SUPERMAGIC COMPLETE GRAPHS

B. M. STEWART

In our paper "Magic graphs" (1) we showed that every complete graph K_{n} with $n \geqslant 5$ is "magic," i.e., if the vertex set is indicated $\left\{v_{i}\right\}$ and if $e_{i j}$ is the edge joining v_{i} and $v_{j}, i \neq j$, then there exists a function $\alpha\left(e_{i j}\right)$ such that the set $\left\{\alpha\left(e_{i j}\right)\right\}$ consists of distinct positive rational integers and the vertex sums

$$
\begin{equation*}
\sigma^{k}=\sigma\left(v_{k}\right)=\sum_{1 \leqslant i<k}^{\prime} \alpha\left(e_{i k}\right)+\sum_{k<j \leqslant n}^{\prime \prime} \alpha\left(e_{k j}\right) \tag{1}
\end{equation*}
$$

have a constant value $\sigma(\alpha)$ for $k=1,2, \ldots, n$. We noted that K_{2} is magic and showed that K_{3} and K_{4} are not magic.

We raised the question whether K_{n} is "supermagic" for $n \geqslant 5$, i.e., does there exist an α under which K_{n} is magic with the additional property that the set $\left\{\alpha\left(e_{i j}\right)\right\}$ consists of consecutive integers? Since K_{n} is regular, the supermagic problem reduces to using the particular set $\{1,2, \ldots, E\}$, where

$$
E=n(n-1) / 2 .
$$

We showed that K_{n} is not supermagic when $n \equiv 0 \bmod 4$. We claimed (without details) that K_{5} is not supermagic; and we showed that K_{6} and K_{7} are supermagic.

In this paper we shall show that K_{n} is supermagic for $n \geqslant 5$ if and only if $n>5$ and $n \neq 0 \bmod 4$.

Theorem 1. K_{n} is not supermagic when $n \equiv 0 \bmod 4$.
Proof. If K_{n} is supermagic, a necessary relation is obtained by summing $\alpha\left(e_{i j}\right)$ over all the edges of K_{n}, namely:

$$
\begin{equation*}
n \sigma(\alpha)=E(E+1) \tag{2}
\end{equation*}
$$

which reduces to the form

$$
4 \sigma(\alpha)=(n-1)\left(n^{2}-n+2\right)
$$

When $n \equiv 0 \bmod 4$, the relation (2^{\prime}) cannot be satisfied, since $0 \not \equiv 2 \bmod 4$.
Theorem 2. K_{5} is not supermagic.

Received December 30, 1965.

Proof. We shall show that the integers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 cannot be assigned to the edges of K_{5} in such a way that each vertex sum is 22 . Certainly 10 must be assigned to one edge, say e_{12}. In order that the vertex sums at v_{1} and v_{2} be 22 , we must select from the integers $1,2,3,4,5,6,7,8,9$ two disjoint sets A_{1} and A_{2}, each containing three integers having the sum 12 .

If 9 is used in A_{1}, it must be used with 1 and 2 , and the only companion set A_{2} is $3,4,5$. Suppose $\alpha\left(e_{13}\right)=9$; then the other three edges incident to V_{3} must have assignments which total 13 . But the remaining numbers are $6,7,8$; hence $\alpha\left(e_{34}\right)+\alpha\left(e_{35}\right)$ already totals 13 . Hence if K_{5} is supermagic under α, the sets A_{1} and A_{2} must not contain 9 .

If 8 is used in A_{1}, it must be used with 1 and 3 ; since 9 may not be used in A_{2}, the only companion set A_{2} is $2,4,6$. Suppose $\alpha\left(e_{13}\right)=8$; then $\alpha\left(e_{23}\right)=6,4$, or 2 , and $\alpha\left(e_{34}\right)$ and $\alpha\left(e_{35}\right)$ must be chosen from $5,7,9$. If $\alpha\left(e_{23}\right)=6$, then $\sigma^{3}=22$ implies that $\alpha\left(e_{34}\right)+\alpha\left(e_{35}\right)=8$, which is impossible. If $\alpha\left(e_{23}\right)=4$, then $\sigma^{3}=22$ implies that $\alpha\left(e_{34}\right)+\alpha\left(e_{35}\right)=10$, which is impossible. But if $\alpha\left(e_{23}\right)=2$, then $\sigma^{3}=22$ implies that $\alpha\left(e_{34}\right)+\alpha\left(e_{35}\right)=12$, which is possible with $\alpha\left(e_{34}\right)$ and $\alpha\left(e_{35}\right)$ chosen from 5,7 . However, this requires $\alpha\left(e_{45}\right)=9$. Then $\sigma^{4}=22$ implies that $\alpha\left(e_{14}\right)+\alpha\left(e_{24}\right)+\alpha\left(e_{34}\right)=13$. Since $\alpha\left(e_{24}\right)$ is even, being chosen from 4,6 , and since $\alpha\left(e_{14}\right)+\alpha\left(e_{34}\right)$ is even, with summands being chosen from $1,3,5,7$, the sum 13 cannot be realized. Hence if K_{5} is supermagic under α, the sets A_{1} and A_{2} must contain neither 9 nor 8 .

From the remaining numbers $1,2,3,4,5,6,7$ there are only five sets of three with the sum 12 , namely: $\{1,4,7\},\{2,3,7\},\{1,5,6\},\{2,4,6\},\{3,4,5\}$. Only two of these sets are disjoint, namely: $A_{1}=\{2,3,7\}$ and $A_{2}=\{1,5,6\}$. The assignments $\alpha\left(e_{34}\right), \alpha\left(e_{35}\right), \alpha\left(e_{45}\right)$ must be chosen from 4, 8, 9 . Suppose $\alpha\left(e_{13}\right)=7$. Then $\alpha\left(e_{13}\right)+\alpha\left(e_{34}\right)+\alpha\left(e_{35}\right)$ is either 19,20 , or 24 . Since $\alpha\left(e_{23}\right)$ must be chosen from A_{2}, it is impossible to make $\sigma^{3}=22$. This concludes the proof of Theorem 2.

Because of Theorems 1 and 2, an induction proof that K_{n} is supermagic for $n>5$ and $n \neq 0 \bmod 4$ can only be successful if we set $n=4 k+r$ and discuss each of the cases $r=1,2,3$ with an induction on k, beginning with appropriate values: if $r=1, k \geqslant 2$; if $r=2, k \geqslant 0$; if $r=3, k \geqslant 1$.

We shall describe an α for K_{n} by giving the entries $\alpha\left(e_{i j}\right)$ in the upper triangle, $i<j$, of a matrix. Because of the restriction $i<j$, the triangle contains $n-1$ rows, numbered $i=1,2, \ldots, n-1$, and $n-1$ columns, numbered $j=2,3, \ldots, n$.

For $k=2,3, \ldots, n-1$ we note that the vertex sum σ^{k} will be found by adding the entries in the k-column and the k-row of the triangle. This is indicated in (1) by separating σ^{k} into the parts Σ^{\prime} and $\Sigma^{\prime \prime}$. In figures we shall use a right-angled arrow, along the diagonal of the triangle, to remind the viewer how to form the sum σ^{k}. Of course, for $k=1, \sigma^{1}$ consists of $\Sigma^{\prime \prime}$ only, determined by the 1 -row of the triangle; and for $k=n, \sigma^{n}$ consists of \sum^{\prime} only, determined by the n-column of the triangle.

In the inductions we shall obtain a triangle describing an α^{\prime} for K_{n+4} by adjoining four columns to the triangle describing an α for K_{n}, so we shall have use for the following lemma.

Lemma 1. Given a_{i} and $\bar{a}_{i}=Q-a_{i}, i=1,2, \ldots, 8$, satisfying the conditions

$$
\begin{equation*}
a_{1}+a_{4}=a_{2}+a_{3}, \quad a_{5}+a_{8}=a_{6}+a_{7}, \tag{3}
\end{equation*}
$$

then the matrix

a_{1}	\bar{a}_{1}	a_{5}	\bar{a}_{5}
\bar{a}_{2}	a_{2}	\bar{a}_{6}	a_{6}
\bar{a}_{3}	a_{3}	\bar{a}_{7}	a_{7}
a_{4}	\bar{a}_{4}	a_{8}	\bar{a}_{8}

has the property that each row and column sum is $2 Q$.
Proof. Since $a_{i}+\bar{a}_{i}=Q$ for $i=1,2, \ldots, 8$, each row sum in (3') is obviously $2 Q$. Since $a_{1}+a_{4}=a_{2}+a_{3}$, it is easy to check for the first two columns that

$$
a_{1}+\left(Q-a_{2}\right)+\left(Q-a_{3}\right)+a_{4}=2 Q=\left(Q-a_{1}\right)+a_{2}+a_{3}+\left(Q-a_{4}\right)
$$

A similar argument applies to the last two columns.
Our induction construction of a triangle describing an α^{\prime} for K_{n+4} from knowledge of a triangle describing an α for K_{n} will vary according to the value of r, but will always hinge on comparing $\sigma^{\prime}=\sigma\left(\alpha^{\prime}\right)$ and E^{\prime} for K_{n+4} with $\sigma=\sigma(\alpha)$ and E for K_{n}.

We know that $E=n(n-1) / 2$ and $E^{\prime}=(n+4)(n+3) / 2$; hence $E^{\prime}-E=2(2 n+3)$. From (2) we have

$$
\sigma=(E+1)(n-1) / 2, \quad \sigma^{\prime}=\left(E^{\prime}+1\right)(n+3) / 2 ;
$$

hence

$$
\begin{align*}
& \sigma^{\prime}=\sigma+\left(E^{\prime}-E\right)(n-1) / 2+2\left(E^{\prime}+1\right) \tag{4}\\
& \sigma^{\prime}=\sigma+(n-1)(2 n+3)+2\left(E^{\prime}+1\right)
\end{align*}
$$

Theorem 3. If n is odd and $n>5$, then K_{n} is supermagic.
Proof. The degree of each vertex of K_{n} is $n-1$, so that comparison with (4') suggests the following induction plan. Assume that α makes K_{n} supermagic using the assignments $1,2, \ldots, E$. Increase each edge assignment by the amount $2 n+3$. Then the new α_{1} has for each vertex of K_{n} the sum $\sigma_{1}=\sigma+(n-1)(2 n+3)$ and uses the consecutive assignments

$$
2 n+4,2 n+5, \ldots, E+2 n+3=E^{\prime}-(2 n+3)
$$

We shall show that K_{n+4} is supermagic by producing an α^{\prime} based on α_{1}. We
shall need to use the integers $\{x\}$, where $1 \leqslant x \leqslant 2 n+3$, and the complementary integers $\{\bar{x}\}$, where $\bar{x}=\left(E^{\prime}+1\right)-x$, which fill the interval $E^{\prime}+1-(2 n+3) \leqslant \bar{x} \leqslant E^{\prime}$. For the vertices in K_{n+4} which are also in K_{n} this looks hopeful, since (4^{\prime}) shows that $\sigma^{\prime}=\sigma_{1}+2\left(E^{\prime}+1\right)$ and assignments such that

$$
\alpha^{\prime}\left(e_{i, n+1}\right)+\alpha^{\prime}\left(e_{i, n+2}\right)+\alpha^{\prime}\left(e_{i, n+3}\right)+\alpha^{\prime}\left(e_{i, n+4}\right)=2\left(E^{\prime}+1\right)
$$

for $i=1,2, \ldots, n$ will be found readily using two pairs x, \bar{x}, y, \bar{y}.
However, there are six other new edges, joining the four new vertices, to which assignments must be made. Furthermore, the vertex sums for the four new vertices must also be σ^{\prime}. This is the stage of the argument where the cases with n odd are easier than the case where n is even, because when n is odd, the fraction $(n-1) / 2$ appearing in (4) is an integer.

Case 1. If $n=4 k+3 \geqslant 7$, the degree for K_{n+4} is $n+3 \geqslant 10$, so it makes sense to make a separate description of the last ten rows of the last four columns of the triangle for α^{\prime}. For the other rows ($k \geqslant 2$) we have Lemma 1 and (3) and (3^{\prime}) in mind as we make the entries which follow:

$$
\begin{array}{l|rrrr}
& n+1 & n+2 & n+3 & n+4 \\
4 t+1 & & \frac{8 t+1}{} & \overline{8 t+1} & 8 t+2 \tag{5}\\
4 t+2 & \overline{8 t+3} & 8 t+3 & \overline{8 t+4} & 8 t+4 \\
4 t+3 & \overline{8 t+5} & \frac{8 t+5}{8 t+6} & \overline{8 t+6} \\
4 t+4 & 8 t+7 & \overline{8 t+7} & 8 t+8 & \overline{8 t+8}
\end{array}
$$

for $t=0,1, \ldots, k-2$. We note that this will use all the x and \bar{x} with $1 \leqslant x \leqslant 8 k-8$. In the last ten rows we enter

These entries use all the remaining x and \bar{x} with

$$
8 k-7 \leqslant x \leqslant 8 k+9=2 n+3
$$

exactly as planned. From (4') we check for the n "old" vertices that $\sigma_{1}+2\left(E^{\prime}+1\right)=\sigma^{\prime}$. Of course as part of our check we use the fact that (5) is a special instance of (3^{\prime}) with each row sum being $2\left(E^{\prime}+1\right)$. But the choices in (5) also satisfy (3). Hence for the four "new" vertices we use the result in Lemma 1 concerning column sums, for the $k-1$ cases,

$$
t=0,1, \ldots, k-2,
$$

together with our special arrangement in the last ten rows, to check that $(k-1) 2\left(E^{\prime}+1\right)+5\left(E^{\prime}+1\right)=(2 k+3)\left(E^{\prime}+1\right)$

$$
=\left(E^{\prime}+1\right)(n+3) / 2=\sigma^{\prime} .
$$

If we can produce a solution for $n=7$, this will complete the induction proof for the case $n=4 k+3 \geqslant 7$. As a basis for the induction we exhibit a triangle describing an α for K_{7} :

As an illustration of the induction step we show the solution for K_{11} derived from the above solution for K_{7}. However, the situation is not quite typical for (5) is vacuous, and only the specially arranged ten rows appear.

Add $2 n+3=17$ to α for K_{7}						Apply induction with $E^{\prime}+1=56$				
28	18	38	29	19	36	1	55	2	54	4
	35	22	20	37	26	53	3	52		4
		27	34	33	21	51	5	50		6
			24	25	32	7	48	8	49	9
				31		47	10	46		
					23		44	12	45	5
							42	14	43	
							41	40		
								17		
									39	9

Case 2. If $n=4 k+1 \geqslant 9$, the degree for K_{n+4} is $n+3 \geqslant 12$. We begin with (5) for $t=0,1, \ldots, k-3$. This uses all the x and \bar{x} with

$$
1 \leqslant x \leqslant 8 k-16
$$

In the last twelve rows we enter

These entries use all the remaining x and \bar{x} with

$$
8 k-15 \leqslant x \leqslant 8 k+5=2 n+3
$$

exactly as planned. From the above arrangement and from (5) we check, using (4'), for each of the n "old" vertices, that $\sigma_{1}+2\left(E^{\prime}+1\right)=\sigma^{\prime}$. From Lemma 1 , applied to $k-2$ cases, $t=0,1, \ldots, k-3$, and from the special arrangement in the last twelve rows, we check for each of the four "new" vertices that

$$
\begin{aligned}
(k-2) 2\left(E^{\prime}+1\right)+6\left(E^{\prime}+1\right)=(2 k+2)\left(E^{\prime}\right. & +1) \\
& =\left(E^{\prime}+1\right)(n+3) / \underline{2}=\sigma^{\prime}
\end{aligned}
$$

This concludes the induction proof for the case $n=4 k+1 \geqslant 9$, except for exhibiting a basis for the induction in the form of an α under which K_{9} is supermagic. One such α is described by the following triangle:

19	17	31	7	10	27	24	13
	20	8	30	5	35	3	28
		16	21	12	25	36	1
		26	18	32	6	11	
			22	4	15	23	
				14	33	34	
					2	9	
							29

Theorem 4. If $n=4 k+2$, then K_{n} is supermagic for $k \geqslant 0$.
Proof. The case $n=2$, which furnishes a basis for the induction, is trivial, since K_{2} has only two vertices and one edge, for which the assignment
$\alpha\left(e_{12}\right)=1$ fits the requirements. The plan used in the proof of Theorem 3 is not applicable, since $\sigma=(E+1)(n-1) / 2$ does not have $(n-1) / 2$ as an integer. Instead, we have

$$
\begin{equation*}
\sigma=2 k(E+1)+(E+1) / 2 \tag{6}
\end{equation*}
$$

Our induction plan will vary slightly according to the size of k and will vary according as k is odd or even.

Our solutions for $n=4 k+2$ will have a special form in the sense that we prescribe

$$
\begin{cases}\alpha\left(e_{4 t+1,4 t+2}\right)=(E+1) / 2-t, & t=0,1, \ldots, k \tag{7}\\ \alpha\left(e_{4 t-1,4 t}\right)=(E+1) / 2+t, & t=1,2, \ldots, k\end{cases}
$$

The entries in (7) will provide the $(E+1) / 2$ noted in (6), for just one of these terms appears in each vertex sum. Furthermore, we shall assume that our solution has the following special property:
$\left\{\begin{array}{l}\text { for each vertex sum, the terms other than those listed in }(7) \text { have } 2 k \\ \text { of them greater than }(E+1) / 2 \text { and } 2 k \text { of them less than }(E+1) / 2 .\end{array}\right.$
To construct an α^{\prime} for K_{n+4}, retaining the properties (7) and (8), we make the following preliminary change. We assume K_{n} is supermagic under an α with properties (7) and (8) and begin constructing a new α_{1} for K_{n} as follows:

$$
\left\{\begin{array}{l}
\alpha_{1}\left(e_{4 t+1,4 t+2}\right)=\left(E^{\prime}+1\right) / 2-t=\alpha\left(e_{4 t+1,4 t+2}\right)+\left(E^{\prime}-E\right) / 2, \\
\alpha_{1}\left(e_{4 t-1,4 t}\right)=\left(E^{\prime}+1\right) / 2+t=\alpha\left(e_{4 t-1,4 t}\right)+\left(E^{\prime}-E\right) / 2,
\end{array}\right.
$$

for $t=0,1, \ldots, k$ and $t=1,2, \ldots, k$, respectively. Since

$$
\left(E^{\prime}-E\right) / 2=8 k+7
$$

we may think first of adding $8 k+7$ to every edge assignment in α. However, since we shall want α^{\prime} to have property (7) we anticipate having

$$
\left\{\begin{array}{l}
\alpha^{\prime}\left(e_{4 k+5,4 k+6}\right)=\left(E^{\prime}+1\right) / 2-(k+1) \\
\alpha^{\prime}\left(e_{4 k+3,4 k+4}\right)=\left(E^{\prime}+1\right) / 2+(k+1)
\end{array}\right.
$$

Hence we shall leave a place for these two integers and define

$$
\begin{cases}\alpha_{1}\left(e_{i j}\right)=\alpha\left(e_{i j}\right)+8 k+6, & \text { if } \alpha\left(e_{i j}\right)<(E+1) / 2, \\ \alpha_{1}\left(e_{i j}\right)=\alpha\left(e_{i j}\right)+8 k+8, & \text { if } \alpha\left(e_{i j}\right)>(E+1) / 2,\end{cases}
$$

where either $i<j$ and i is even, or $i<j$ and i is odd, but $j \neq i+1$ (the case where i is odd and $j=i+1$ is already defined in (7^{\prime})). Combining (7^{\prime}), $\left(7^{\prime \prime}\right)$, and $\left(8^{\prime}\right)$ we see that the integers remaining to be used in the description of α^{\prime} are the two sets of consecutive integers $\{x\}$ and $\{\bar{x}\}$ where

$$
\bar{x}=\left(E^{\prime}+1\right)-x
$$

and

$$
\begin{equation*}
1 \leqslant x \leqslant 8 k+6 \tag{9}
\end{equation*}
$$

We note that α_{1} makes K_{n} magic with
$\sigma_{1}=\sigma+2 k(8 k+6+8 k+8)+\left(E^{\prime}-E\right) / 2=\sigma+\left(E^{\prime}-E\right)(n-1) / 2$. Then from (4) we obtain

$$
\sigma^{\prime}=\sigma_{1}+2\left(E^{\prime}+1\right)
$$

Thus for the "old" vertices of K_{n+4} we can hope to use two pairs x, \bar{x}, y, \bar{y} to make up the proper vertex sum σ^{\prime} for α^{\prime}. For the first $4 k$ rows of the last four columns of the triangle describing α^{\prime}, we hope to use Lemma 1 and (3^{\prime}) for k sets. For the last five rows we plan to use some variation of the following pattern, which incorporates ($7^{\prime \prime}$):

In each use of (10) we must check that the integers

$$
1, \quad u, \quad v, \quad u+k+2-v, \quad k+2, \quad u+k+1
$$

are distinct and within the set (9), and that the remaining integers in (9) can be distributed in $2 k$ sets of four satisfying the requirement (3) in Lemma 1. If we can satisfy the requirements (3) and (9) for every $k \geqslant 0$, then from $\left(4^{\prime \prime}\right)$ we can check that the "old" vertices have $\sigma_{1}+2\left(E^{\prime}+1\right)=\sigma^{\prime}$. For the four "new" vertices we have Lemma 1 for k cases and the special sums in (10), so that

$$
\begin{aligned}
k 2\left(E^{\prime}+1\right)+5\left(E^{\prime}+1\right) / 2=\left(E^{\prime}+1\right)(4 k+5) / 2 & \\
& =\left(E^{\prime}+1\right)(n+3) / 2=\sigma^{\prime}
\end{aligned}
$$

So we shall be able to pass from an α for which K_{n} is supermagic to an α^{\prime} for which K_{n+4} is supermagic. Since n corresponds to k and $n+4$ corresponds to $k+1$, the proof will be complete by induction on k. Of course we must check that if α has properties (7) and (8), then the α^{\prime} which is obtained also has both properties (7) and (8), so that it will be suitable for the next step of the induction.

It remains to describe for each k how to choose u, v in (10) and how to choose the $2 k$ sets $x_{1}, x_{2}, x_{3}, x_{4}$ to satisfy (3) and (8) and (9).

When $k=0$ the simple solution $\alpha\left(e_{12}\right)=1$ has property (7), and has property (8) vacuously. From (7^{\prime}) we obtain $\alpha_{1}\left(e_{12}\right)=\alpha\left(e_{12}\right)+7=8$. The
choice $u=5, v=3$ satisfies (9), and (3) is satisfied vacuously. We apply (10) and obtain a solution for K_{6}, with property (8), as follows:

8	1	10	15	6	$\rightarrow 40$
\longrightarrow	14	5	11	2	$\rightarrow 40$
	\rightarrow	9	3	13	$\rightarrow 40$
	\longrightarrow	4	12	$\rightarrow 40$	
		\hookrightarrow	7	$\rightarrow 40$	
				$\longrightarrow 40$	

When $k=1$, we start from the above solution for K_{6}. In the edge assignments for e_{12}, e_{34}, e_{56} we make the increment $8 k+7=15$. For the other edges, if $\alpha\left(e_{i j}\right)<8$, we make the increment $8 k+6=14$; but if $\alpha\left(e_{i j}\right)>8$, we make the increment $8 k+8=16$, exactly as in (7^{\prime}) and (8^{\prime}). The choice $u=4, v=2$, and the choice $7,8,9,10 ; 11,12,13,14$ for a_{1} to a_{8} will satisfy (3) and (9). We apply (10) and (3') and obtain a solution α^{\prime} for K_{10}, with property (8). Before simplification α^{\prime} appears as
$\left.\begin{array}{lrrrr|cccc}8+15 & 1+14 & 10+16 & 15+16 & 6+14 & 7 & 46-7 & 11 & 46-11 \\ & 14+16 & 5+14 & 11+16 & 2+14 & 46-8 & 8 & 46-12 & 12 \\ & & 9+15 & 3+14 & 13+16 & 46-9 & 9 & 46-13 & 13 \\ \alpha_{1} & & & 4+14 & 12+16 & 10 & 46-10 & 14 & 46-14\end{array}\right\}\left(3^{\prime}\right)$

After simplification α^{\prime} appears as

When $k=2$, we start from the above solution for K_{10} and follow the planned procedure. We use

$$
u=3, \quad v=2, \quad k+2=4, \quad u+k+2-v=5, \quad u+k+1=6
$$

which agrees with (9). The sixteen remaining numbers are easily arranged in sets of four numbers which satisfy (3) for if $a_{1}, a_{2}, a_{3}, a_{4}$ are consecutive integers $a, a+1, a+2, a+3$, then $a_{1}+a_{4}=a_{2}+a_{3}$. So we may use the sets $(7,8,9,10),(11,12,13,14),(15,16,17,18),(19,20,21,22)$ to obtain a solution α^{\prime} for K_{14} with α^{\prime} having properties (7) and (8).

For every odd $k \geqslant 3$, if there is a solution known for $K_{4 k+2}$, we shall follow the planned procedure to obtain a solution for $K_{4 k+6}$. We set $k=2 K+1$. We use $u=2$ and $v=3$ and find that

$$
u+k+2-v=2 K+2, \quad k+2=2 K+3, \quad u+k+1=2 K+4
$$

This agrees with (9) providing $K \geqslant 1$ so that $2 K+2 \geqslant 4$. This explains the condition $k=2 K+1 \geqslant 3$.

If K is odd, then $2 K-2 \equiv 0 \bmod 4$, so that the remaining integers in (9) fall into an even number of sets of four consecutive integers:

$$
\begin{gathered}
(4,5,6,7), \ldots,(2 K-2,2 K-1,2 K, 2 K+1) \\
(2 K+5,2 K+6,2 K+7,2 K+8), \ldots,(8 k+3,8 k+4,8 k+5,8 k+6)
\end{gathered}
$$

If K is even, then $2 K \equiv 0 \bmod 4$, so that the remaining integers in (9) fall with one exception into sets of four consecutive integers. The exceptional set $(2 K, 2 K+1,2 K+5,2 K+6)$ retains the property $a_{1}+a_{4}=a_{2}+a_{3}$ in (3). In both cases the entire construction is successful. Consideration of (3^{\prime}) and (10) shows that if α has property (8), then α^{\prime} will also have property (8).

For every even $k \geqslant 2$, we proceed as follows. We set $k=2 K$. We use $u=3$ and $v=2$ and find that

$$
k+2=2 K+2, \quad u+k+2-v=2 K+3, \quad u+k+1=2 K+4
$$

This agrees with (9) since $2 K+2>3$ for $k=2 K \geqslant 2$. The remaining integers in (9) are $4,5, \ldots, 2 K+1 ; 2 K+5,2 K+6, \ldots, 8 k+6$. Hence their distribution into an even number of sets of four integers satisfying (3) is exactly as in the case k odd.

Combining the cases $k=0, k=1$, even $k \geqslant 2$, odd $k \geqslant 3$, we see by induction on k that $K_{4 k+2}$ is supermagic for all $k \geqslant 0$.

We have noted in Theorem 1 that $K_{4 k}$ is not supermagic. As a near substitute we have the following theorem.

Theorem 5. If $k \geqslant 2$, then $K_{4 k}$ is magic under an α which uses the assignments $1,2, \ldots, E+1$, omitting the middle integer $(E+2) / 2$.

Proof. We shall outline the proof, for it is a duplicate of the proof in Theorem

4 in almost every respect, except that $E+2$ replaces $E+1$. However, we must modify (7) to eliminate $(E+2) / 2$, so we use

$$
\begin{cases}\alpha\left(e_{4 t-3,4 t-2}\right)=(E+2) / 2+t, & t=1,2, \ldots, k ; \tag{*}\\ \alpha\left(e_{4 t-1,4 t}\right)=(E+2) / 2-t, & t=1,2, \ldots, k\end{cases}
$$

The construction of α_{1} is like that in Theorem 4 with an increment of $2 n+3=8 k+3$ for the edges in (7^{*}); and an increment of $2 n+2=8 k+2$ for the other edges if $\alpha\left(e_{i j}\right)<(E+2) / 2$; but an increment of $2 n+4=8 k+4$ if $\alpha\left(e_{i j}\right)>(E+2) / 2$. The pattern (10) becomes (10*) with $E^{\prime}+2$ replacing $E^{\prime}+1$. For odd $k=2 K+1 \geqslant 3$, the choice is $u=2, v=3$. For even $k=2 K \geqslant 2$, the choice is $u=3, v=2$. The integers $\{x\}$ and $\{\bar{x}\}$, with $\bar{x}=\left(E^{\prime}+2\right)-x$, which remain to be used are $4 \leqslant x \leqslant 2 K+1$,

$$
2 K+5 \leqslant x \leqslant 8 k+2
$$

The integers $\{x\}$ in the ranges $4 \leqslant x \leqslant 2 K+1,2 K+5 \leqslant x \leqslant 8 k-10$ (vacuous only when $k=2$) can be distributed into an even number of sets of four integers satisfying (3) very much as in Theorem 4, with slightly different plans according as K is odd or even. The remaining twelve integers (never vacuous), $8 k-9 \leqslant x \leqslant 8 k+2$, cannot be distributed into an even number of sets of four. Instead, we use the following pattern:

$$
\begin{array}{llll}
8 k-9 & \overline{8 k-9} & 8 k-7 & \overline{8 k-7} \\
8 k-2 & \overline{8 k-2} & 8 k-3 & \overline{8 k-3} \\
\frac{8 k+1}{8 k+1} & \overline{8 k-1} & \overline{8 k-1} \tag{*}\\
\overline{8 k-8} & 8 k-8 & \overline{8 k-6} & 8 k-6 \\
\overline{8 k-4} & 8 k-4 & \overline{8 k-5} & 8 k-5 \\
\overline{8 k+2} & 8 k+2 & \overline{8 k} & 8 k
\end{array}
$$

which has $2\left(E^{\prime}+2\right)$ for each row sum and has $3\left(E^{\prime}+2\right)$ for each column sum. The patterns $\left(3^{*}\right),\left(10^{*}\right)$, and $\left(11^{*}\right)$ preserve properties $\left(7^{*}\right)$ and $\left(8^{*}\right)$, where $\left(3^{*}\right)$ and (8^{*}) are the analogues of (3) and (8) with $E+2$ in place of $E+1$. To complete the proof of Theorem 5 , by induction on $k \geqslant 2$, we must produce a solution α for K_{8} having properties (7^{*}) and (8^{*}). Witness the following:

16	7	22	4	26	12	18	$\rightarrow 105$
\longrightarrow	23	8	25	3	21	9	$\rightarrow 105$
	\rightarrow	14	5	27	1	28	$\rightarrow 105$
	\longrightarrow	24	2	29	6	$\rightarrow 105$	
		\rightarrow	17	10	20	$\rightarrow 105$	
			19	11	$\rightarrow 105$		
				13	$\rightarrow 105$		

To illustrate the induction procedure (except that $\left(3^{*}\right)$ is vacuous) we show how $\alpha_{1},\left(10^{*}\right)$, and $\left(11^{*}\right)$ are used to find α^{\prime} (omitting 34) for K_{12} from the above α (omitting 15) for K_{8}. Since $k=2$ is even, we use $u=3, v=2$.
$\left.\begin{array}{lllllll|rrrr}35 & 25 & 42 & 22 & 46 & 30 & 38 & 7 & 61 & 9 & 59 \\ & 43 & 26 & 45 & 21 & 41 & 27 & 14 & 54 & 13 & 55 \\ & & 33 & 23 & 47 & 19 & 48 & 17 & 51 & 15 & 53 \\ & & 44 & 20 & 49 & 24 & 60 & 8 & 58 & 10 \\ & & & 36 & 28 & 40 & 56 & 12 & 57 & 11 \\ & & & & 39 & 29 & 50 & 18 & 52 & 16\end{array}\right\} \quad\left(11^{*}\right)$

Reference

1. B. M. Stewart, Magic graphs, Can. J. Math., 18 (1966), 1031-1059.

Michigan State University

