Solution by L. Carlitz.

$$
\begin{array}{ll}
x^{13}+x+90 \equiv x^{13}+x-1 & (\bmod 7 \cdot 13) \\
x^{13}+x-1 \equiv\left(x-\frac{1}{2}\right)\left\{\left(x-\frac{1}{2}\right)^{12}+1\right\} & (\bmod 13)
\end{array}
$$

Since

$$
y^{12}+1 \equiv\left(y^{2}-2\right)\left(y^{2}-5\right)\left(y^{2}-6\right)\left(y^{2}-7\right)\left(y^{2}-8\right)\left(y^{2}-11\right)
$$

(the numbers $2,5,6,7,8,11$ are the quadratic non-residues (mod 13)) we get the quadratic factors

$$
x^{2}-x+c, c= \pm 5,4,3,2,-1
$$

$(\bmod 13)$.
Next, if $f(x)=x^{13}+x-1$, then

$$
f\left(\frac{1}{2}\right) \equiv f^{\prime}\left(\frac{1}{2}\right) \equiv 0
$$

$(\bmod 7)$,
so that $f(x)$ is divisible $(\bmod 7)$ by $\left(x-\frac{1}{2}\right)^{2}$, which is congruent to $x^{2}-x+2$. Since this polynomial occurs among the quadratics (mod 13) found above, it is a likely candidate. By division we find that

$$
\begin{aligned}
x^{13}+x+90 & =\left(x^{2}-x+2\right)\left(x^{11}+x^{10}-x^{9}-3 x^{8}-x^{7}+5 x^{6}\right. \\
& \left.+7 x^{5}-3 x^{4}-17 x^{3}-11 x^{2}+23 x+45\right)
\end{aligned}
$$

It would be interesting to know whether the second factor is irreducible. (Also solved by the proposer.)

SEQUENCE AND SERIES TRANSFORMATIONS

> M. S. Macphail

The summability methods

$$
A: t_{n}=\sum_{k=0}^{\infty} a_{n k} s_{k}, \quad B: \quad T_{n}=\sum_{k=0}^{\infty} b_{n k} u_{k} \text {, }
$$

where $b_{n k}=a_{n k}+a_{n, k+1}+\ldots$, are regarded as the sequence -to-sequence and series-to-sequence forms of the same method, and if $s_{k}=u_{o}+\ldots+u_{k}$, we speak of the series $\sum u_{k}$ or the
sequence $\left\{s_{k}\right\}$ indifferently, as summable A or B. We have by partial summation
(1) $b_{n o} u_{0}+\ldots+b_{n k} u_{k}=a_{n o} s_{o}+\ldots+a_{n, k-1} s_{k-1}+b_{n k} s_{k}$;
so in order that $B \supset A$ (every A-summable sequence is B-summable to the same sum) it is necessary and sufficient that $\lim _{n} \lim _{k} b_{n k} s_{k}=0$ for every $A-$ summable sequence $\left\{s_{k}\right\}$, and in order that $A \supset B$ it is necessary and sufficient that the same holds for every B-summable $\left\{s_{k}\right\}$.

The purpose of this note is to give simple sufficient conditions depending on the coefficients $b_{n k}$ alone.

THEOREM 1. In order that $B \supset A$, it is sufficient that for each $n=0,1, \ldots$ there is a positive constant R_{n} such that $\left|1-b_{n, k+1} / b_{n k}\right|>R_{n}(k=0,1, \ldots)$.

Proof. For $B>A$, it is plainly sufficient that T_{n} exists and equals t_{n}, for every $\left\{s_{k}\right\}$ such that t_{n} exists; or, from (1), that $A_{n}^{*} \supset A_{n}$, where

We easily find that $A_{n}^{*} A_{n}{ }^{-1}$ has for its k-th row

$$
\left(0,0, \ldots, 0,1-b_{n k} / a_{n k}, b_{n k} / a_{n k}\right)
$$

Applying the Toeplitz conditions for regularity, we have at once that the column limits are zero and the row-sum limit is 1 . The row-norm condition reduces to $\left|b_{n k} / a_{n k}\right|<M_{n}$, which is equivalent to the condition stated in the theorem.

THEOREM 2. In order that $\mathrm{A} \supset \mathrm{B}$, it is sufficient that for each $n=0,1, \ldots$ there is a constant M_{n} such that
(2) $\left|b_{n, k+1}\right| \sum_{r=0}^{k}\left|b_{n, r+1}^{-1}-b_{n r}^{-1}\right|<M_{n} \quad(k=0,1, \ldots)$,
and $\lim _{k} b_{n k}=0$.

This may be proved by a similar method, after writing (1) in the modified form

$$
\begin{aligned}
& a_{n o} s_{0}+a_{n l} s_{1}+\ldots+a_{n k} s_{k} \\
= & b_{n o} u_{0}+b_{n l} u_{1}+\ldots+b_{n k} u_{k}-b_{n, k+1} s_{k} \\
= & \left(b_{n o}-b_{n, k+1}\right) u_{o}+\left(b_{n l}-b_{n, k+1}\right)_{l}+\ldots+\left(b_{n k}-b_{n, k+1}\right) u_{k}
\end{aligned}
$$

Or we may use a theorem of Kronecker [1, p. 129-130], to show that $\lim _{k} b_{n k} s_{k}=0$.

THEOREM 3. In order that $A \supset B$, it is sufficient that for each $n=0,1, \ldots$ there is a constant $C_{n}\left(0<C_{n}<1\right)$, such that $\left|b_{n, k+1} / b_{n k}\right|<C_{n}(k=0,1, \ldots)$. For real $b_{n k}$ it is sufficient that for each $n, b_{n k} \rightarrow 0$ monotonically from a certain k on.

Proof. The second condition is obviously sufficient for (2). For the first, we observe that

$$
\left|b_{n, k+1}\right| \sum_{r=0}^{k}\left|b_{n, r+1}^{-1}-b_{n r}^{-1}\right|<2\left|b_{n, k+1}\right| \sum_{r=0}^{k+1}\left|b_{n r}^{-1}\right| .
$$

Denoting the right hand side by $2 B_{n k}$, we find

$$
B_{n, k+1}=\left|b_{n, k+2} / b_{n, k+1}\right| B_{n k}+1,
$$

whence we see inductively that $B_{n k}$ is bounded, under our hypothesis.

We may illustrate with the well-knowri "circle method":

$$
b_{n k}= \begin{cases}\left(\begin{array}{c}
k \\
n
\end{array} \mathrm{t}^{k-n}(1-t)^{n}\right. & (k \geqslant n) \\
0 & (k<n)\end{cases}
$$

This is in the customary series-to-series form. We easily obtain from Theorems 1 and 3 the known results [2 , p. 549; 3, p. 141] that (with $a_{n k}=b_{n k}-b_{n, k+1}$) we have $B \supset A$ for all $t \neq 1$ and $A>B$ for $|t|<1$; here A is a sequence-to-series method which is equivalent to the corresponding sequence-tosequence method. It is easily proved [2] that the condition $|t|<1$ is necessary for $A>B$.

REFERENCES

1. K. Knopp, Theory and Application of Infinite Series (London, 1928).
2. P. Vermes, Series to series transformations and analytic continuation by matrix methods. Amer. J. Math. 71 (1949), 541-562.
3. K. Zeller, Theorie der Limitierungsverfahren (Berlin, 1958).

Carleton University

