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Abstract

The Chern–Schwartz–MacPherson class of a hypersurface in a nonsingular variety may be
computed directly from the Segre class of the Jacobian subscheme of the hypersurface; this has
been known for a number of years. We generalize this fact to arbitrary embeddable schemes: for
every subscheme X of a nonsingular variety V , we define an associated subscheme Y of a projective
bundle V over V and provide an explicit formula for the Chern–Schwartz–MacPherson class of X
in terms of the Segre class of Y in V . If X is a local complete intersection, a version of the result
yields a direct expression for the Milnor class of X .

For V = Pn , we also obtain expressions for the Chern–Schwartz–MacPherson class of X in terms
of the ‘Segre zeta function’ of Y .

2010 Mathematics Subject Classification: 14C17 (primary); 14J17 (secondary)

1. Introduction

1.1. Context and preliminaries. The goal of this paper is the generalization
to arbitrary subschemes of nonsingular varieties of a twenty-year old formula for
the Chern–Schwartz–MacPherson class of hypersurfaces, in terms of the Segre
class of an associated scheme. We first recall the general context and the relevant
definitions; the hurried reader may want to skip ahead to Section 1.2 for the
statement of the main result for subschemes of projective space.

Every nonsingular variety X has a canonically defined class in its homology,
namely the total Chern class of its tangent bundle. Deligne and Grothendieck
conjectured, and MacPherson proved [Mac74], that (at least in characteristic 0)
this class is a manifestation of a functorial theory of Chern classes which assigns

c© The Author 2019. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the
original work is properly cited.

https://doi.org/10.1017/fms.2019.25 Published online by Cambridge University Press

http://journals.cambridge.org/action/displayJournal?jid=FMS
mailto:aluffi@math.fsu.edu
https://doi.org/10.1017/fms.2019.25
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a distinguished homology class to every complex projective variety X . The class
associated with X is called the Chern–Schwartz–MacPherson (CSM) class of X ,
cSM(X). (Brasselet and Schwartz proved [BS81] that the class cSM(X) agrees via
Alexander duality with the class defined earlier by Schwartz, [Sch65a, Sch65b].)
MacPherson’s theory can be refined to give a class in the Chow group of
X [Ful84, Example 19.1.7], and extended to embeddable schemes over arbitrary
algebraically closed fields of characteristic 0 [Ken90, Alu06], and this is the
notion we adopt in this paper.

The CSM class of X encodes interesting information about the variety X .
For example, if X ⊆ Pn

C is a complex projective variety, then the degrees
of the components of cSM(X) carry the same information as the topological
Euler characteristics of its general linear sections [Alu13]. Chern–Schwartz–
MacPherson classes of classical varieties such as Schubert varieties and
determinantal varieties have been studied extensively and are the objects of
current research (see, for example, [PP95, AM09, AM16, RV18, Zha18, FR18,
AMSS, FRW]).

In [Alu99], we proved a formula for the Chern–Schwartz–MacPherson
class of a hypersurface in a nonsingular variety, in terms of the Segre class
of its singularity subscheme. (In particular, this yields a formula for the
topological Euler characteristic of arbitrary hypersurfaces of nonsingular
varieties.) Applications include computations in enumerative geometry [Alu98],
singularities of logarithmic foliations [CSV06], Sethi–Vafa–Witten-type
formulas [AE09], and others. By inclusion–exclusion, the case of hypersurfaces
suffices in order to compute CSM classes of subschemes of nonsingular
varieties. This fact is at the root of most implemented algorithms for the
computation of CSM classes in projective spaces and more general varieties;
see [Alu03, Jos15, Hel16, Hel17a] and others. (To our knowledge, the algorithm
presented in [MB12] is the only one currently available that does not rely on the
result for hypersurfaces from [Alu99] and inclusion–exclusion.)

One obvious problem with inclusion–exclusion is that the number of needed
computations grows exponentially with the number of defining equations. A
second problem is that the degrees of the hypersurfaces one needs to consider
also grow with the number of defining equations: if, for example, the subscheme is
defined by r equations of degree d , inclusion–exclusion requires the computation
of the CSM class of a hypersurface of degree rd . This is taxing for both Gröbner
basis and numerical computations. For these and for more conceptual reasons,
it would be desirable to have direct generalizations of the result in [Alu99] to
more general schemes. Such a generalization should express the CSM class of
a scheme X in terms of the Segre class of a related scheme determined by the
singularities of X , without invoking inclusion–exclusion. We raised this problem
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in [Alu05, Section 4.1], and to our knowledge it has so far remained open in
the intended generality. Fullwood [Ful14] gave an answer for global complete
intersections M1 ∩ · · · ∩ Mk such that M1 ∩ · · · ∩ Mk−1 is nonsingular. Complete
and local complete intersections are also treated in references with different
viewpoints (among these [BLSS02, MSS13, CBMS]); but a result along the
lines envisioned above had, to our knowledge, not been formulated, even in the
(unrestricted) complete intersection case.

The purpose of this article is to rectify this situation. For ι : X ↪→ V an
arbitrary closed embedding of a scheme X in a nonsingular variety V , we
provide a formula for ι∗cSM(X) ∈ A∗V in terms of the Segre class s(Y ,V ) of
an associated subscheme Y of a projective bundle V over V . In the hypersurface
case, this formula will agree with the result of [Alu99]. In the case of local
complete intersections, it will yield an expression for (the push-forward to V of)
the so-called Milnor class of X . In general, the formula will make no assumptions
on X , other than that it can be embedded as a closed subscheme of a nonsingular
variety. In fact, the formula will have nontrivial content even if X is nonsingular.

1.2. The result, in projective space. In this introduction, we present the result
in the particular case in which V = Pn . This leads to some simplifications, and
is possibly the most useful in concrete computations. In Section 2, we state the
formula for arbitrary nonsingular ambient varieties V .

Let ι : X ↪→ Pn be a closed embedding; then X may be defined by a
homogeneous ideal generated by a set of forms F0, . . . , Fr of a fixed degree d .
Let Y denote the subscheme of Pn

× Pr defined by the ideal

(F0, . . . , Fr )+

(
y0
∂F0

∂xi
+ · · · + yr

∂Fr

∂xi

)
i=0,...,n

.

Here x0, . . . , xn are homogeneous coordinates in Pn , and y0, . . . , yr are
homogeneous coordinates in Pr . Denote by π : Pn

× Pr
→ Pn the projection and

let H , respectively, h denote the pull-backs of the hyperplane classes from Pn ,
respectively, Pr .

THEOREM 1.1. With notation as above, assume r > n. Then

ι∗cSM(X) = π∗

(
(1+ H)n+1(1+ h)r+1

1+ d H + h
(s(Y ,Pn

× Pr )∨ ⊗Pn×Pr O(d H + h))
)
,

(1.1)
where s(Y ,Pn

× Pr ) is the Segre class of Y in Pn
× Pr .
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(This statement uses the notation⊗, ∨ introduced in [Alu94, Section 2]. We recall
this notation in Section 2.3.) For instance, the degree of the class on the right-hand
side equals the Euler characteristic of X .

Note that the choices of the integer d � 0 and of the generators Fi are arbitrary.
In particular, we could choose some of the Fi to coincide, or even to be 0, in order
to guarantee that r > n. Every such choice leads to an expression for the CSM
class of X .

The main result we present in Section 2 (Theorem 2.5) will pose no restriction
on the number r of generators of a defining ideal for X . The case r > n leads
to a direct formula for the CSM class of X , of which Theorem 1.1 is a particular
case. Another case of interest is r + 1 = codim X , that is, the case of a global
complete intersection. Recall that the Milnor class of a complete intersection X
is the (signed) difference of its CSM class and of the Chern class of the virtual
tangent bundle of X :

M (X) = (−1)dim X (cvir(X)− cSM(X)). (1.2)

(See, for example, [PP01]. To our knowledge, this terminology is due to
Yokura, [Yok99a, Yok99b].)

THEOREM 1.2. Let ι : X ↪→ Pn be a complete intersection of r+1 hypersurfaces
of degree d. Then with notation as above

(−1)dim X+1ι∗M (X)

= π∗

(
(1+ H)n+1(1+ h)r+1

1+ d H + h
(s(Y ,Pn

× Pr )∨ ⊗Pn×Pr O(d H + h))
)
.

(1.3)

It is worth stressing that the right-hand sides in (1.1) and (1.3) are identical.
The claim is that for r � 0 this formula yields the CSM class of X , while if X
is a complete intersection of r + 1 hypersurfaces of a fixed degree d , the same
formula yields the Milnor class of X (up to a sign).

1.3. One example. The formulas stated above can be implemented easily in
Macaulay2 [GS], using the package CharacteristicClasses.m2 written
by Helmer and Jost [HJ] to compute the relevant Segre class: this package
can handle Segre classes of subschemes of products of projective spaces, and
computing the push-forward amounts to simply extracting the coefficient of
hr . The same package also implements the computation of CSM classes (by
the inclusion–exclusion method mentioned above), so it may be used as an
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independent verification of results obtained by applying Theorems 1.1 and 1.2.
We illustrate the application of Theorem 1.2 to the complete intersection of the
singular hypersurfaces

Z1 : {x1x2x3 = 0}, Z2 : {x0x2
1 + x3

2 = 0}

in P6. The scheme X = Z1 ∩ Z2 consists of three components of codimension 2,
one of which (supported on a linear subspace) is nonreduced. The following
Macaulay2 session implements the computation of the Segre class s(Y ,P6

×P1)

for the scheme Y associated with X . (We omit inessential output.)
i1 : load ("CharacteristicClasses.m2");

i2 : R=MultiProjCoordRing({6,1});

i3 : r= gens R

o3 = {x , x , x , x , x , x , x , x , x }
0 1 2 3 4 5 6 7 8

i4 : Y=ideal(r_1*r_2*r_3,r_1ˆ2*r_0+r_2ˆ3,r_8*r_1ˆ2,r_7*r_2*r_3+r_8*2*r_0*r_1,

r_7*r_1*r_3+r_8*3*r_2ˆ2, r_7*r_1*r_2)

2 3 2 2
o4 = ideal (x x x , x x + x , x x , x x x + 2x x x , x x x + 3x x , x x x )

1 2 3 0 1 2 1 8 2 3 7 0 1 8 1 3 7 2 8 1 2 7

i5 : Segre(Y)

6 6 5 5 4 4 3 3 2 2
o5 = 181h h - 240h - 167h h + 72h + 69h h - 16h - 19h h + h + 3h h + h

1 2 1 1 2 1 1 2 1 1 2 1 1 2 1

Here H = h1 and h = h2. The result is that

s(Y ,P6
× P1) = (H 2

+ 3H 2h + H 3
− 19H 3h − 16H 4

+ 69H 4h + 72H 5
− 167H 5h − 240H 6

+ 181H 6h) ∩ [P6
× P1
]

(after push-forward to the ambient space). It is then straightforward to compute

(1+ H)7(1+ h)2

1+ 3H + h
(s(Y ,P6

× P1)∨ ⊗P6×P1 O(3H + h))

= (H 2
− 3H 3

+ H 4
− 17H 5

+ 42H 6)

− (4H 2
− 9H 3

+ 29H 4
− 107H 5

+ 363H 6)h.

According to Theorem 1.2,

ι∗M (X) = (4H 2
− 9H 3

+ 29H 4
− 107H 5

+ 363H 6) ∩ [P6
]

is the Milnor class of X . Since X is a complete intersection of two hypersurfaces
of degree 3,

ι∗cvir(X) =
(1+ H)7

(1+ 3H)2
∩ [P6

] = (9H 2
+ 9H 3

+ 54H 4
− 90H 5

+ 369H 6) ∩ P6.

https://doi.org/10.1017/fms.2019.25 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.25


P. Aluffi 6

It follows that

ι∗cSM(X) = ι∗(cvir(X)− (−1)dim XM (X))
= (5H 2

+ 18H 3
+ 25H 4

+ 17H 5
+ 6H 6) ∩ [P6

].

(This can be confirmed independently by [HJ].)
Note that Z1 and Z2 are both singular, and their singular loci have nonempty

intersection. It follows that, in this example, the complete intersection X cannot
be represented as a hypersurface in a nonsingular subvariety of P6; therefore, it
does not satisfy the hypotheses of [Ful14, Hel17b].

The requirement in Theorem 1.2 that the degrees of the defining hypersurfaces
coincide leads to the particularly explicit formula (1.3). The more general
result presented in Section 2 (Corollary 2.6) will dispense of this requirement;
an expression for the Milnor class will be obtained for every local complete
intersection represented as the zero-scheme of a regular section of a vector bundle
on a nonsingular variety.

1.4. Organization of the paper. The paper is organized as follows. In
Section 2, we provide a full statement of the main result (Theorem 2.5) and give
several illustrating examples, including the derivation of Theorems 1.1 and 1.2.
In Section 3, we prove the main result. The proof relies on the hypersurface
case given in [Alu99], on calculus of constructible functions, and on intersection-
theoretic computations. A key ingredient in the proof is the construction of
an auxiliary hypersurface, an idea we borrow from [CBMS]. As we show in
Section 3.2, the scheme Y is the singularity subscheme of this hypersurface.
In [CBMS], this hypersurface is constructed in the local complete intersection
case, and it is also used to obtain formulas for Milnor classes (see Section 3.6).
We note here that the scheme Y was also considered by Ohmoto [Ohm] and
Liao [Lia].

As an application of the main result, we expand in Section 4 on the case of
subschemes of projective space. Recent results on Segre classes lead to alternative,
and in some way more efficient, formulations of the result in this case.

1.5. Another example. The result implies that expressions such as (1.1) (or
the more general version (2.4) given in Section 2) are independent of the choices
leading to these expressions: in the case of subschemes X of Pn these choices
are the degree d � 0 of the generators of a defining ideal, the number r > n of
generators, or in fact the generators themselves. We do not know a more direct
proof of this independence. In fact, X may be replaced by any scheme with
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the same support as X without affecting these expressions. While this fact is an
immediate consequence of the main result, it seems quite nontrivial in itself.

We illustrate this fact with an example. Let X be the scheme with ideal (x2
0 ,

x0x1) in P2; so X is supported on a line P1, with an embedded component at the
point x0 = x1 = 0. We choose the generators F0 = x2

0 , F1 = x0x1, F2 = 0 for the
ideal of X , which determine as described above the subscheme Y of P2

×P2 with
ideal

(x2
0 , x0x1, 2x0 y0 + x1 y1, x0 y1).

According to CharacteristicClass.m2,

s(Y ,P2
× P2) = (Hh + H 2

− Hh2
− 2H 2h + 3H 2h2) ∩ [P2

× P2
];

it follows that the class appearing on the right-hand side of (1.1) is

(H 2
+ (H − H 2)h + (H + 2H 2)h2) ∩ [P2

× P2
].

Performing the same computation using the reduced P1, with generators F0 = x ,
F1 = 0, F2 = 0, yields the class

((H + H 2)h + (H + 2H 2)h2) ∩ [P2
× P2
].

The classes differ, but the coefficient of h2, that is, their push-forward to P2, agree
(and yield cSM(P1) = c(TP1) ∩ [P1

] as prescribed by Theorem 1.1).
The results of this paper will prove that CSM classes of schemes X with the

same support agree as classes in the Chow group of every nonsingular variety
containing X . It would be desirable to have a direct proof that classes obtained in
this fashion are independent of all choices as classes in the Chow group A∗X red.

1.6. Relations with other results, and possible extensions. As mentioned
above, a different formula for the Milnor class of a complete intersection is
given in [CBMS], using a construction similar to the one used in this paper; see
Section 3.6.

The formula for CSM classes of hypersurfaces in [Alu99] may be seen as a
manifestation of an identity of characteristic cycles; see [PP01] for this point of
view and an alternative proof of the formula in [Alu99]. It is a natural project to
provide a characteristic cycle version of the generalization obtained in this note.

To our knowledge, the hypersurface formula is not implied by the motivic
theory for characteristic classes of hypersurfaces, as presented in [CMSS10]
(and extended to complete intersections in [MSS13]). A fortiori, a direct relation
between the generalization presented here and the theory of motivic Hirzebruch

https://doi.org/10.1017/fms.2019.25 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.25


P. Aluffi 8

classes would be surprising and very interesting. Equally interesting would be a
connection with Yokura’s ‘motivic Milnor classes’ [Yok10].

Finally, we note that Fullwood and Wang have proposed a conjectural
generalization of the hypersurface formula [FW], in terms of a blow-up
construction; they prove that this formulation is correct for certain complete
intersections. It is straightforward to express our results in this note in terms
of the blow-up along the scheme Y , as this blow-up may be used to compute
the Segre class of Y . It would be interesting to relate the center of the blow-up
in [FW] to Y .

2. Statement

2.1. Preliminaries. We work over an algebraically closed field k of character-
istic 0. (This requirement is needed for Chern–Schwartz–MacPherson classes.)
Throughout the paper, X will denote a k-scheme which can be embedded as a
closed subscheme of a nonsingular variety V .

The Chern–Schwartz–MacPherson (CSM) class of X may be defined as an
element in the Chow group A∗X of X . It is determined by the requirement that
if X is nonsingular, then cSM(X) = c(T X) ∩ [X ] and by a specific behavior with
respect to proper morphisms, which we now recall.

We can associate with each X the group of constructible functions F(X),
that is, integer-valued functions on X which may be obtained as finite linear
combinations of indicator functions on subvarieties of X : ϕ =

∑
W 1W , where

the sum ranges over finitely many closed subvarieties W of X , and 1W (p) = 1 if
p ∈ W , 1W (p) = 0 if p 6∈ W . The assignment X ; F(X) defines a covariant
functor to the category of abelian groups, if we prescribe the following push-
forward for proper maps: if f : X → Y is a proper morphism, a homomorphism
f∗ : F(X)→ F(Y ) is defined by requiring f∗(1W ) to be the function

f∗(1W )(p) = χ( f −1(p) ∩W ),

where χ denotes the topological Euler characteristic if k = C, and a suitable
analogue over more general fields (see, for example, [Alu13, Section 2.1]).

According to a theorem of MacPherson [Mac74] and extensions of this result
to the context used here, there exists a natural transformation from F to the Chow
group functor A∗, such that the indicator function 1X is sent to c(T X) ∩ [X ] if
X is nonsingular. The class cSM(X) is the image of 1X in A∗X , regardless of the
singularities of X . More generally, we denote by cSM(ϕ) the image of ϕ ∈ F(X)
in A∗X . With this notation, if f : X → Y is a proper map, then

cSM( f∗ϕ) = f∗cSM(ϕ).
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This covariance property implies easily that the natural transformation is unique:
indeed, by resolution of singularities the CSM class of any scheme X as above
is determined by the CSM classes of a suitable selection of nonsingular varieties
mapping to X . Also note that if the Euler characteristic of the fibers of a proper
morphism f : X → Y is a constant χ , then covariance implies that

f∗cSM(X) = χ · cSM(Y ). (2.1)

By abuse of language, if X ⊆ V , then we may denote by cSM(X) the class
cSM(1X ) in the Chow group of V . With this convention, the CSM class satisfies a
basic inclusion–exclusion principle: for X, Y ⊆ V , we have

cSM(X ∪ Y ) = cSM(X)+ cSM(Y )− cSM(X ∩ Y ).

This is often useful in concrete computations.

2.2. The scheme Y . We now fix a nonsingular variety V , and a closed
subscheme X ⊆ V . We denote by ι the inclusion map X ↪→ V .

We may view X as the zero-scheme of a section of a vector bundle E . Indeed,
we may choose E = Spec(Sym E ), where E is any locally free sheaf surjecting
onto the ideal sheaf IX,V of X in V ; the composition s∨ : E � IX,V ↪→ OV

corresponds to a section s : V → E , such that X = Z(s). (Cf. [Ful84, B.8.2].)
Recall that we have an exact sequence

IX,V /I 2
X,V

// ΩV |X
// ΩX

// 0

[Har77, Proposition 8.12]. Restricting the surjection E � IX,V to X and
composing with the first morphism in this sequence determines a morphism of
locally free sheaves

E |X −→ ΩV |X ,

or equivalently a morphism of vector bundles on X :

φ : E∨|X −→ T ∗V |X . (2.2)

Now consider the projective bundle (of lines) ρ : P(E∨|X )→ X . Composing the
pull-back of (2.2) with the inclusion of the tautological subbundle, we obtain a
morphism

σY : O(−1)→ ρ∗E∨|X → ρ∗T ∗V |X
of vector bundles over P(E∨|X ).

DEFINITION 2.1. With notation as above, we define Y ⊆ P(E∨|X ) to be the
zero-scheme of σY : Y = Z(σY ). y
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Set-theoretically, Y consists of points (e, x), with e in the fiber of P(E∨|X ) at
x ∈ X , such that e ∈ kerφx , where φ is the morphism in (2.2).

In local analytic coordinates (x1, . . . , xn) for V at x , s∨ describes the ideal of X
in terms of a choice of generators f0, . . . , fr ∈ k[[x1, . . . , xn]], where r+1= rk E .
The morphism φ is given by the n × (r + 1) matrix

∂ f0

∂x1
· · ·

∂ fr

∂x1
...
. . .

...
∂ f0

∂xn
· · ·

∂ fr

∂xn


and Y is defined as a subscheme of P(E∨|X ) by the vanishing

∂ f0

∂x1
· · ·

∂ fr

∂x1
...
. . .

...
∂ f0

∂xn
· · ·

∂ fr

∂xn

 ·
e0
...

er

 = 0 (2.3)

with e = (e0 : · · · : er ). Thus, Y detects linear relations among differentials of
the chosen generators for X .

REMARK 2.2. As Terry Gaffney pointed out, Y may therefore be viewed as a
‘Tyurina transform’ associated with the morphism φ. y

One source of such relations are the singularities of X .

EXAMPLE 2.3. Assume that r = 0, so that X is the hypersurface in V with local
equation f0 = 0. Then Y ⊆ X × P0 ∼= X is locally defined by the vanishing of
the partials of f0; that is, in this case Y is the singularity subscheme of X . y

In the case of Example 2.3, Y is empty if X is nonsingular. More generally, Y
is empty if X is a smooth complete intersection realized as the zero-scheme of a
regular section of a bundle E of rank equal to codim X ; in this case, φx has full
rank for all x ∈ X .

However, this is not typical. Linear relations among differentials of the
generators may be due to reasons other than the singularities of X . For example,
two generators may coincide or one of the generators may be identically 0.
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EXAMPLE 2.4. Let X ⊆ V be a smooth hypersurface, given as the zero-scheme
of a section f of a line bundle L . With notation as above, let E = L⊕r+1, with
r > 0, and let s = ( f, . . . , f ). Then Y is a Pr−1 bundle over X . y

2.3. The main theorem. Let V = P(E∨), and let π : V → V denote the
projection:

P(E∨|X )
ρ

��

� � // V

π

��
X �
� // V

With this notation, P(E∨|X ) = π−1(X).
It will be useful to view Y as a subscheme of V ; as such, the ideal of Y

is generated by the pull-back of IX,V and by the relations (2.3). The closed
embedding Y ⊆ V determines the Segre class s(Y ,V ) ∈ A∗Y [Ful84, Ch. 4].
We implicitly often view this class as a class in A∗V , omitting the evident push-
forward notation.

We need the following notation from [Alu94, Section 2]. Let M be an ambient
variety, and let Z be a subscheme of M . Further, let L be a line bundle on Z .
For α ∈ A∗Z , write α =

∑
i α

(i), where α(i) is the component of α with
codimension i in M. We define

α ⊗M L :=
∑

i

c(L )−i
∩ α(i), α∨ :=

∑
i

(−1)iα(i).

The subscript M may be omitted in context (and the notation ∨ must be understood
in context, since it also depends on the dimension of the ambient variety M). This
notation satisfies simple compatibility properties with the notion of dual of vector
bundles and of tensor product of vector bundles by line bundles, in terms of their
effect on Chern classes. Further, it is an action in the sense that if L1 and L2

are line bundles on Z , then α ⊗ (L1 ⊗ L2) = (α ⊗ L1) ⊗ L2. (See [Alu94,
Propositions 1 and 2].)

The following is our main result.

THEOREM 2.5. Let V be a nonsingular variety, and let ι : X → V be a closed
subscheme. Assume X = Z(s) for a section s of a vector bundle E on V , and
construct Y ,V as above. Then

ι∗cSM(X)−
c(T V )
c(E)

ctop(E) ∩ [V ]

= c(T V ) ∩ π∗

(
c(π∗E∨ ⊗ O(1))

c(O(1))
∩ (s(Y ,V )∨ ⊗V O(1))

)
. (2.4)
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The proof of Theorem 2.5 is given in Section 3. We record here the following
consequence and several special cases illustrating the statement.

COROLLARY 2.6. With notation as above, let rk E = r + 1. Then

• If r > dim V , then

ι∗cSM(X) = c(T V ) ∩ π∗

(
c(π∗E∨ ⊗ O(1))

c(O(1))
∩ (s(Y ,V )∨ ⊗V O(1))

)
.

• If X is a local complete intersection in V and r + 1 = codim X, then

ι∗M (X)= (−1)dim X+1c(T V )∩π∗

(
c(π∗E∨ ⊗ O(1))

c(O(1))
∩ (s(Y ,V )∨⊗V O(1))

)
,

where M (X) denotes the Milnor class of X.

Proof. If r > dim V , then rk E > dim V , hence ctop(E) = 0 for dimensional
reasons. The first formula then follows immediately from Theorem 2.5.

Concerning the second formula: if X is a local complete intersection, X is the
zero-scheme of a section of a vector bundle E , and rk E = codim X , then E |X ∼=
NX V , and (T V |X )/(E |X ) is the virtual tangent bundle of X . Further, ctop(E) ∩
[V ] = ι∗[X ] ∈ A∗V . Therefore,

c(T V )
c(E)

ctop(E) ∩ [V ] = ι∗cvir(X)

in this case. By definition of Milnor class (1.2), we have

ι∗cSM(X)−
c(T V )
c(E)

ctop(E)∩ [V ] = ι∗(cSM(X)− cvir(X)) = (−1)dim X+1ι∗M (X),

and the second formula follows from Theorem 2.5.

EXAMPLE 2.7. Let V = Pn . Every X ⊆ V may be defined by a homogeneous
ideal generated by forms of degree d , if d � 0. Choose such a d , and choose
generators F0, . . . , Fr of H 0(Pn,IX,Pn (d)). View (F0, . . . , Fr ) as a section
of E = O(d)⊕(r+1). We have

P(E∨) = P(O(−d H)⊕(r+1)) ∼= Pn
× Pr ,

where H denotes the hyperplane class in Pn (and its pull-back). Denoting by h
the hyperplane class in Pr , we have c1(OP(E∨)(1)) = d H + h. Therefore,
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c(T V ) ∩ π∗

(
c(π∗E∨ ⊗ O(1))

c(O(1))
∩ (s(Y ,V )∨ ⊗V O(1))

)
= (1+ H)n+1

∩ π∗

(
(1− d H + (d H + h))r+1

1+ d H + h

∩ (s(Y ,V )∨ ⊗V O(d H + h))
)
,

and the formulas in Corollary 2.6 specialize to Theorems 1.1 and 1.2. y

EXAMPLE 2.8. Let X be a hypersurface in V , given as the zero-scheme of a
section f of the line bundle E = O(X). As noted in Example 2.3, Y equals
the singularity subscheme J X of X in this case. We have V = P(E∨) =
P(O(−X)) ∼= V , and π is the identity under this identification. The line bundle
O(1) is tautologically isomorphic to O(X). Since rk E = codim X , the second
formula in Corollary 2.6 applies, giving

ι∗M (X) = (−1)dim X c(T V )∩
(

c(O(−X)⊗ O(X))
c(O(X))

∩ (s(J X, V )∨⊗V O(X))
)
,

that is,

ι∗(cSM(X)− cvir(X)) = c(T V ) ∩ (c(O(X))−1
∩ (s(J X, V )∨ ⊗V O(X))).

This is the main result of [Alu99] (after push-forward by ι∗ to the ambient
nonsingular variety V ). y

EXAMPLE 2.9. To illustrate the dependence of the result on the rank of E in a
particularly transparent case, let X ⊆ V be a smooth hypersurface. We can view
X as the zero-scheme of a section of E = O(X)⊕(r+1), of the form (for example)
( f, . . . , f ). As observed in Example 2.4, Y ⊆ P(E∨|X ) is then a Pr−1 bundle
over X . We can identify V = P(E∨) with V × Pr ; let h be the pull-back of the
hyperplane class from the second factor, and π the projection onto the first factor.
Then OP(E∨)(1) ∼= O(h + π∗X), and Y is a complete intersection of P(E∨|X ) =
π−1(X) and a hyperplane in the second factor (with equation e0 + · · · + er = 0).
We have

s(Y ,V ) =
h · π∗X

(1+ h)(1+ π∗X)
∩ [V ]

as a class in A∗V , hence

s(Y ,V )∨ ⊗V O(1) =
h · π∗X

(1− h)(1− π∗X)
⊗V O(h + π∗X) ∩ [V ]

=
h · π∗X

(1+ π∗X)(1+ h)
∩ [V ].
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(Using [Alu94, Proposition 1].) Therefore, omitting evident pull-backs,

c(E∨ ⊗V O(1))
c(O(1))

∩ (s(Y ,V )∨ ⊗V O(1))

=
(1+ h)r+1

1+ h + X
·

h · X
(1+ X)(1+ h)

∩ [V ]

=
(1+ h)r

(1+ h + X)(1+ X)
∩ [V ] = (1+ h)r

(
X

1+ X
−

X
1+ h + X

)
∩ [V ].

The push-forward of this class to V is determined by the coefficient of hr in this
expression. It is easy to verify that this equals(

X
1+ X

−
X r+1

(1+ X)r+1

)
∩ [V ]

and it follows that

c(T V ) ∩ π∗

(
c(π∗E∨ ⊗V O(1))

c(O(1))
∩ (s(Y ,V )∨ ⊗V O(1))

)
= c(T V ) ∩

(
X

1+ X
−

X r+1

(1+ X)r+1

)
∩ [V ]

= c(T X) ∩ [X ] − c(T V )
c1(O(X))r+1

c(O(X))r+1
∩ [V ]

in agreement with Theorem 2.5. y

EXAMPLE 2.10. If X = V , we can represent X as the zero-scheme of the zero-
section of any vector bundle E on V . In this case Y = V , so that

s(Y ,V )∨ ⊗V O(1) = [V ]∨ ⊗V O(1) = [V ].

Theorem 2.5 reduces then to the statement that

π∗

(
c(π∗E∨ ⊗ O(1))

c(O(1))
∩ [V ]

)
=

(
1−

ctop(E)
c(E)

)
∩ [V ]. (2.5)

This statement will in fact be an ingredient in the proof of Theorem 2.5, and will
be (independently) proven in Section 3.3. y

3. Proof

3.1. Roadmap. The proof of Theorem 2.5 relies on several ingredients. In
Section 3.2, we give an alternative description of the scheme Y defined in
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Section 2.2, as the singularity subscheme of a hypersurface X in P(E∨). In
Section 3.3, we compute the push-forward of cvir(X ), by standard techniques
in intersection theory. In Section 3.4, we compute the push-forward of cSM(X )

by applying the functoriality of CSM classes, and in Section 3.5, we use the main
result of [Alu99] to establish Theorem 2.5.

In Section 3.6, we comment on related work of Callejas-Bedregal, Morgado,
and Seade concerning Milnor classes of local complete intersections [CBMS].
The hypersurface X we use in the proof of Theorem 2.5 was to our knowledge
first introduced in [CBMS] (in the local complete intersection case).

3.2. Alternative description of Y . With notation as in Section 2.2, dualize
the inclusion of the tautological subbundle O(−1) → π∗(E∨) to obtain a
canonical morphism ε : π∗(E)→ O(1). Composing with the pull-back of s gives
a section of O(1) on V :

σX : V
π∗s // π∗(E) ε // O(1). (3.1)

We let X denote the hypersurface of V defined as the zero-scheme of σX =

ε ◦ π∗s.

LEMMA 3.1. The scheme Y is the singularity subscheme of X .

Proof. In local analytic coordinates as above, X is given by the equation

y0 f0 + · · · + yr fr = 0, (3.2)

whose Jacobian ideal defines the singularity subscheme of X . From this and
the coordinate description of Y given in Section 2.2, the statement is clear. More
intrinsically, the ideal of X in V is O(−1); hence we have a canonical morphism

O(−1)|X // ΩV |X ,

and equivalently (tensor by O(1)) a section

σJX :X // T ∗V |X ⊗ O(1)

of a twist of the cotangent bundle to V . By definition, the singularity subscheme
of X is the zero-scheme of this section. Now, we have the dual Euler exact
sequence

0 // (T ∗V /V )⊗ O(1) // π∗E ε // O(1) // 0

V

π∗s

OO

σX

;;
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where T ∗V /V is the relative cotangent bundle. As X is the zero-scheme of σX , we
obtain a section

σ ′ :X → (T ∗V /V )⊗ O(1)|X

which is seen to be compatible with σJX : the diagram

0 // π∗T ∗V ⊗ O(1)|X // T ∗V ⊗ O(1)|X // (T ∗V /V )⊗ O(1)|X // 0

X

σJX

OO

σ ′

66

commutes. The singularity subscheme of X , that is, the zero-scheme Z(σJX ),
is contained in Z(σ ′) = Z(π∗s) = π−1(X) = P(E∨|X ). Restricting to P(E∨|X ),
σJX induces a section

σ ′′ : P(E∨|X ) // (π∗T ∗V ⊗ O(1))|P(E∨|X ) = ρ
∗T ∗V |X ⊗ O(1),

such that the singularity subscheme of X equals Z(σ ′′). It is now easy to check
that σ ′′ agrees with σY ⊗O(1), and it follows that the singularity subscheme of X
coincides with Z(σY ) = Y .

3.3. The push-forward of cvir(X). Theorem 2.5 will follow from the
computation of push-forwards of characteristic classes of X . In this subsection
we compute π∗(cvir(X)). For this purpose it will be useful to prove identity (2.5):
as noted in Section 2.10, this simple statement is a particular case of Theorem 2.5,
and it turns out that it is in fact one of the ingredients in its proof.

LEMMA 3.2. Let E be a vector bundle on a variety V , and let π : P(E∨)→ V
be the projective bundle (of lines) of its dual E∨. Then

π∗

(
c(π∗E∨ ⊗ O(1))

c(O(1))
∩ [P(E∨)]

)
=

(
1−

ctop(E)
c(E)

)
∩ [V ].

Proof. Let rk(E) = r + 1. Using [Ful84, Remark 3.2.3(b)],

c(π∗E∨ ⊗ O(1))
c(O(1))

= c(O(1))r +
r∑

i=1

ci(π
∗E∨)c(O(1))r−i

+
cr+1(π

∗E∨)
c(O(1))

. (3.3)

We have

π∗(c(O(1))r ∩ [P(E∨)]) = π∗(c1(O(1))r ∩ [P(E∨)]) = [V ]:
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indeed, the other terms in the expansion of (1 + c1(O(1)))r push forward to
zero by [Ful84, Proposition 3.1(a)(i)], and the term c1(O(1))r ∩ [P(E∨)] pushes
forward to [V ] by [Ful84, Proposition 3.1(a)(ii)].

The middle term in the right-hand side of (3.3) pushes forward to 0. Indeed, by
the projection formula it is a combination of terms

ci(E∨) ∩ π∗(c1(O(1)) j
∩ [P(E∨)])

with j < r , and π∗(c1(O(1)) j
∩ [P(E∨)]) ∈ Adim V+r− j(V ) = (0) for j < r .

As for the last term in (3.3), recall that

π∗(c(O(−1))−1
∩ [P(E∨)]) = c(E∨)−1

∩ [V ] :

indeed, this is essentially the definition of Chern class of a vector bundle
according to [Ful84, Section 3.2]. It follows that

π∗(c(O(1))−1
∩ [P(E∨)]) = (−1)r c(E)−1

∩ [V ],

and therefore

π∗

(
cr+1(π

∗E∨)
c(O(1))

∩ [P(E∨)]
)
= π∗((−1)r+1cr+1(π

∗E)c(O(1))−1
∩ [P(E∨)])

= −cr+1(E)c(E)−1
∩ [V ],

again by the projection formula.

The computation of the push-forward of cvir(X ) follows from this lemma.

PROPOSITION 3.3. Let V be a nonsingular variety, and X ⊆ V the zero-scheme
of a section of a vector bundle E of rank r + 1 on V . Let V = P(E∨), and let X
be the hypersurface of V defined in Section 3.2. Then

π∗(cvir(X )) = r · cSM(V )+
c(T V )
c(E)

ctop(E) ∩ [V ]

in A∗V .

Proof. By definition, cvir(X ) = c(T V )c(O(X))−1
∩ [V ] = c(T V )/(1+X ) ∩

[X ]; we implicitly view this as a class in A∗V . By the Euler sequence, the Chern
class of the relative tangent bundle of V = P(E∨) is given by c(TV /V ) = c(E∨⊗
O(1)); therefore,

c(T V ) = π∗c(T V )c(E∨ ⊗ O(1)). (3.4)
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Further, by the normalization and covariance of CSM classes (see (2.1)),

π∗(c(T V ) ∩ [V ]) = π∗cSM(V ) = (r + 1)cSM(V ).

(Exercise: Prove this from (3.4), without using covariance of CSM classes.) Using
these facts and Lemma 3.2:

π∗

(
c(T V )

1+X
∩ [X ]

)
= π∗

(
c(T V ) ∩

(
[V ] −

1
1+X

∩ [V ]

))
= π∗(c(T V ) ∩ [V ])− c(T V ) ∩ π∗

(
c(TP(E∨)/V )

1
1+X

∩ [V ]

)
= (r + 1) c(T V ) ∩ [V ] − c(T V ) ∩ π∗

(
c(E∨ ⊗ O(1))

c(O(1))
∩ [V ]

)
= r · c(T V ) ∩ [V ] +

c(T V )
c(E)

ctop(E) ∩ [V ]

as stated.

3.4. The push-forward of cSM(X ). Proposition 3.3 gives the push-forward
of cvir(X ). Using the covariance of CSM classes, it is straightforward to obtain
the push-forward of cSM(X ).

PROPOSITION 3.4. Let V be a nonsingular variety, and ι : X ↪→ V the zero-
scheme of a section of a vector bundle E of rank r+1 on V . Let V = P(E∨), and
let X be the hypersurface of V defined in Section 3.2. Then

π∗(cSM(X )) = r · cSM(V )+ ι∗cSM(X)

in A∗V .

Proof. By definition of CSM class and by covariance,

π∗(cSM(X )) = π∗cSM(1X ) = cSM(π∗1X ).

Now recall (Section 2.1) that π∗1X is the function assigning to p ∈ V the Euler
characteristic of the fiber of X over p. Use notation as above; in particular,
s : V → E is the section defining X . If p ∈ X , then s(p) = 0, and it follows
that sX = π

∗s ◦ ε ≡ 0 along π−1(p). That is, the fiber of X over p ∈ X equals
the fiber of V = P(E∨), so it is an r -dimensional projective space. Therefore,

p ∈ X H⇒ π∗(1X )(p) = χ(Pr ) = r + 1. (3.5)
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If p 6∈ X , then s(p) 6= 0; π∗s is then a fixed vector (a0, . . . , ar ) of E p along the
fiber π−1(p). The vanishing of sX at (e0 : · · · : er ) ∈ π

−1(p) is then equivalent to
the linear equation

a0e0 + · · · + ar er = 0.

It follows that the fiber of X over p 6∈ X is a hyperplane Pr−1 in the fiber
π−1(p) ∼= Pr . Therefore,

p 6∈ X H⇒ π∗(1X )(p) = χ(Pr−1) = r. (3.6)

Combining (3.5) and (3.6), we obtain that

π∗1X = r · 1V + 1X ,

and the covariance of CSM classes concludes the proof.

3.5. End of the proof. After these preliminaries we are ready to prove the
main result.

Proof of Theorem 2.5. Applying [Alu99, Theorem I.4] to the hypersurface X
gives

cSM(X ) = cvir(X )+ c(T V )c(O(1))−1
∩ (s(Y ,V )∨ ⊗V O(1)).

Here we used the fact that cvir(X ) = c(T V )c(O(X ))−1
∩ [X ] = c(T V ) ∩

s(X ,V ), and the fact that Y is the singularity subscheme of X , proven
in Lemma 3.1. Pushing forward to V and using Propositions 3.3 and 3.4:

r · cSM(V )+ ι∗cSM(X)
= π∗cSM(X )

= π∗(cvir(X )+ c(T V )c(O(1))−1
∩ (s(Y ,V )∨ ⊗V O(1)))

= r · cSM(V )+
c(T V )
c(E)

ctop(E) ∩ [V ]

+π∗(c(T V )c(O(1))−1
∩ (s(Y ,V )∨ ⊗V O(1))).

Therefore,

ι∗cSM(X)−
c(T V )
c(E)

ctop(E) ∩ [V ] = π∗

(
c(T V )

c(O(1))
∩ (s(Y ,V )∨ ⊗V O(1))

)
.

The statement of Theorem 2.5 follows by applying (3.4) and the projection
formula.
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3.6. Milnor classes. Using the terminology of Milnor classes, Propositions 3.3
and 3.4 immediately imply the following statement.

PROPOSITION 3.5. With notation as above,

π∗M (X ) = (−1)dim X

(
c(T V )
c(E)

ctop(E) ∩ [V ] − ι∗cSM(X)
)

in A∗V .

In particular, paying careful attention to the signs gives:

COROLLARY 3.6. Assume ι : X ↪→ V is a local complete intersection, defined
as the zero-scheme of a regular section of a bundle of rank codimX V . Then

π∗M (X ) = ι∗M (X) (3.7)

in A∗V .

In the case of local complete intersections, the hypersurface X was introduced
in [CBMS]. In fact, in [CBMS, Theorem 6.4], Callejas-Bedregal, Morgado,
and Seade obtain a different expression relating the Milnor classes of X and
X in the local complete intersection case. Comparing (3.7) and the expression
from [CBMS] may lead to nontrivial identities for Chern classes of bundles
associated with local complete intersections. It would be interesting to explore
these consequences.

4. CSM from Segre zeta functions

4.1. Segre zeta functions. The results proven in this note draw a direct
bridge between Segre classes and CSM classes. This should allow us to transfer
information between these two notions; known facts about Segre classes should
tell us something about CSM classes. This section is an example of this transfer.

It is known [Alu17] that Segre classes of subschemes of projective space
admit the following description. Let f0, . . . , fm be forms of degrees a0, . . . , am

respectively, in variables x0, . . . , xn . For N > n, let ιN : Z N ↪→ PN be the
subscheme defined by the ideal ( f0, . . . , fm). Then there exists a rational function

ζ(t) =
P(t)

(1+ a0t) · · · (1+ am t)
,

with P(t) a polynomial with nonnegative coefficients and leading term equal
to a0 · · · am tm+1, such that

ιN∗s(Z N ,PN ) = ζ(H) ∩ [PN
].
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Here H denotes the hyperplane class. We call ζ(t) the ‘Segre zeta function’
determined by the forms f0, . . . , fm .

A version of this result holds for subschemes of products of projective
spaces [Jor, Section 5.2]. Let ϕ0, . . . , ϕm be bihomogeneous polynomials of
bidegrees (ai , bi), i = 0, . . . ,m, in variables x0, . . . , xn , y0, . . . , yr . For N > n,
R > r , let ιN ,R : Z N ,R ↪→ PN

× PR be the subscheme defined by the ideal (ϕ0,

. . . , ϕm). Then there exists a rational function

ζ(t, u) =
P(t, u)

(1+ a0t + b0u) · · · (1+ am t + bmu)
,

with P(t, u) a polynomial with leading term
∏

i(ai t + bi u), such that

ιN ,R∗s(Z N ,R,PN
× PR) = ζ(H, h) ∩ [PN

× PR
]

where H , respectively, h denotes the pull-back of the hyperplane class from PN ,
respectively, PR .

4.2. Statement of the result. Theorem 1.1 may be expressed in terms of these
two-variable zeta functions. In fact, we are going to obtain CSM classes directly
in terms of the numerator of the zeta function determined by the bihomogeneous
polynomials defining the scheme Y . This may simplify the application of
Theorem 1.1, and also has the advantage of simultaneously computing the CSM
classes of the subschemes X N ⊆ PN defined by a choice of forms in x0, . . . , xn ,
for all N > n. (This information could be assembled in a ‘Segre–Schwartz–
MacPherson zeta function’.)

We use the notation introduced in Section 1.2: F0, . . . , Fr are homogeneous
polynomials in x0, . . . , xn , of a fixed degree d; the corresponding subscheme Y
of Pn

× Pr is defined by the ideal generated by

F0, . . . , Fr ; and y0
∂F0

∂xi
+ · · · + yr

∂Fr

∂xi
, i = 0, . . . , n. (4.1)

The bidegrees of the generators are (d, 0), (d − 1, 1); some of the generators may
vanish, in which case we view 0 as a form of the corresponding (bi)degree. The
chosen generators determine a Segre zeta function for Y :

ζ(t, u) =
P(t, u)

(1+ dt)r+1(1+ (d − 1)t + u)n+1
. (4.2)

Therefore, we obtain a well-defined polynomial P(t, u) ∈ Z[t, u]. This
polynomial has degree n + r + 2, and its term of highest degree is
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(dt)r+1((d − 1)t + u)n+1. As we see (Remarks 4.3, 4.4), it is actually not
necessary to know all terms of the polynomial P(t, u) in order to apply the
following result: the terms of degree 6 n + 1 in t and 6 r + 1 in u suffice, and
these are determined by the Segre class of the subscheme Yn+1,r+1 of Pn+1

×Pr+1

defined by the ideal generated by the forms listed in (4.1).

THEOREM 4.1. For N > n, let ιN : X N ↪→ PN be the subscheme defined by the
degree-d forms F0, . . . , Fr ∈ k[x0, . . . , xn]. With notation as above, let γ (t) be
the coefficient of ur+1 in the polynomial

Q(t, u) := (1+ dt + u)n+r+2
· P
(

−t
1+ dt + u

,
−u

1+ dt + u

)
.

Then
ιN∗cSM(X N ) = (1+ H)N−nγ (H) ∩ [PN

],

where H is the hyperplane class in PN .

REMARK 4.2. The transformation

(t, u) 7→
(

−t
1+ dt + u

,
−u

1+ dt + u

)
is an involution, and sends (1 + dt + u) to (1 + dt + u)−1. It follows that the
operation P 7→ Q defined in the statement of Theorem 4.1 is an involution. y

REMARK 4.3. It will follow from the proof that Q(t, u) is a polynomial of
degree r + 1 in u; this does not appear to be evident from the definition given in
the statement. Thus, γ (t) is actually the leading coefficient of Q(t, u) viewed as a
polynomial in u. Since terms in P(t, u) of degree> r+1 in u do not contribute to
the coefficient of ur+1 in Q(t, u), γ (t) is in fact determined by the terms of P(t, u)
of degree 6 r + 1 in u. y

REMARK 4.4. Since Q(t, u) has degree r + 1 in u,

vr+1 Q
(

t,
1
v

)
is a polynomial and γ (t) is its constant term with respect to v. Applying the
involution,

vr+1 Q
(

t,
1
v

)
=
(1+ v + dtv)n+r+2

vn+1
P
(

−tv
1+ v + dtv

,
−1

1+ v + dtv

)
,
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and therefore,

P
(

−tv
1+ v + dtv

,
−1

1+ v + dtv

)
= γ (t) · vn+1

+ higher order terms in v. (4.3)

This gives an alternative computation of the term γ (t) obtained in Theorem 2.5.
It also shows that the terms of P(t, u) of degree > n + 1 in t do not affect γ (t).
(However, note that (4.3) may be affected by terms of P(t, u) of degree > r + 1
in u. This limits its applicability.)

Summarizing, only the terms of P(t, u) of degrees 6 n + 1 in t and 6 r + 1
in u are needed in order to apply Theorem 4.1.

4.3. Proof of Theorem 4.1. The proof of Theorem 4.1 will use the following
simple observation, for which we do not have a reference.

LEMMA 4.5. Let S(h) be a power series with coefficients in a ring. Assume
that the coefficient C of h R in (1 + h)R

· S(h) is nonzero and independent of
R for R > N. Then (1+ h)N S(h) is a polynomial of degree N in h, with leading
coefficient C.

Proof. The coefficient of hN in (1 + h)N S(h) is C by hypothesis. Arguing by
contradiction, assume that (1+ h)N S(h) is not a polynomial of degree N ; then it
must have a first nonzero term sM hM with M > N . Note that then

(1+ h)M−1S(h) = s0 + · · · + ChM−1
+ sM hM

+ · · · .

It follows that

(1+ h)M S(h) = s0 + · · · + (C + sM)hM
+ · · · ,

so the coefficient of hM in (1+h)M S(h) is C+sM 6= C , contrary to the hypothesis.

We are now ready to prove Theorem 4.1. Its derivation from Theorem 1.1 is a
good exercise in the use of the properties of the notation ⊗, ∨.

Proof of Theorem 4.1. Since the ideal of X N is generated by F0, . . . , Fr , the
corresponding subscheme ι : YN ,R ↪→ VN ,R := PN

× PR is defined by the forms
listed in (4.1), for all N > n and R > r . (We may choose Fr+1 = · · · = FR = 0.)
Therefore, the push-forward of the Segre class of YN ,R is given by the zeta
function (4.2):

ι∗s(YN ,R,VN ,R) =

(
P(H, h)

(1+ d H)r+1(1+ (d − 1)H + h)n+1

)
∩ [PN

× PR
].
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By properties of ⊗, ∨ from [Alu94, Proposition 1],

ι∗s(YN ,R,VN ,R)
∨
⊗VN ,R O(d H + h)

=
P(−H,−h)

(1− d H)r+1(1− (d − 1)H − h)n+1
⊗VN ,R O(d H + h)

=
(1+ d H + h)n+r+2

(1+ h)r+1(1+ H)n+1
(P(−H,−h)⊗VN ,R O(d H + h))

=
(1+ d H + h)n+r+2 P( −H

1+d H+h ,
−h

1+d H+h )

(1+ h)r+1(1+ H)n+1
.

Let Q(t, u) be the polynomial (1 + dt + u)n+r+2 P(−t/(1+ dt + u),
−u/(1+ dt + u)). By Theorem 1.1, ιN∗cSM(X N ) is the push-forward of

(1+ H)N+1(1+ h)R+1

1+ d H + h
(s(Y ,Pn

× Pr )∨ ⊗Pn×Pr O(d H + h))

= (1+ H)N−n(1+ h)R Q(H, h)
(1+ h)r (1+ d H + h)

∩ [PN
× PR
],

provided R > N . The push-forward is obtained by capping against [PN
] the

coefficient of h R in

(1+ H)N−n(1+ h)R Q(H, h)
(1+ h)r (1+ d H + h)

.

We view this expression as a power series in h with coefficients in A∗(PN ),
and note that the coefficient of h R is ιN∗cSM(X N ), independently of R > N. By
Lemma 4.5,

(1+ H)N−n(1+ h)N
·

Q(H, h)
(1+ h)r (1+ d H + h)

is a polynomial in h with coefficients in A∗(PN ) = Z[H ]/(H N+1), of degree N
and leading coefficient ιN∗cSM(X N ). It then follows that

(1+ H)N−n Q(H, h)

is a polynomial of degree r+1 in h, with leading coefficient ιN∗cSM(X N ), and this
is the statement.

Note that this argument shows that Q(t, u) is a polynomial of degree r + 1 in
u modulo t N+1 for every N � 0. It follows that it has degree r + 1 in u as a
polynomial in Z[t, u].
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4.4. Two examples. We give two examples illustrating Theorem 4.1.

EXAMPLE 4.6. Consider the forms F0 = x1x2, F1 = x0x2, F2 = x0x1. (Thus
n = r = 2.) The corresponding scheme in PN consists of the union of three
codimension 2 subspaces meeting along a common codimension 3 subspace.

The generators of the ideal of Y in this example are

x1x2, x0x2, x0x1; x2 y1 + y2x1, y0x2 + y1x2, y0x1 + y1x0.

We have

ζ(t, u) =
P(t, u)

(1+ 2t)3(1+ t + u)3
;

the requirement that ζ(t, u) evaluates the Segre class in P3
× P3 determines the

terms of P(t, u) of degree 6 n + 1 = 3 in t and 6 r + 1 = 3 in u. With the aid
of the Macaulay2 package [HJ] we get

P(t, u) = t3
+ 6t3u + 3t2u2

+ 18t3u2
+ 3t2u3

+ 8t3u3
+ higher order terms.

The polynomial Q appearing in the statement of Theorem 4.1 is therefore

(1+ 2t + u)6 · P
(

−t
1+ 2t + u

,
−u

1+ 2t + u

)
≡ −t3

+ 3t3u + (3t2
+ 3t3)u2

+ (3t2
+ t3)u3 mod t4.

This is necessarily a polynomial of degree r + 1 = 3 in u (Remark 4.3), and the
coefficient of u3 is 3t2

+ t3. By Theorem 4.1, we can conclude that

ιN∗cSM(X N ) = (1+ H)N−2(3H 2
+ H 3) ∩ [PN

]. (4.4)

For example, for N = 6 this gives

ι6∗cSM(X6) = 3[P4
] + 13[P3

] + 22[P2
] + 18[P1

] + 7[P0
].

The reader may enjoy verifying independently that (4.4) holds, by using the
geometric description of X N given at the beginning of this example. y

EXAMPLE 4.7. In closing, we revisit the example given in Section 1.3, consisting
of the complete intersection of x1x2x3 = 0 and x0x2

1 + x3
2 = 0. Here n = 3, r = 1,

so the needed information can be extracted from the Segre class of the subscheme
defined by

x1x2x3, x0x2
1 + x3

2 ; y1x2
1 , y0x2x3 + 2y1x0x1, y0x1x3 + 3y1x2

2 , y0x1x2
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in P4
× P2. According to [HJ], this Segre class is

(H 2
+ 3H 2h + H 3

+ 2H 2h2
− 19H 3h − 16H 4

− 30H 3h2

+ 69H 4h + 240H 4h2) ∩ [P4
× P2
],

where H , respectively h is the pull-back of the hyperplane class from the first,
respectively second factor. It follows that the polynomial P(t, u) corresponding
to this example must be

P(t, u) = t2
+ 15t3

+ 79t4
+ (7t2

+ 75t3
+ 258t4)u

+ (20t2
+ 132t3

+ 216t4)u2

+ higher order terms.

Applying the involution defined in the statement of Theorem 4.1 gives

Q(t, u) ≡ (t2
− 3t3

− 2t4)+ (−3t2
+ 3t3

− t4)u + (5t2
+ 3t3

+ t4)u2 mod t5

and we can conclude that the CSM class of the complete intersection defined by
x1x2x3 = 0 and x0x2

1 + x3
2 = 0 in PN pushes forward to

(1+ H)N−3(5H 2
+ 3H 3

+ H 4) ∩ [PN
].

The reader can verify that for N = 6 this is in agreement with the result obtained
in Section 1.3. y
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analytique complexe. II’, C. R. Math. Acad. Sci. Paris 260 (1965), 3535–3537.

[Yok99a] S. Yokura, ‘On a Verdier-type Riemann–Roch for Chern–Schwartz–MacPherson class’,
Topology Appl. 94(1–3) (1999), 315–327.

[Yok99b] S. Yokura, ‘On characteristic classes of complete intersections’, in Algebraic
Geometry: Hirzebruch 70 (Warsaw, 1998), Contemporary Mathematics, 241 (American
Mathematical Society, Providence, RI, 1999), 349–369.

[Yok10] S. Yokura, ‘Motivic Milnor classes’, J. Singul. 1 (2010), 39–59.
[Zha18] X. Zhang, ‘Chern classes and characteristic cycles of determinantal varieties.’,

J. Algebra 497 (2018), 55–91.

https://doi.org/10.1017/fms.2019.25 Published online by Cambridge University Press

http://www.arxiv.org/abs/1808.09606
http://www.arxiv.org/abs/1808.09606
http://www.arxiv.org/abs/1808.09606
http://www.arxiv.org/abs/1808.09606
http://www.arxiv.org/abs/1808.09606
http://www.arxiv.org/abs/1808.09606
http://www.arxiv.org/abs/1808.09606
http://www.arxiv.org/abs/1808.09606
http://www.arxiv.org/abs/1808.09606
http://www.arxiv.org/abs/1808.09606
http://www.arxiv.org/abs/1808.09606
http://www.arxiv.org/abs/1808.09606
http://www.arxiv.org/abs/1808.09606
http://www.arxiv.org/abs/1808.09606
http://www.arxiv.org/abs/1808.09606
http://www.arxiv.org/abs/1808.09606
https://doi.org/10.1017/fms.2019.25

	Introduction
	Context and preliminaries
	The result, in projective space
	One example
	Organization of the paper
	Another example
	Relations with other results, and possible extensions

	Statement
	Preliminaries
	The scheme Y
	The main theorem

	Proof
	Roadmap
	Alternative description of Y
	The push-forward of cvir(X)
	The push-forward of cSM(X)
	End of the proof
	Milnor classes

	CSM from Segre zeta functions
	Segre zeta functions
	Statement of the result
	Proof of Theorem 4.1
	Two examples

	References

