A PROBLEM ON CYCLIC SUBGROUPS OF FINITE GROUPS

by THOMAS J. LAFFEY
(Received 5th June 1972)

1. Introduction

Let G be a finite group and let S be a subgroup of G with

$$
\operatorname{core}(S)=\bigcap_{x \in G} x^{-1} S x=1
$$

We say (G, S) has property $\left(^{*}\right)$ if there exists $x \in G$ such that $S \cap x^{-1} S x=1$. A question which immediately arises is the following; what conditions on G, S. ensure that (G, S) has property (${ }^{*}$)?

It has been shown by J. S. Brodkey (1) that (G, S) has property $\left({ }^{*}\right)$ if S is an abelian Sylow p-subgroup of G for some prime p. Brodkey's argument can easily be extended to the case where S is an abelian Hall subgroup of the group G. (See also (2).)

It has been shown by N . Ito (3) that if G is soluble and S is a Sylow p subgroup of G, then (G, S) has property (*) except possibly when $p=2$ or p is a Mersenne prime.

In this note we consider the case where S is cyclic. We show that (G, S) has property (${ }^{*}$) if G is simple and that if G is soluble and $S \cap F(G)=1$, then (G, S) has property (*).

Our results suggest that (G, S) has property (${ }^{*}$) if S is cyclic and $S \cap F(G)=1$, but we have not been able to prove this in general.

The notation is standard. We recall that if G is a finite group $F(G)$ denotes the maximal nilpotent normal subgroup of G.

2. Preliminary results

Lemma 1. Let q, p_{1}, \ldots, p_{n} be distinct prime numbers. For each i let a_{i} be the least positive integer for which $q^{a_{i}}=1 \bmod p_{i} . \quad$ Then $\sum_{i=1}^{n}\left(1 / q^{a_{i}}\right)<1-1 / q$.

Proof. Let $w(m)$ denote the number of distinct prime divisors of the positive integer m.

Then

$$
\begin{aligned}
\sum_{i=1}^{n}\left(1 / q^{a_{i}}\right) & <\sum_{i=1}^{\infty} \frac{w\left(q^{i}-1\right)}{q^{i}}<\sum_{i=1}^{\infty} \frac{\log _{2} q^{i}}{q^{i}} \\
& =q \log _{2} q /(q-1)^{2}
\end{aligned}
$$

This implies the result for $q \geqq 5$.

[^0]Next

$$
\sum_{i=1}^{n}\left(\frac{1}{3}{ }^{a_{i}}\right)<\frac{1}{3}+\frac{1}{27}+\sum_{i=3}^{\infty} \frac{i}{3^{i}}<\frac{2}{3}
$$

Finally

$$
\sum_{i=1}^{n}\left(\frac{1}{2} a_{i}\right)<\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{128}+\frac{1}{256}+\sum_{i=9}^{\infty}\left(i / 2^{i}\right)<\frac{1}{2} .
$$

Lemma 2. Let $q_{1}<q_{2}<q_{3} \ldots$ be the sequence of prime numbers. Then

$$
\sum_{i=1}^{\infty}\left(1 / q_{i}^{2}\right)<\frac{2}{3}
$$

Proof. The result follows immediately from the fact that

$$
\sum_{n=1}^{\infty}\left(1 / n^{2}\right)=\pi^{2} / 6
$$

3. Cyclic group action on a nilpotent group

This section is devoted to a proof of the following result:
Theorem 1. Let Q be a finite nilpotent group and let A be a cyclic group of automorphisms of Q. Then there exists $v \in Q$ such that $v a \neq v$ for any $a \neq 1$ in A.

Proof. Assume the result is false and let (Q, A) be a counterexample for which $|Q|+|A|$ is minimal. Let $|A|=p_{1}^{b_{1}} \ldots p_{k}^{b_{k}}$ be the canonical decomposition of $|A|$ as a product of distinct prime powers. The minimality of $|A|$ forces $b_{1}=\ldots=b_{k}=1$. Let q be a prime divisor of $|Q|$ and let Q_{0} be the Sylow q-subgroup of Q.
(1) $Q_{0}=Q$. For suppose not. Let Q_{1} be the Hall q-complement of Q. Let $A_{0}=\left\{a \in A \mid a\right.$ acts trivially on $\left.Q_{0}\right\}$, and let $A=A_{0} \times A_{1}$. Now there exists $v_{0} \in Q_{0}$ such that $v_{0} a_{1} \neq v_{0}$ for any $a_{1} \in A_{1}-\{1\}$ and there exists $v_{1} \in Q_{1}$ such that $v_{1} a_{0} \neq v_{1}$ for any $a_{0} \in A_{0}-\{1\}$. Let $v=v_{0} v_{1}$. Then $v a \neq v$ for any $a \in A-\{1\}$. This establishes (1).
(2) Contradiction. Let a_{i} be an element of A of order p_{i} and let

$$
Q_{1}=\left\{w \in Q \mid w a_{i}=w\right\}
$$

Then $Q=\cup Q_{i}$ (set-theoretic union). Let $|Q|=q^{n},\left|Q: Q_{i}\right|=q^{n_{i}}$. Since a_{i} permutes the elements of $Q-Q_{i}$ in to orbits of length $p_{i}, q^{n_{i}} \equiv 1 \bmod p_{i}$ if $p_{i} \neq q$. In particular, $n_{i} \geqq d_{i}$ where d_{i} is the least positive integer for which $q^{d_{i}} \equiv 1 \bmod p_{i}$ if $p_{i} \neq q$. But now,

$$
\sum_{i=1}^{k} 1 / q^{n_{i}} \leqq 1 / q+\sum_{p_{i} \neq q} 1 / q^{n_{i}} \leqq 1 / q+\sum_{p_{i} \neq q} 1 / q^{d_{i}}<1
$$

by Lemma 1. On the other hand, the equation $Q=\cup Q_{i}$ implies that

$$
|Q| \leqq \sum_{i=1}^{k}\left|Q_{i}\right|
$$

and thus $\sum_{i=1}^{k} 1 / q^{n_{i}} \geqq 1$. The contradiction is established.

4. Intersection theorems

Let G be a finite group and let A be a cyclic subgroup of G. Let $|A|=p_{1}^{a_{1}} \ldots p_{k}^{a_{k}}$ where p_{1}, \ldots, p_{k} are distinct primes and a_{1}, \ldots, a_{k} positive integers. Let A_{i} be the subgroup of A of order p_{i} and let N_{i} be the normaliser of A_{i} in G. Then (G, A) has property $\left(^{*}\right)$ if and only if G is not the set-theoretic union of the groups N_{1}, \ldots, N_{k}. Let $\left|G: N_{i}\right|=n_{i}$. We see that (G, A) has property (${ }^{*}$) if $\Sigma 1 / n_{i} \leqq 1$. If G is simple, then $n_{i}>\max \left\{p_{i}\right\}$, so we get

Proposition 1. If G is simple and A is cyclic, then (G, A) has property (*).
Suppose now that $A \cap F(G)=1$. Let K_{i} be the core of N_{i}, that is K_{i} is the largest normal subgroup of G contained in N_{i}. Since G / K_{i} is a permutation group on n_{i} symbols and $A_{i} \not \leq K_{i}, n_{i} \geqq p_{i}^{a_{i}}+1$. Lemma 2 implies

Proposition 2. If A is a cyclic subgroup of G such that $A \cap F(G)=1$ and no Sylow subgroup of A has prime order, then (G, A) has property (${ }^{*}$).

Finally we show
Proposition 3. Let A be a cyclic subgroup of a finite group G such that $C_{G}(F(G))$ is abelian. Assume that $A \cap F(G)=1$. Then (G, A) has property $\left(^{*}\right)$.

Proof. Since $A \cap F(G)=1$ and $C_{G}(F(G))=Z(F(G)), A$ acts faithfully on $F(G)$ by conjugation. The result follows from Theorem 1.

REFERENCES

(1) J. S. Brodkey, A note on finite groups with an abelian Sylow subgroup, Proc. Amer. Math. Soc., 14 (1963), 132-133.
(2) M. Herzog, Intersections of nilpotent Hall subgroups, Pacific J. Math. 36 (1971), 331-333.
(3) N. Iro, Über den kleinsten p-Durchschnitt auflösbarer Gruppen, Arch. Math., 9 (1958), 27-32.

University College

Dublin
Ireland

[^0]: E.M.S.-18/4-A

