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We give a short and constructive proof of the general (multi-dimensional) Implicit
Function Theorem (IFT), using infinitesimal (i.e. nonstandard) methods to implement
our basic intuition about the result. Here is the statement of the IFT, quoted from [4];

THEOREM. Let A c R" x Rm be an open set and let F:A^>R be a function of class C
( p > l ) . Suppose that (xo,yo)eA with F(xa,y0) = Q {x{)eRn ,yo€Rm) and that the

Jacobian determinant J = —— '—~ is not zero at (x0, y0). Then there is an open

neighbourhood U of xQ and a unique function f:U—*Rm with

F(x,f(x)) = 0

for all x e U. Moreover, f is of class C.

First let us give an intuitive informal description of/; we need some notation. Points
x,y e R", Rm will be regarded as column vectors; we write dF/dy for the mxn Jacobian
matrix dF/dy = {dFi/dyj), where we have F = (F,,. . . , Fm)' and F, = F,(;c,.y). Then
J = \3F/3y\. Similarly dF/dx = (dFi/dXj), anraXn matrix.

Intuitively, a recipe for / is given as follows. Writing dx = (dxu . . . , dxn)' etc., we
have, informally

f(x)) ^dx + ^df.
ox ay

If dF/dy is invertible (which it is in a neighbourhood of (x0, y{))) then

f(x) = - ^ ^ d x . (1)

Using infinitesimal techniques we can implement this recipe for / , by discretizing the
space R" and using (1) as a recursive definition for /. We assume the basics of
nonstandard analysis, which may be found in [1] or [3].

Pick a positive infinitesimal A^O and let T = {kA:k e *Z}. We will consider
T = ( / , , . . . , O taking values in the lattice T" c *R".

We shall need the following elementary lemma [2].

LEMMA. Let ip:T^>*U be internal, and let Dx\) be the difference function:

is finite and Dip is S-continuous for \t\ < c then there is a unique standard function
g: [-c, c] -»• R given by

S(°0 = >(')•
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Moreover, g is C \ and Dg(°t) = °Dip(t). (Recall that ip is S-continuous if
whenever t ==/'.)

Proof of the IFT Without loss of generality we may assume that *0 = 0 and _y0 = 0.
Define an internal function q>: T"-* *Um recursively as follows.

(i)cp(O) = O
(ii) for each 0<k<n and oeTk~\ if <p{a, 0 , . . . ,0) = <p(ou. . . , CT*_,,0, . . . ,0)

has been defined, then define q>(o, t,. . . , 0) for t e T by:

dF~l dF
( + A 0 ) ( 0 ) A if f > 0 ,

dF'1 dF
A if t<0.

dy dxk

Note that by Cramer's rule, this explicit recipe is given by

d(Fu...,Fm)
cpi{a, t ± A, . . . , 0) = q>i(a, t, . . . , 0) T AJ — .

"V.J'l' ' • • ' y>-1' •** ' ^1 +1 > • • • > ^mJ

The matrices dF/dy and dF/dx are evaluated at * = (a , f,. . . , 0) and _y = <p(x). The
hypotheses on dF/dx and dF/dy ensure that on some rectangle — a ^xh y^a (where a is

\/dF~l dF\
positive standard) there is a standard M > 0 with I

IV dy dxl
< M for all / , k. It is easy

to check that this ensures that for r = (tx,... ,tn) with each |f,| < — the above definition
Mn

gives \%{T)\ < a. (This is done by induction, as in the definition of q>: in fact we show that
a

if each I/.-I ̂ — then for each k < n we have
Mn

ka
...,tk,O,...,O)\^ — . (2)

a
If (2) holds for k, the definition of q> ensures that if |f| < — then

Mn

O)- q>j(tu . . . , tk, 0 , . . . , 0)| < M \t\ < -
n

which is sufficient to establish (2) for k + 1.)

Let b = — and for T = (t,,.
Mn

clear from the definition of cp that

Let b = — and for T = (t,,..., tn) e T" write |T| < b to mean |f,| < b for all i. It is
Mn

. . . , ^ , / , 0 , . . . , 0 ) - ( p ^ 1 , . . . , ^ , ( ' , 0 , . . . , 0 ) | < M | f - / ' | (3)

for |T| :£ 6 and |f|, |f'| < 6. In particular q>(tu . . . , tn) is 5-continuous in tn for |r,| « b. We
will show later that it is 5-continuous in all its arguments.

We now show that

F ( T , ? ( T ) ) « 0 for | T | < 6 , xeT". (4)
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This is again done by induction as in the definition of cp. Let r = {a, t,. . . , 0) and
T' = (o, t + A,. . . , 0). Then by the mean value theorem

F,(T\ cp(r')) - FJ(T, cp(r)) = | £ (f, f?)A + ^ (f, fj)(<p(r') - cp(r))
ca* dy

for some f between T and T', and f\ between cp(r) and cp(r'). Now use the definition of cp
to see that

= [ ^ (r, Jj) - |5(f, ^ ) ( f L ! g ( T > ,p(T))jA = Ae

where e « 0 by the continuity of all derivatives of F, and the fact that T = T' and
<p(r)«<p(r') by (3). Now e depends on r, but we may take e0 = maximum of all e as T
varies in |T| =£ b, and then it is easy to see that ^ ( T , <P(T)) = Fj(0, (p(0)) = 0 for all such r.

We now see that cp is essentially unique with the property (4). We show that

y' (5)

for |T|, \y\, |y'| <6 . By the mean value theorem

for some y'eUm between y and y'. Now the assumption 7(0,0)^0 and continuity
of derivatives means that for small enough a, and |T|, \y\, | y ' | <a the matrix

(—J'(T,y,-)) is non-singular, and so y' =y.
\ay I

To show that q> is 5-continuous in all its arguments, fix k < n and consider another
function <p defined like cp but with indices 1,. . . , n permuted so that k is the last. Then
the above all applies to q>\ in particular, from (4)

F ( T , $ ( T ) ) ~ 0 for | T | S 6 , xeT"

and so from (5)

(P(*) = <P(T) all T = (tu... ,tk), | r |sf t .

Moreover, <p(f1;. . . , fn) is 5-continuous in tk, and hence cp is 5-continuous in f*. Thus cp
is 5-continuous on | r| < 6 and we can define a standard continuous function / by

From (4) and the continuity of F, we have

F(x,/(x)) = 0 for |x| sfc.

The uniqueness of/for |J:| < 6 is given by the argument used to give (5).
To see that / is continuously differentiable, the definition of cp together with the

lemma shows that
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(where x = (JC,, . . . ,xk, 0,. . . , 0)). A simple symmetry argument shows that this is valid
for all x with \x\ <fo; i.e.

3f 9F~l 9F

3-x = -^y-Tx{xJ{x))

for all x with |JC| £ b. If F is C, repeated differentiation shows that / is also C.
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