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The coherent dynamics of bubble clusters are of fundamental and industrial importance,
and are elusive due to the complex interactions of disordered bubble oscillations. Here
we introduce and demonstrate a method for decomposition of the Lagrangian time series
of bubble dynamics data by combining theory and principal component analysis. The
decomposition extracts coherent features of bubble oscillations based on their energy,
in a way similar to proper orthogonal decomposition of Eulerian flow field data. This
method is applied to a dataset of spherical clusters under harmonic excitation at different
amplitudes, with various nuclei density and polydispersity parameters. Results indicate
that the underlying correlated mode of oscillations is isolated in a single dominant
feature in cavitating regimes, independent of the nuclei’s parameters. A systematic data
analysis procedure further suggests that this feature is globally controlled by the dynamic
cloud interaction parameter of Maeda and Colonius (J. Fluid Mech., vol. 862, 2019, pp.
1105–1134) that quantifies the mean-field interactions, regardless of initial polydispersity
or nonlinearity. The method provides a simplified and comprehensive representation of
complex bubble dynamics as well as a new path to reduced-order modelling of cavitation
and nucleation.
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1. Introduction

Cavitation bubble clusters nucleate when the liquid pressure rapidly falls below a certain
threshold. These clusters coherently oscillate and violently collapse to cause extreme
energy concentration that leads to various critical consequences, and use in applications
as diverse as injectors and pumps (e.g. Plesset & Ellis 1955; Blander & Katz 1975; Mørch
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1980; Chen & Heister 1994; Hashimoto et al. 1997; Prosperetti 2017), hydraulic machines
(Arndt 1981), underwater propulsion and hydrofoils (e.g. Kubota, Kato & Yamaguchi
1992; Merkle, Feng & Buelow 1998; Kunz et al. 2000; Schnerr & Sauer 2001; Ganesh,
Mäkiharju & Ceccio 2016; Gnanaskandan & Mahesh 2016; Venning, Pearce & Brandner
2022), medical ultrasound (e.g. Ikeda et al. 2006; Krimmel et al. 2010; Maxwell et al.
2011; Pishchalnikov, Williams & McAteer 2011; Maeda et al. 2015; Movahed et al.
2016; Maeda 2020), surface cleaning (Verhaagen & Rivas 2016; Yamashita & Ando
2019), chemical synthesis (Suslick et al. 1999; Cairós & Mettin 2017), and bio-inspired
devices (Tang & Staack 2019). Characterizing the dynamics is a challenge due to the
complex interactions of bubbles involving disorders and stochasticity. Nuclei are typically
micro-sized and polydisperse and randomly distributed. Their rapid, nonlinear oscillations
are, except in controlled experiments (Bremond et al. 2006), practically not measurable.
Molecular and hydrodynamics simulations can provide detailed insights into nucleation
(Angélil et al. 2014; Gallo, Magaletti & Casciola 2021), while their time- and spatial scales
have not reached those of practical cluster oscillations. Analyses have been made on the
interaction dynamics in various regimes (Brennen 2014), yet no common knowledge has
been established if the many-body coherence globally exists and if so scaling is possible,
beyond the consensus that polydispersity induces strong disorders.

For the past decades, the Rayleigh–Plesset (R–P) equation and its variations have
been actively explored to investigate the dynamics of single bubbles (Plesset 1949;
Plesset & Prosperetti 1977). Relatively few studies addressed the theory of clusters. By
using the mean field approach to interacting bubbles modelled by the R–P equation,
d’Agostino & Brennen (1989) derived a non-dimensional parameter that dictates the
linear coherent oscillations of monodisperse clusters, the so-called ‘cloud interaction
parameter’. Zeravcic, Lohse & Van Saarloos (2011) used the coupled R–P equations
and identified disorders represented by the Anderson localization of acoustic energy in
polydisperse, lattice-like clouds under weak excitation. We have recently extended the
interaction parameter to the non-equilibrium, cavitating clusters under strong excitation
by considering the effective interaction at excited states (Maeda et al. 2018; Maeda &
Colonius 2019; Maeda & Maxwell 2021). To recall, we scale the mean kinetic energy of
liquid induced by N(�1) bubbles as (Maeda & Colonius 2019)

〈K〉 ∼ 〈Ks〉(1 + Bd), (1.1)

where Ks is the energy of a single bubble: Ks = 2πρR3
b,cṘ2

b,c; Bd is the parameter
controlling the effective contribution of hydrodynamic inter-bubble interaction: Bd =
N〈R(t)〉/RC, and Rb,c and RC denote the characteristic (reference) bubble radius and
the cluster radius; ρl is the liquid density; 〈·〉 and (·) denote time average during a
period in which bubble dynamics are statistically stationary and the mean value about
the bubbles (i = 1, 2, . . . , N), respectively. The scaling can be simply derived from the
coupled R–P equation for the correlated (synchronized) limit of monodisperse bubbles
(R1 = R2 · · · = Rb,c). Although realistic correlations are imperfect due to polydispersity
and nonlienarity, Bd was found to control well both the coherent dynamics of polydisperse
cavitating clusters, and their acoustic emission in numerical simulations and experiments
(Maeda & Colonius 2019; Maeda & Maxwell 2021). Overall, previous studies indicate
that the coherence can depend on both polydispersity and nonliearity in a non-separable
manner, posing perplexing questions about the universality of scaling. The theoretical
characterization of the nonlinear dynamics of disordered many-body systems is, in general,
not a simple task. Meanwhile, greater computing power has enabled learning physics
by analysing big data. Principal component analysis (PCA) is a powerful method for
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unsupervised learning which has seen recent success in characterizing the coherent physics
of many-body and high-dimensional systems in fields ranging from quantum information
to fluid dynamics (Milano & Koumoutsakos 2002; Holmes et al. 2012; Lloyd, Mohseni &
Rebentrost 2014; Taira et al. 2017).

In this study, we introduce and demonstrate a method for unsupervised data
decomposition to study the coherent bubble cluster dynamics by combining theory and
PCA. PCA extracts dominant states and dynamical features, such as coherent quantum
states and turbulent structures, and their amplitudes as the eigenfunction (feature) and
the eigenvalue (variance) of the co-variance matrix of physical data. When applied to
spatio-temporal data of dynamical systems, PCA is often denoted as proper orthogonal
decomposition (POD). Those data can be properly weighted prior to PCA such that the
variance becomes consistent with the norm induced by an energetic inner product of
state variables (e.g. kinetic energy) (Lall, Marsden & Glavaški 1999; Rowley 2005). This
weighting allows a physical interpretation that resulting features associated with a large
variance are energetically dominant coherent structures. Proper weighting of Lagrangain
bubble dynamics data is non-trivial since the linear variance of extracted features needs
to account for the nonlinear interaction energy. For meaningful analysis, we introduce
strategic pre-processing of the data prior to PCA such that the PC-variance becomes
theoretically consistent with the energy modelled by the coupled R–P equation. Analysing
simulation datasets of clusters, we show that the PCA can systematically extract not only
coherent but also incoherent features whose magnitudes are respectively measured by the
PC-variance and the entropy. We discover that the coherence is lost by disorders induced by
polydispersity and nonlinearity, while under strong excitation, the underlying correlations
are globally isolated in a single coherent feature whose variance (energy) is scaled by Bd,
regardless of the disorders.

The remainder of this paper is as follows. In § 2, we describe the method. The first
PC variance, spectral entropy and the coherence measure are introduced as quantifiable
measures to characterize the coherent bubble dynamics from extracted features. In § 3,
we verify and demonstrate the method using a numerical dataset of bubble clouds with
different density and polydispersity parameters under various amplitudes of harmonic
excitation. The deviation of the PC-variance from the physical energy is quantified for
two weighting methods. The amplitude dependencies of the measures are quantified. The
PC-spectra and their correlations with the coherent energy are analysed. Moreover, the
extracted coherent dynamics is related to Bd and its universality is discussed for cavitating
clouds. In § 4, the physical significance of the method is discussed. In § 5, we state
conclusions.

2. Methods

2.1. Principal component analysis of bubble dynamics data
For clusters modelled by the coupled R–P equations, observable dynamical variables
are the bubbles’ radial velocities and radii. Consider a data matrix Q containing the Nt
snapshots of the radial velocities with a constant temporal interval,

Q = [q1, q2, . . . , qNt], (2.1)

where qk denotes the vector containing the radial velocities of the N bubbles at time tk (in
the kth snapshot),

qk = [Ṙ1(tk), Ṙ2(tk), . . . , ṘN(tk)]T. (2.2)
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For later convenience, we also define the vector rk, containing the radii of the bubbles at
the same instances:

rk = [R1(tk), R2(tk), . . . , RN(tk)]T. (2.3)

PCA can be performed on Q by using the singular value decomposition (SVD) (e.g.
Abdi & Williams 2010; Jolliffe & Cadima 2016):

Q = UΣX ∗. (2.4)

The ith principal component (feature) is stored in the ith score matrix,

Πi = UΣ i, (2.5)

where Σ i contains the ith largest singular value and zeros elsewhere.

2.2. Weighted principal component analysis
Although this procedure for PCA is simple and straightforward, the physical meaning
of the extracted features are obscure since PCA itself is not informed on the underlying
dynamics of the system. A related issue of PCA for fluid flow data has been addressed in
the context of POD. In POD of the snapshots of Eulerian fluid flow data, the state vectors
consisting of the data matrix are often weighted such that the corresponding weighted
inner product of the state becomes consistent with the kinetic energy of the original system.
The dominant features (POD modes) can then be interpreted as energetically dominant
coherent flow structures. Moreover, in our previous studies (Maeda & Colonius 2019;
Maeda & Maxwell 2021), the scaling of bubble cloud dynamics by B was successfully
demonstrated based on the total kinetic energy of liquid induced by interacting bubbles.
These considerations motivate us to relate the energy to PCA for addressing the physics of
bubble cloud.

Inspired by the POD, we consider weighting the present bubble dynamics data prior
to PCA. To find an appropriate weight, we revisit the potential theory behind (1.1).
The kinetic energy of the fluid induced by the spherical bubble oscillations is explicitly
expressed as

K = 2πρl

N∑
i=1

[
R3

i Ṙ2
i +

N∑
j /= i

R2
i R2

j ṘiṘj

rij

]
+ (H.O.T), (2.6)

where Ri, Ṙi and rij are the radius and the radial velocity of bubble i, and distance between
the centres of bubble i and j, respectively. The second term in the brackets represents
the contribution of the long-range interactions. At each instant, K can be expressed as a
weighted inner product of q:

K = qTT q = (W q)T(W q), (2.7)

where

Tij(rk) =

⎧⎪⎨
⎪⎩

2πρR3
i (tk) (i = j),

2πρ
R2

i (tk)R
2
j (tk)

rij
(i /= j).

(2.8)

The weight matrix, W , can be obtained through the Cholesky factorization of T (r):

T (r) = W W ∗. (2.9)

This expression suggests the weighted data, W Q, is appropriate for use in PCA. However,
T (r) and W are time dependent since r can change in time during large-amplitude
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Figure 1. Schematic of the feature extraction by PCA from Lagrangian bubble dynamics data, Q, after
pre-processing. The variance of the resulting features is consistent with the interaction energy predicted by
the coupled Rayleigh–Plesset equation.

oscillations. The choice of rk in the time series to define W is unclear. A straightforward
choice is to use the temporal mean of the radius for each bubble, 〈r〉 : 〈r〉 = ∑Nt

k=1 rk/Nt,
but T(〈r〉) is not a favourable approximation for T(r) for bubbles with large-amplitude
oscillations.

We address this obstacle by variable transformation as a means of pre-processing the
data. The schematic is shown in figure 1. First, we transform the variables from (q, r) to
(ξ , η), where ξ = [ξ1, ξ2, . . . , ξN]T and η = [η1, η2, . . . , ηN]T, and (ξi, ηi) = (qiri, ri) =
(ṘiRi, Ri) for i ∈ [1, N]. Here, ξi is nothing but the velocity potential evaluated at the
surface of bubble i. Supplemental discussions and justifications for this transformation
are provided in Appendix A. The instantaneous energy of the system is expressed by a
weighted inner product as

K = ξTP(η)ξ = (Ωη)T(Ωη), (2.10)

and Ω is the weight matrix satisfying

P(r) = ΩΩ∗, (2.11)

where

Pij(η) =
⎧⎨
⎩

2πρηi, i = j,

2πρ
ηiηj

rij
, i /= j. (2.12)

Second, we partially replace η with 〈η〉 to approximate the system. Using (ξ̂ , η̂), the
instantaneous energy of the approximate system is expressed as

K̂ = ξ̂TP(η̂)ξ̂ . (2.13)

The temporal mean of the energy of the original system can then be approximated as

〈K〉 ≈ 〈K̂〉 = 〈ξ̂TP(η̂)ξ̂ 〉 ≈ 〈ξTP(〈η〉)ξ 〉. (2.14)

This is a critical result in the present context of PCA, since the energy is now related to
the weighted inner product with the constant weight, P(〈η〉). Quantitative verification of
this approximation is addressed through numerical experiments in the following section.
Using the new set of variables, the PC decomposition is performed as

ΩΞ = UξΣξ X ∗
ξ . (2.15)

The ith PC is stored in Πξ,i: Πξ,i = UξΣξ,i. We denote the ith largest singular value
of Σξ as σi. The degree of coherence can be measured by the normalized variance of
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the first PC:
σ̂ 2

1 = σ 2
1 /tr(Σ2), (2.16)

which represents the ratio of the energy occupied by the first PC to the total energy of
the system. In the following sections, to distinguish the present method from the standard
PCA, we denote (2.15) as the weighted principal component analysis of transformed data
(WPCA-TD).

2.3. Spectral entropy and coherence measure
We introduce two additional key measures to characterize the coherent physics of bubble
clusters through WPCA-TD. First, to quantify the degree of incoherent bubble oscillations,
we define the spectral entropy of the weighted co-variance matrix, ΩΞ , as

ŜvN = −
∑ σ̂ 2

k (ln σ̂ 2
k )

ln(N)
, (2.17)

where ln2(N) is the normalization factor. The spectral entropy of data is a discrete analogue
of the Shannon entropy based on the spectrum of data and has been used to quantify
the randomness of data in various applications (Kullback 1997; Alter, Brown & Botstein
2000; Hu et al. 2005; De Domenico & Biamonte 2016). Aubry, Guyonnet & Lima (1991)
introduced a similar definition of entropy for spatio-temporal signals of canonical fluid
flows from their POD eigenvalues and used the entropy to characterize flow instabilities.
In the present context, when bubbles are in perfect correlation, we expect to excite only the
first PC capturing the entire energy of the system: σ̂ 2

1 = 1 and σ̂ 2
k = 0 for k : k ∈ [2, N],

yielding ŜvN = 0. In contrast, if the energy is equi-partitioned into all PCs, σ̂ 2
k = 1/N for

all k : k ∈ [1, N] and ŜvN = 1. Second, we define the coherence measure C:

C = B1

Bd
, (2.18)

where

B1 = σ 2
1

σ ′2
1

− 1. (2.19)

Here, σ ′2
1 is the first PC-variance excluding the contribution of interactions, obtained from

the WPCA-TD of the same data using a diagonal weight matrix Ω ′ whose diagonal entries
are those of Ω . Further details of Ω ′ are provided in Appendix B. In the limit of perfect
correlation (also see (1.1)),

〈K〉 ≈ σ 2
1 ≈ (1 + Bd)σ

′2
1 (2.20)

and
Bd ≈ B1. (2.21)

Therefore, C ≈ 1. This condition is typically realized in monodisperse clusters under
weak (linear) oscillations (d’Agostino & Brennen 1989). For real clusters under strong
excitation, bubbles are not perfectly correlated and the energy can be distributed in broad
features. In this regime, approximation (2.20) is not necessarily expected to hold and C can
take values far from unity. Phenomenologicaly speaking, C quantifies from data the degree
to which the most coherent mode of oscillation is represented by the cluster’s mean-field
interaction. A schematic of the process to obtain C from data is provided in Appendix B.

985 A23-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

31
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.313


Regressing bubble cluster dynamics

3. Numerical experiments

3.1. Datasets
To verify and demonstrate the WPCA-TD, we use datasets of spherical clusters excited
by 40 cycles of harmonic pressure excitation. Each cluster contains O(10–103) bubbles
with their initial radii following log-normal distributions with a reference radius of Rref =
O(10)μm; ln(R0/Rref ) = N(0, sd), where sd is the lognormal standard deviation as the
measure of polydispersity (Maeda & Colonius 2019). We address sd = [0.1, 0.3, 0.5, 0.7].
In real bubble clouds, nuclei are expected to be polydisperse. Here, sd = 0.7 may be a
representative estimation based on previous studies (Katz 1978; Ando, Liu & Ohl 2012;
Maeda & Colonius 2019) and is used unless noted. The smaller values of sd are used in
some cases to quantify the effect of polydispersity. The bubbles are randomly distributed
in the spherical region with a specified cluster radius. Similar parameters of clusters were
previously simulated to compare with experiments (Maeda & Colonius 2019; Maeda &
Maxwell 2021). The density of bubbles is characterized by B0, the value of Bd at rest. The
far-field pressure is given as p∞(t) = p0[1 + A sin(2πft)]. The frequency of excitation
is f = 500 kHz unless noted, near the adiabatic resonant frequency of the reference
bubble. The amplitude of excitation is defined by A, relative to the ambient pressure at
p0 = 1.0 atm. For each set of parameters, we compute an ensemble average by taking a
mean of the results from 20 bubble clouds with distinct spatial placements of bubbles in
the clouds. For data generation, we use mesh-free, coupled Keller–Miksis equations by
modifying previous methods. Details of this method are provided in Appendix D.

3.2. Visualization of representative data
In figure 2, we show the evolution of representative quantities of a bubble cloud in the
dataset with (B0, sd, N) = (0.5, 0.1, 100) excited at A = 20, during a stationary state.
Figure 2(a) shows the radius of a representative bubble. The plot presents familiar
features of cavitation bubbles forced by continuous, strong excitation, including fast
events of collapse/rebound and slow growth/decay between them. During the slow phase,
small-amplitude oscillations at excitation amplitude are evident. For the same bubble,
figure 2(b) shows the evolution of the velocity potential obtained from the raw data,
and those from the first and second dominant features extracted through the WPCA-TD.
Compared with the radius, the raw data of the velocity potential looks much more
symmetric about zero, even around the collapse events. The potential of the first feature
presents a sinusoidal profile at the excitation frequency and with a constant amplitude
which is close to the peak amplitude of the original data. The collapse events are not
captured in this feature. The potential of the second feature is symmetric but has a much
lower amplitude compared with the first feature. There is no clear similarity between
the original data and the second feature, unlike that between the original data and the
first-PC. Figure 2(c) shows the void fraction. The fraction oscillates with an amplitude
of approximately 5.0 × 10−4 near 3.0 × 10−3 at the excitation frequency. Slow, small
amplitude of variations are also observed. Figure 2(d) shows the kinetic energy of fluid
induced by bubble oscillations. The energy oscillates approximately 0.75 μJ at doubled
the excitation frequency. Although the frequency is as expected, the peak amplitude largely
fluctuates in the window as well as the waveform is not symmetric, unlike the void fraction.
The fluctuation and asymmetry indicated can be associated with the incoherent oscillations
to the kinetic energy. For instance, if one bubble is expanding and another bubble is
collapsing out of phase, their net contribution may not appear in the void fraction due
to mutual cancellation but can appear in the energy. Overall, the averaged quantities, void
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Figure 2. Evolution of representative quantities of a bubble cloud with (B0, sd, N) = (0.5, 0.1, 100) excited
at A = 20, during a stationary state. (a) Radius of a representative bubble. (b) For the same bubble, ξ obtained
from the raw data, and those from the first and second dominant features extracted using WPCA-TD. (c) Void
fraction. (d) Kinetic energy of the fluid induced by the bubble cloud.

fraction and the energy, are much smoother than the individual bubble dynamics. This
can be trivially explained by the incoherence of violent collapse events among bubbles
and coherence of the linear response against fundamental frequencies. Meanwhile, the
quantitative nature of the coherent response is not predictable or easily analysable from
these plots due to strong nonlinearity, especially under inter-bubble interactions with
disordering factors including randomness of bubble position and polydispersity.

Figure 3(a–c) shows the projected side-views of the three-dimensional bubble cloud
of figure 2. The size of spheres can be interpreted as the mean energy of oscillations of
bubbles at those locations in each feature. The overall distribution of the spheres of the
first feature resembles that of the raw data, while the energy of the bubbles in the second
feature is much smaller than that of the first feature. The plots therefore visually confirm
that the first feature represents the most energetic mode of oscillations in the original data.
This result also agrees with the observation of figure 3(b).

3.3. Error analysis
To show the effectiveness of the pre-processing, in figure 4, we plot the relative
errors of the time-averaged kinetic energy of bubble clusters, one approximated using
the original variable (〈qTT (〈r〉)q〉) and the other using the transformed variables
(〈ξTP(〈η〉)ξ 〉), against the excitation amplitude. At A < 10−1, the error is nearly zero for
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(b)(a) (c)

Figure 3. Projected side-views of the three-dimensional bubble cloud of figure 2. The size of the spheres
denotes the root-mean-square amplitude of the velocity potential evaluated at the bubble surface at
corresponding locations during the stationary state of oscillations, for (a) the raw data, (b) the first principal
feature and (c) the second principal feature.

10–1 100

A
101

0

0.5|Δ
〈K

〉|/〈
K

re
f〉 1.0

1.5

Figure 4. Relative error of the mean kinetic energy of the fluid induced by clusters for the two approximations,
(×):〈K〉 ≈ 〈qT T (〈q〉)q〉 and (◦):〈K〉 ≈ 〈ξT P(〈η〉)ξ〉, against the excitation pressure amplitude with various
polydispersities and values of B0. Black, (sd, B0) = (0.1, 0.5); red, (sd, B0) = (0.7, 5.0).

both approximations. At A > 10−1, at which bubble dynamics become nonlinear, the error
grows with A for the former, while it remains small for the latter. This result confirms the
improved approximation by the pre-processing.

3.4. Amplitude dependence of the key measures
The coherent dynamics critically depend on the excitation amplitude. Figure 5 shows the
dependence of σ̂ 2

1 , ŜvN and C against A for various density and polidispersity parameters of
clouds. This dependence is best highlighted in the result of a sparse, weakly polydisperse
cluster (B0 = 0.5, sd = 0.1) in figure 5(a). The relative importance of the first PC, σ̂ 2

1 ,
decays nearly monotonically from 0.9 to 0.2 through three distinct regimes. For A � 0.2,
σ̂ 2

1 ≈ 1, meaning the entire energy is captured by the first PC. Then σ̂ 2
1 rapidly decays

to 0.4 and stays nearly constant up to A ≈ 3. At A > 3, σ̂ 2
1 decays again and stays nearly
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0.4Ŝ v
N

, 
σ̂

2 1
, 
C

0.6

0.8

1.0

0

0.2

0.4Ŝ v
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C

Figure 5. The first PC-variance (σ̂ 2
1 ), the normalized von Neumann entropy (ŜvN ) and the coherence measure

(C), against the excitation amplitude with various initial density and polydispersity parameters, with (B0, sd) =
(a) (0.5, 0.1), (b) (0.5, 0.7), (c) (5.0, 0.1) and (d) (5.0, 0.7).

constant around 0.2. The decay indicates the decrease in the coherence with increasing A,
and can be explained by the excitation of the nonlinear oscillations and cavitation triggered
at A ≈ 1 and above. Here, ŜvN has a profile vertically mirrored to σ̂ 2

1 ; ŜvN increases from
approximately 0.1 to 0.5 through the three regimes, indicating more partitioning of the
energy into multiple PCs and increase of incoherence, by increasing A. The mirrored
profiles of σ̂ 2

1 and ŜvN suggest that these parameters are complementary.
Remarkably, C draws a square-well like profile, where C ≈ 1 for both low (A < 0.2)

and large (A > 5) amplitudes reaching a minimum value (C ≈ 0.5) at A ≈ 1. This
counter-intuitive result suggests that the energy of the first PC is scaled by the mean-field
parameter Bd regardless of the increase of incoherence for large A, and the scaling is
lost only for the intermediate range at 1 < A < 5. Comparisons with the result of dense,
weakly polydisperse clusters (B0, sd) = (5.0, 0.1) shown in figure 5(b) highlights the
effect of the density of bubbles. In figure 5(b), σ̂ 2

1 takes values near unity at small A, and
decays at A ≈ 1.0 to approximately 0.4 and stays nearly constant at A > 5.0. At A > 10,
σ̂ 2

1 slightly grows against A. Here, ŜvN has a profile vertically mirrored to σ̂ 2
1 . The features

of σ̂ 2
1 and ŜvN are similar to those observed in figure 5(a), except that the transition

occurs at a larger range of A. The sudden decay and growth of σ̂ 2
1 and ŜvN can likewise

be associated with the linear-to-nonlinear transition of bubble dynamics which results in
incoherence. Meanwhile, the positive shift of the transition range of A indicates that the
dense bubble clouds tend to behave more coherently than sparse bubble clouds, agreeing
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with the previous theory (d’Agostino & Brennen 1989; Maeda & Colonius 2019). Here,
C is greater than 0.5 at almost all values of A, and is relatively more insensitive against A
compared with in figure 5(a), indicating that the cluster dynamics is moderately controlled
by Bd. Figures 3(c) and 3(d) respectively correspond to sparse and dense clusters with
strongly polydisperse nuclei; (B0, sd) = (0.5, 0.7) and (5.0, 0.7). These plots show clear
differences from those of weekly polydisperse clusters in figures 5(a) and 5(b). For the
sparse clusters (figure 5c), σ̂ 2

1 mildly decays from 0.8 to 0.7 at 0.1 < A < 0.2, sharply
decays to the minimum of 0.2 at A ≈ 0.4 and then mildly grows to 0.3 at A = 1.2. The
sharp decay resembles that in figure 5(b), while the slope is milder. Additionally, ŜvN

has a profile mirrored to σ̂ 2
1 , but it is less symmetric than in figures 5(a) and 5(b). Here,

ŜvN is nearly constant around 0.2 at 0.1 < A < 2.0 and draws a concave curve with its
maximum of approximately 0.5 at A ≈ 5.0 followed by a smooth decay to 0.3 at A = 20.
The C almost constantly increases from 0.2 to O(1) throughout the plot, indicating that the
coherent dynamics is controlled by Bd, only at large A, unlike the weakly polydisperse case
of figure 5(a). The overall trend of the plots in figure 5(b) is similar to that in figure 5(a),
although the changes of variables against A are milder in figure 5(b).

Overall, the mutual trends of variables at A > 5 are similar between figures 5(a) and
5(c), and between figures 5(b) and 5(d), indicating the decreasing influence of the initial
polydispersity in the nonlinear regime. At A < O(1), the polydisperse clouds tend to have
smaller values of σ̂ 2

1 , and larger values of ŜvN and C. This can be explained by the
enhancement of incoherent dynamics induced by polydispersity.

3.5. Principal component spectrum
To gain deeper insights to the meaning of C, in figures 6(a)–6(d), we show the
PC-variances obtained at A = 2 × 10−2, 1.2 and 20, for the first 10 PCs, obtained from
the sparse, weakly polydisperse clouds blueplotted in figure 5(a). The insets show the
evolution of the square-root of the normalized total energy (

√
K), and those of the first

and the second PC-variances (
√

K1 and
√

K2), during the four periods of excitation in
statistically stationary states. As expected, in the linear regime (figure 6a), the first PC
occupies nearly the entire energy and

√
K1 evolves at the fundamental frequency. In

the transition regime (figure 6b), the first PC occupies 40 % of the energy and the rest
is partitioned into the sub-dominant PCs with a smooth decay. Here,

√
K evolves more

chaotic than the linear regime, as expected due to the nonlinear response of bubbles. Both√
K1 and

√
K2 evolve with similar quasi-periodic profiles. We interpret that both PCs

represent the coherent part of the energy.
Interestingly, in the nonlinear regime (figure 6c), energy partitioning is non-smooth; the

first PC occupies 40 % of the total energy similar to the transition regime, but the rest
of the energy is broadly distributed into the other PCs with much smaller amplitudes.
The evolution of

√
K is non-periodic with noisy, fine structures of spikes. These spikes

are expected due to the incoherent collapse events. The evolution of
√

K1 is, in contrast,
highly periodic and somewhat resembles that of figure 6(b). The evolution of

√
K2 is more

chaotic and less smooth than
√

K1. The difference between the first-PC and the rest of the
PCs suggest that, in this regime, only the first PC captures a major coherent feature and the
rest of the PCs represent more the incoherent dynamics as broadband noise. Figure 6(d)
shows the result of the nonlinear regime with a stronger excitation amplitude (A = 20).
Overall, both the spectrum and the evolution of K look similar to that of figure 6(c), other
than that the amplitude of the first PC-variance is increased to 60 %. The resemblance of
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Figure 6. (a–d) PC spectral profiles at A = 2 × 10−2, 1.2, 8.6 and 20. Insets show the evolution of the square
root of the normalized total energy (

√
K, black) and those of the first (blue) and the second (red) PC-variances

(
√

K1 and
√

K2), during the four periods of harmonic excitation, with t̂ being a non-dimensional time t̂ = tf .
The y-axis of each inset is normalized by the maximum value of

√
K.

figures 6(c) and 6(d) indicates that the dynamical features identified from these two plots
are common in the nonlinear regimes.

The resemblance of the evolution of the first PCs in the linear and the nonlinear regimes
can explain the recovery of C at A > 5 in figure 6(a). Although the overall dynamics are
much more chaotic in the nonlinear regime, the contribution of the coherent interactions to
the system’s energy effectively appears only in the first PC in both regimes and therefore
the relative contribution of the interaction to the first PC is commonly scaled by Bd. This
result also implies that the underlying coherence in the nonlinear regime represents the
perfect correlation (synchronized oscillations) like that of linear, monodisperse clouds.

3.6. Evaluation of the coherence measure
To assess the variation of the coherence measure dependent on the three regimes, in
figures 7(a)–7(c), we plot B1 against Bd for O(103) clusters with various values of
sd, N and RC, at the three distinct excitation amplitudes (A = 2 × 10−2, 1.2 and 20).
Appendix D summarizes the parameters used. With the weak excitation (figure 7a),
bubble oscillations are in a linear regime and Bd ≈ B0. The data points are collapsed
on the line of C = 1 for sd = 0.1, while data points are scattered for the other values
of sd. This result is expected as Bd was originally defined to scale the coherence of the
monodisperse, perfectly correlated bubbles in the linear regime (d’Agostino & Brennen
1989; Zeravcic et al. 2011). With the intermediate excitation (figure 7b), the bubble
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Figure 7. B1 against Bd for O(103) clusters with various values of sd , N, RC and other physical parameters
(Appendix D) in the (a) linear (A = 2 × 10−2), (b) transition (A = 1.2) and (c) nonlinear (A = 20) regimes.

oscillations are nonlinear. The data points are scattered from C = 1, regardless of the value
of sd. In this regime, the result indicates that the coherence is lost due to the nonlinear
dynamics, regardless of polydispersity. Surprisingly, with the strong excitation (figure 7c),
the data points are collapsed on the line of C = 1, meaning that the variance of the first
PC is scaled by Bd, regardless of the parameters. This collapse is not observed for the
second PC, regardless of the parameters (Appendix E). The results suggest that the scaling
of B1 is universal for cavitating clusters, which are typically excited at O(1) MPa and
above. Physically speaking, the scaling indicates that in cavitating clusters, the energy
is partitioned into a single coherent mode of correlated (synchronized) oscillations and
incoherent modes generalizing the aforementioned interpretation of figures 6(c) and 6(d).
The coherent energy is controlled by the mean field originally derived for monodisperse,
near-equilibrium bubbles. It is suggested that this partitioning and scaling are universal
regardless of nuclei’s polydispersity and the degree of nonlinearity. This finding explains
the successful use of Bd in characterizing and controlling seemingly disordered clusters in
our previous studies (Maeda & Colonius 2019; Maeda & Maxwell 2021). The isolation of
coherence implies that the details of the microscopic scale as well as of the many-body
interactions represented by higher-order PCs could be modelled as fast variables, which
force the macroscopic (relevant) scales in the form of noise. A rigorous way to corroborate
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this hypothesis might be the Mori–Zwanzig projection operator formalism (Mori 1965) by
assuming that the fluctuations of fast and slow variables are uncorrelated. Although the
choice of relevant slow variables may be unclear, the present approach is promising since
the WPCA-TD can be seen as a prompter for more refined models of the evolution of slow
variables.

4. Significance of the WPCA-TD to inform on cavitation physics

In general, PCA can be considered as a mathematical technique for data decomposition
and the physical meaning of extracted features can be left to one’s interpretation. To the
authors’ knowledge, studies of complex fluid flows employing data decomposition and
feature extraction techniques often rely on one’s intuition to discuss the physical meaning
of features. In fact, in § 3.5, the analyses of the PC spectra required rigorous interpretations
based on previous knowledge on cavitation physics. Meanwhile, the correlation between
B1 and Bd identified in the last section shows that the present WPCA-TD can directly
extract Bd from data without additional signal processing like spectral filtering, which are
often required for Fourier-based analysis, despite the presence of noisy and incoherent
features. To generalize, WPCA-TD is not only a tool for data decomposition and feature
extraction, but also can be used to directly inform on the non-dimensional number that
controls the coherent physics of interests. This informative aspect of the WPCA-TD can
provide a meaningful shortcut to address the physics of cloud cavitation.

To perform WPCA-TD, bubble dynamics data can be obtained from experimental
measurements as well as other numerical approaches (e.g. Kameda & Matsumoto
1996; Maeda & Colonius 2018; Pishchalnikov et al. 2019). The cluster’s shape can be
arbitrary. Although a bubble’s translation and deformation are neglected in the present
numerical experiments, WPCA-TD can incorporate dynamical variables controlling these
effects (e.g. Ilinskii, Hamilton & Zabolotskaya 2007; Murakami, Gaudron & Johnsen
2020). Physically meaningful data decomposition requires the fine temporal resolution
of individual bubble dynamics. In practice, such information would be difficult to obtain
in experiments except for a small number of bubbles in a highly controlled environment.
We thus emphasize that WPCA-TD would primarily be useful to process fine temporal
resolution of numerical data.

5. Conclusion

In conclusion, to corroborate the coherent dynamics of bubble clusters, we introduced
and demonstrated WPCA-TD, a method of PCA to comprehensively decompose the time
series of Lagrangian bubble dynamics data into coherent dynamical features, in way
similar to the modal decomposition of Eulerian flow field data. The data are pre-processed
such that the PC-variance of the features becomes consistent with the hydrodynamic
potential energy induced by bubble oscillations that is predicted by the R–P equation.
By analysing simulation datasets of clusters under harmonic excitation, we demonstrated
that the coherent energy and the degree of incoherence are respectively quantified by the
variance and the spectral entropy. The coherence was lowered by disorders induced by
the nuclei’s polydispersity and nonlinear response of bubbles, as expected. Meanwhile, in
cavitating regimes, underlying, correlated modes of oscillations were isolated in a single
dominant feature. The variance of this feature was found to be controlled by the previously
identified mean-field parameter, Bd, regardless of the disordering factors, indicating that
the underlying coherent dynamics may be universal in cavitating clusters. These results
suggest that the method can provide a simplified and comprehensive representation of
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complex bubble dynamics. Analogous to the use of POD for reduced-order modelling
(ROM) of various flows, the dynamical features extracted by PCA may be used for ROM,
without directly solving many-body interactions. Such a model may be promising for
controlling cavitation and nucleation without tracking individual nuclei.

Acknowledgments. Both authors are appreciative of Professor Tim Colonius’s mentoring during their days
at Caltech. We are pleased to offer this paper as a small token of our appreciation on the occasion of his 60th
birthday.

Funding. K.M. acknowledges support from SRB Co. Inc. and Purdue University. Some of the computation
presented here used the Extreme Science and Engineering Discovery Environment (XSEDE), which is
supported by NSF under grant TG-CTS190009, as well as Anvil at Purdue University through allocation
PHY220130 from the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS)
program, which is supported by National Science Foundation grants #2138259, #2138286, #2138307, #2137603
and #2138296.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Kazuki Maeda https://orcid.org/0000-0002-5729-6194;
Daniel Fuster https://orcid.org/0000-0002-1718-7890.

Appendix A. Variable transformation for a single bubble

In this section, we provide supplemental discussions and justification on the variable
transformation used in the WPCA-TD, by considering the single bubble dynamics. By
transformation (ξ, η) = (RṘ, R), with ξ being nothing but the velocity potential evaluated
at the bubble surface, the R–P equation can be expressed as

ξ̇ = −1
2

(
ξ

η

)2

+ pb − p∞(t)
ρ

, (A1)

η̇ = ξ

η
, (A2)

where pb and p∞ are the pressure inside the bubble and that in infinity, respectively. The
instantaneous energy of the system is expressed as

K = 2πρṘ2R3 = 2πρξ2η. (A3)

Next, we approximate the system (A1). Given the time series data, the temporal average
of η can be computed as 〈η〉. Using 〈η〉, we approximate the system of (A1) on a space
spanned by a set of new variables (ξ̂, η̂):

˙̂
ξ = −1

2

(
ξ̂

〈η〉
)2

+ pb − p∞(t)
ρ

, (A4)

˙̂η = ξ̂

η̂
. (A5)

This system models well the dynamical features of the R–P equation including bifurcation,
although ξ̂ and η̂ are now partially decoupled. Our explanation is the following. In the
linear regime, the quadratic term of (A4) can be neglected and this system becomes
identical with the original one. In the nonlinear, cavitating regime, the bubble size (η)
varies slowly near its peak after the explosive cavitation growth. Sporadic, fast collapse
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Figure 8. Comprehensive schematic of the present procedure to obtain the spectral entropy, PC-variance and
coherence measure from input data.

events do not influence much the temporal mean of the bubble size. Therefore, η is close
to 〈η〉 except at collapse events and, even if η changes rapidly during the collapse and
rebound, this change has a relatively small influence on the mean behaviour of the system
at the time scale of (statistically) stationary bubble oscillations.

We can express the instantaneous energy of this approximate system as

K̂ = 2πρξ̂2η̂. (A6)

With the same initial conditions (ξ = ξ̂ and η = η̂ at t = 0), the temporal mean of the
energy of the original system is approximated as

〈K〉 ≈ 〈K̂〉 = 2πρ〈ξ̂2η̂〉 ≈ 2πρ〈ξ̂2〉〈η〉. (A7)

Note that Preston et al. (2007) used a POD-based analysis of single bubble dynamics
for reduced-order modelling of heat and mass diffusion across the bubble interface. In the
study, the temperature and concentration fields were obtained by solving partial differential
equations and then represented by POD modes, following the POD/Galerkin framework.
This is distinct from the present PCA (POD) of Lagrangian bubble dynamics data based
on the direct transformation and projection of the Rayleigh–Plesset equation.

Appendix B. Schematic of the input-output procedure

Figure 8 shows the schematic of the present procedure to obtain the spectral entropy,
PC-variance and coherence measure from the input data including the time series of the
radius and radial velocity of Lagrangian bubbles.

For computing C, we introduced the alternative weight, Ω ′. Here, Ω ′ is defined through
P′ : P′(〈s〉) = Ω ′Ω ′∗, where P′ is the diagonal matrix with its entries from P:

P′
ij(η) =

{
2πρηi, i = j,
0, i /= j.

(B1)
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The corresponding inner product, ξTP′ξ , represents the portion of the energy of the system
excluding the contribution of inter-bubble interactions:

K′ = ξTP′ξ , (B2)

where

K′ = 2πρl

N∑
i=1

R3
i Ṙ2

i + (H.O.T). (B3)

Appendix C. Details of the K–M equation used for data preparation

In this section, we provide details of the formulation of the Keller–Miksis (K–M) equation
for multiple bubbles, which is used to generate the Lagrangian bubble dynamics data.
Various extensions of the Rayleigh–Plesset equation and its applications to a system of
multiple bubbles are available (Takahira, Akamatsu & Fujikawa 1994; Doinikov 2004;
Ilinskii et al. 2007; Yasui et al. 2008). Our formulation can be derived from the K–M
equation extended for multiple bubbles. First, we recall the general formulation for the
oscillations of interacting spherical bubbles in weakly compressible liquid with arbitrary
inter-bubble distances, whose derivation is, for instance, provided in Appendix 2.4 of
Fuster & Colonius (2011). In the present study, we use a simplified version of this
derivation. To recall, Fuster & Colonius (2011) describe the radial evolution of bubble
i as

R̈i

(
Ri

(
1 − Ṙi

c

))
+ 3

2
R2

i

(
1 − Ṙi

3c

)
= F∗ + I∗, (C1)

where F∗ and I∗ represent the forcing due to the external potential and the inter-bubble
interaction, respectively, and are expressed as

F∗ = ∂φ∞
∂t

(
1 − Ṙi

c

)
+ Ri

c
∂2φ∞
∂t2

+ Hi

(
1 + Ṙi

c

)
+ RiḢi

c
(C2)

and

I∗ =
N∑

j /= i

[(
1 + Ṙi

c

)
∂φj(Ri)

∂t

]
+ Ri

c

N∑
j /= i

[(
1 + Ṙj(t′)

c

)(
1 − Ṙj

c

)
∂2φj(t′ − Rj(t′)/c)

∂t′2

]

(C3)

−
N∑

j /= i

[(
1 + Ṙj(t′)

c

)
∂φj(t′ − Rj(t′)/c)

∂t′
Ri

Rj

Ṙj

c

]
. (C4)

Here, φ∞ is the velocity potential of liquid at infinity, and φi(Ri) and Hi are the potential
and the enthalpy of liquid evaluated at the surface of bubble i; t′ is the retarded time defined
as t′ = t − (dij − Rj)/c, where (dij − Rj)/c represents the travel time for the pressure wave
to reach bubble i from the surface of the bubble j and dij is the distance between the centres
of those bubbles. In the sparse limit, the equation recovers the original Keller–Miksis
equation (Keller & Miksis 1980).
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To close the equations, several relations are considered. Using Bernoulli’s equation, the
potential for the bubble i can be expressed as

∂φi(Ri)

∂t
= −

(
1
2

Ṙ2
i + Hi +

N∑
j /= i

∂φj(Ri)

∂t
+ ∂φ∞

∂t

)
. (C5)

The velocity potentials at the bubble i and bubble j satisfy the following relation:

∂φi(Ri)

∂t
= Rj(t′)

dij

∂φj(t′ − Rj/c)
∂t′

. (C6)

The enthalpy and the potential derivative are approximated as

Hi ≈ pi − p0

ρl,0
, (C7)

∂φ∞
∂t

≈ p∞ − p0

ρl,0
. (C8)

Finally, p∞ is obtained using the information of the background Eulerian field computed
on a mesh.

In the present study, we simplify F∗ and I∗ by invoking further approximations. First,
consider that the bubble cluster size is smaller than the characteristic length-scale of the
pressure wave in the field, λc. The inter-bubble distance in the cluster is naturally smaller
than λc:

dij − Rj  λc. (C9)

Dividing both sides with c,

dij − Rj

c
= t − t′  λc

c
= 1

fc
= Tc, (C10)

where fc and Tc are the characteristic frequency and the period of the wave in the field.
Therefore, the difference between t and t′ is much smaller than the characteristic time scale
of the dynamics. Given this knowledge, we approximate that t′ ≈ t. Second, we neglect the
terms of the order of (Ṙ/c)2. Using these approximations, we can simplify F∗ and I∗ as

F∗ = pi − p∞
ρl

(
1 + Ṙi

c

)
+ Ri

ρlc
∂( pi − p∞)

∂t
(C11)

and

I∗ (C12)

= −
N∑

j /= i

Rj

dij

(
1
2

Ṙ2
j + R̈j

(
Rj

(
1 − Ṙj

c

))
+ 3

2
Ṙ2

j

(
1 − Ṙj

3c

)
− pj − p∞

ρl

Ṙj

c

− Rj

ρlc
∂( pj − p∞)

∂t

)
. (C13)

For harmonic excitation,
p∞ = pa sin(ωt). (C14)
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N Rc (mm) Rref (μm) sd f (kHz)

16 0.33–2.0 10 0.1–0.7 500
32 0.33–2.0 10 0.1–0.7 500 N Rc (mm) Rref (μm) sd f (kHz)
64 0.33–2.0 10 0.1–0.7 500 16 0.33–2.0 10 0.1–0.7 500
128 0.33–2.0 10 0.1–0.7 500 32 0.33–2.0 10 0.1–0.7 500
256 0.33–2.0 10 0.1–0.7 500 64 0.33–2.0 10 0.1–0.7 500
512 0.8–2.0 10 0.1–0.7 500 128 0.33–2.0 10 0.1–0.7 500
64 0.33–2.0 5 0.1–0.7 500
64 0.33–2.0 10 0.1–0.7 250

Table 1. Summary of the parameters used for the dataset of clusters analysed in the main manuscript.

We use the polytropic law to describe the pressure of the gas inside each bubble (Brennen
2014):

pi = pi,0

(
Ri,0

Ri

)3γ

, (C15)

where γ is the constant polytropic exponent. Equations (C1), (C11) and (C13), together
with (C14) and (C15), provide a complete system of ordinary differential equations for the
radius of N interacting bubbles, which can be readily solved with a given initial condition.

Appendix D. Summary of the parameters

Table 1 summarizes a set of parameters used to construct the database analysed the
main manuscript. The number of bubbles N, cluster radius Rc, reference bubble radius
Rref , polydispersity measure sd and the forcing frequency were varied. The left table of
parameters are used for the clusters in figure 4 (sd = 0.1, 0.7), figure 7(a) (all values of sd)
and figure 9(a) (all values of sd). The right table of parameters are used for the clusters in
figures 7(b), 7(c), 9(b) and 9(c).

Appendix E. Scaling of the second PC

Figure 9 shows the scaling of the interaction energy of the second dominant feature of
bubble clouds in the dataset, B2 = σ 2

2 /σ ′2
2 − 1, for various values of excitation amplitude

and nuclei polydispersity. For all parameters, data points are widely scattered and there
is no clear correlation observed between B2 and Bd, indicating that the second dominant
feature does not represent coherent oscillations like those of the principal feature.
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Figure 9. B2 against Bd for O(103) clusters with various values of sd , N, RC and other physical parameters
(Appendix D) in the (a) linear (A = 2 × 10−2), (b) transition (A = 1.2) and (c) nonlinear (A = 20) regimes.
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