 
identified 

(7.10) r(S ® V) = C°°(G) ® 5 ® K. 

Now by the Peter-Weyl theorem C°°(G) = © FA> where V\ is the isotopic component of 
the type A. Next decompose each V\®S®V = (BSQ into isotopic components where SQ 
has type 0. By the results of [5] we see that each SQ is invariant under M and Q. Hence 
these spaces are also invariant under T. Furthermore from [5] we have: 

PROPOSITION 7.5. When rank G > 1, t rM |^ = 0. 

On each space SQ the operators the operators Rx, R« and RT are constant. 

PROPOSITION 7.6. The restrictions ofRx, R^ andRj to SQ are constant. 

PROOF. This is an immediate consequence of the following polarization identities: 

Rx = - ( - ( I ® x ® 1)(Q) +I(Q) ® 1 ® 1 + 1 ® x(Q) ® l ) , 

(7.11) R7T = -(-(L ® 1 ® TT)(Q) + L(Q) ® 1 ® 1 + 1 ® x(H) ® TT(Q)), 

RT = - ( - ( 1 ® X ® O(^) + 1 ® X(^) ® 1 + 1 ® 1 ® TT(Q)), 

since the Casimir element Q is constant on isotopic components. 

COROLLARY 7.7. The restrictions of{P9M} andP2 to Se are constant. 

PROOF. By Lemma 6.4 both {P, M} and P2 can be expressed in terms of A, 1 ® 1 ® 
7r(Q) and the operators Rx, R^ and RT. Each of these is constant on SQ. 

THEOREM 7.8. The operator P has spectral G-symmetry. 

PROOF. We establish that P has spectral symmetry on Se, proceeding as in [5]. Let 
a = 3||p||. Then since trMlSfl = OandA/jSg = a2 we can decompose SQ = *Sj®*S^ into 
the a and —a eigenspaces of M, with dim 5J = dim S^. Let P\SQ have block matrix with 

relative to this decomposition. Then we calculate: 

(7.12) {P,M}={2^ _2°aD)=kI, 

for some constant k. Thus D — —A and so XXP\SQ = 0. Since P2\SQ = (3, a constant, the 
eigenvalues of P\SQ are \f$ and — y/0. Since tr P\SQ = 0 these have equal multiplicity 
and the theorem is proved. 
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8. Elliptic operators on a manifold with a group action. Let TV be a manifold and 
G a compact simply connected nonabelian Lie group of rank 2 or greater which acts on 
N by isometries such that all the isotropy groups are discrete. We use the local basis, 
E\9...,Er, Er+\ , . . . , 2s„ for T(N) which is given in [5]. For convenience we summarize 
its construction. 

Let E\,..., Er be an orthonormal basis for q. Then the formula 

(8.1) Ef(p) = Jim l- (fexp(tEp) -f(pj) 

defines a global vector field on N associated to each element of q. We use the same letters 
E\,..., Er to denote the vector fields on N associated to the elements E\,..., Er of q. For 
p E N we have the isotropy group Gp and hence a Gp -slice D in N, see [9]. We may 
take D to be the disc with center/? and Er+ \,..., En to be an orthonormal basis of T(D). 
Let U = GD, an open set in N, and use the group action to extend 2SH-I , • • •, En to be a 
vector field on U. Thus we have an orthonormal basis E\,..., En for T(U). We shall use 
the convention that Latin subscripts run from 1 to r and Greek subscripts from r + 1 to 
n. The subbundle V C T(N) spanned by E\,... 9Er is the vertical bundle and is trivial: 
V = Nxq. The orthogonal complement H to V is the horizontal bundle and locally has 
the basis E^-\,. ..,E„. There is the decomposition 

(8.2) T(N)=V®H. 

Let W be a complex vector bundle over N such that the action ofGonN lifts to an 
action on W. Using the action of G we can decompose 

(8.3) W=YJWH®WG. 

Without loss of generality we may suppose that there is only one term in the sum (8.3). 
Further we obtain this decomposition by having G act trivially on WH. We also require 
that WQ is a homogeneous bundle on G which has been transferred to Af by the G action. 
On this bundle W we have the split connection: 

(8.4) V ^ V ^ O l + l ^ V 0 . 

For this connction we note VHEt = 0 and VGEa = 0, using the convention 1 < / < r 
andr+ 1 < a < n. 

LetD: C°°(W) —> C°°(W) be an elliptic invariant first order differential operator. Then 
the symbol of D is a(D): T(N) ®W —• W. Using the splitting (8.2) we have a(D) = 
cr(D)H + o{D)v where 

a{D)H\H® W= a(D)\H® W 

a(D)H\V®W=0 
(8.5) 

a(D)v\H®W=0 
a(D)v\V®W= a(D)\H0 W, 
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LEMMA 8.1. The operator D splits D = DH + DG + (p where DH = a(D)HVH <g> 1, 
Dy = &(D)v\ ® VG and (f is a bundle map. 

PROOF. From the basic definitions of a connection and the symbol, since D is first 
order, we have 

(8.6) D = a(D)V + (f. 

Now a(D) = CT(D)H + cr(D)y and since V is the split connection the result follows. 

COROLLARY 8.2. The operator Dy is obtained from a twisted Dirac operator on G. 

PROOF. By construction the operator Dy is obtained from an operator on G. Since 
D is elliptic so is Dy on G. The corollary follows for the results of Section 4. 

DEFINITION 8.3. The operator D is a split operator if </> = 0. 

COROLLARY 8.4. A twisted Dirac operator on N defined by using the split connec­
tion is split 

As in Section 7 we can write Dy = QG + \M+ ^T where 

i 

(8.7) A f = X ; i ® £ / x ( £ / ) ® l , 

T = £ 1 ® Ei ® TT(EJ), 
i 

act on C°° (WH) ®SG®EG. Here WG = SG (g> EG is the prepresentation of WG as a twisted 
spin bundle obtained from Corollary 8.2. 

An easy calculation then gives the following anticommutators. 

LEMMA 8.5. Let UJ be the volume form on N andX a vector field on N associated to 
an element X G cj then 

i. {DH,LJX} = 0 

il {QG,u;X} = -2(Lx®l®l) 

Hi. {M,ojdQ = - 6 ( l ® x ( J 0 ® l ) 
iv. {r,o;Jr} = -2(l®l(g)7r(J0). 

PROOF. The first part follows from the use of the split connection. The other parts 
are straightforward computations. 

COROLLARY 8.6. {D,uX} = -2(LX® 1 ® 1) - 3(l <g> x(X) ® l) - (1 <g> 1 <g> TT(X)) 

for a split operator D. 

LEMMA 8.7. The commutator [D2, uX\ = - Ei LEi ® [Ei9X\ <g> 1 - E/1 ® [EhX] ® 
ir(Ei)for a split operator D. 
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PROOF. We start with 

[Dl,uX\ = [D,{D,wX}] = [tfy^X] 

= - 2 E ktiA ® E> ® * - 3 E •**, ® [£>>*] ® 1 

- | £ i ® [ £ / x ( £ / ) , x ( * ) ] ® i 
(8.8) z / 

-lE1®^.^]®^/) 

Now an easy calculation gives 

(8.9) £I#X(£.-),XCX)] = 0 

and 

(8.10) £ 1 0 [£,,*] ® TT(^) = - £ 1 ® £, ® 7r([£,-,X\). 
i i 

Using [£7,X| = T,k(Ek, [Et,X\)Ek, and the invariance of the innerproduct: 

(8.11) (Ei9[Ek9X]) =-([Ei9X\,Ek) 

reduces (8.8) to the result of the lemma. 
The immediate use of this lemma is to investigate the commutator of D2 with the spin 

representation. As in the previous lemma and unless otherwise stated we shall restrict 
our attention to the case when D is a split operator. 

THEOREM 8.8. [D2
9XY] = -[Rx + RT,XY], where Rx and RT are given by the for­

mulae (7.8). 

PROOF. We calculate: 

[D2,XY] = [E?,UX\UY + LJX[I?9UY] 

= -YJLEi®([Ei9X\Y+X{EuY])®\ 
i 

(8.12) - E l ® m,W + X[Ei, Y]) ® *(Ei) 
i 

= - £ LE, <8> ME,),XY] ® 1 - £ 1 ® MEi),XY] ® *iEt) 
i i 

= -[Rx,XY]-[RT,XY]. 

COROLLARY 8.9. D2 +RX+RT commutes with the action o/spin(g) via 1 ® A ® 1 
where A is the spin representation A: spin(g) —> EndS^. 

Now decomposeI?{W) = E V\ into eigenspaces of D2 + i?x +Rj. Since the operator 
commutes with the representation 1 ® A ® 1 we have 

(8.13) vx = V»®SG, 
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where Vx C L2{WH) 0 EG- Next we can decompose 

(8.14) FA = £ S A * 
e 

into isotopic components under the x 0 TT action of q. 

LEMMA 8.10. ixM\SXe = 0. 

PROOF. AS in the case of M defined on a group we find 

(8.15) t r M = 0 , M2 = 9\\p\\2 

Thus SG = S$j 0 Sfc decomposes into eigenspaces of M with S^ = Sg = 2k~{ Vp(k = \t 

for I even or k = \{t — 1) for I odd). Then decomposing V\ gives 

( 8 1 6 ) =E(^©%)-
e 

Since S£ = 5^ we have S*xe = S^0 and so trM\SXe = 0. 

LEMMA 8.11. i. {M,DH} = 0 

ii. {M,DV} = -6RX - 3RT + 9\\p\\2. 

PROOF, i. This follows from the splitting into vertical and horizontal components. 
ii. This follows from Dy = QG + jM+ i r and Lemma 7.4. 

By the polarization identities: 

Rx = --UL <g> 1 <g> 1 + 1 <g> x <8> 1)(^) - £(£2) (8) 1 (8) 1 - 1 (8) x(^) 0 l) , 
(8.17) \ 

RT = - - ( ( l ® x <8> 1 + 1 <8> 1 ® ^X^) - 1 ® X(") ® 1 - 1 ® 1 ® TT(Q)), 

where Q is the Casimir element, we see that both Rx and RT are constants on S\Q. Thus 
we have {M,D}\S\o is constant. 

THEOREM 8.12. The operator D has G spectral symmetry. 

PROOF. This proceeds as in the proof of Theorem 7.8. We note that, since S\Q C V\, 
S\Q is a subspace of an eigenspace of D2 +RX +RT. Thus D2 \S\Q is constant. By the linear 
algebra used in the proof of Theorem 7.8 tr D\S\Q = 0- Thus P has two eigenvalues \i 
and —\i on S\Q and these have equal multiplicity. 

9. The case of an abelian group action. Let Tl (with t > 2) act on N with discrete 
isotropy subgroups. Let {E\,... ,E^} be an orthonormal basis for the Lie algebra t of 
Tl\ otherwise we keep the notation of Section 8. With the exception of the proofs of 
Lemma 8.10 and Theorem 8.12 the calculations of Section 8 still hold. However, some 
of these hold in a trivial fashion since we have 

(9.1) M = Rx=RT = 0. 

Let E = E\,...,Et_\ and F = Eg. Then we have the following calculation. 
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LEMMA 9.1. i. {uHE,DH} = 0 

ii. {uHE,QG} = 2LF®\®\ 
iil {UJHE, 7} = 2(1 ® 1 ® ?r(F)). 

PROOF. This follows as in [5]. 

COROLLARY 9.2. {vHE9D} = 2LF <g> 1 ® 1 + 1 ® 1 ® TT(F). 

PROOF. We calculate: 

[Z^o;„£] = [A {A^£ } ] 
(9.2) = 2 [ A ^ F ® 1 ® 1] + [A 1 ® 1 ® <F)] 

= 0, 

since Z) is invariant and Tl is abelian. 
Now we decompose L2(S®E) = £ FA into eigenspaces of A2 and further decompose 

FA under the action of Tl: 

(9.3) Vx = ^Sex. 

Now both iLp and ir(F) act as constants on any irreducible representation space of Te, 
remembering that since Te is abelian such spaces are one dimensional over C. Thus we 
can proceed as in [5] and conclude the following result 

LEMMA 9.4. /. {UJHE9D}\SXO is constant. 

ii. tru>HE\S\9 = 0. 

As a consequence of this we have the main result of this section. 

THEOREM 9.5. On S\e, D has two eigenvalues \i and —ji which have the same mul­
tiplicity. 

PROOF. This is similar to the result in [5]. We note that the proof proceeds in the 
same way as that of Theorem 7.8 and UJHE in place of M. 
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