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Viscous flow around two spherical macroscopic cavities (or void spaces) in a granular
material, which is exposed to an otherwise uniform flow at infinity, is investigated.
The flow field is obtained analytically by solving the Stokes equation inside and the
Darcy–Brinkman equation outside of the cavities, where continuity of the velocity and that
of the stress are assumed on the boundary. In our previous complementary paper (Sano,
Karmakar & Sekhar, J. Fluid Mech., vol. 931, 2022, A20), we obtain that two cavities of
equal size in a tandem position are more prone to collapse for a shorter centre-to-centre
distance with low permeability. In the present study, the asymptotic analysis of the
interaction of two spherical cavities of different sizes with arbitrary configuration is
presented. Particular attention is paid to the configuration dependence of two cavities of
equal radius. The velocity field and the volume flux into respective cavities are calculated,
which reveal that two cavities with orientation less than a certain critical angle are given
a larger volume flux and are more prone to collapse. The present results are applicable to
predicting the behaviour in a fixed-bed regime of a solid–gas transport system, microscale
waterway formation in a granular material, onset of landslides, collapse of cliffs and river
banks, etc.

Key words: porous media, avalanches, general fluid mechanics

1. Introduction

In our previous works, we have analysed the viscous flow through an inhomogeneous
granular material. As a first step, Sano (1983) analysed the effect of a macroscopic
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cylindrical hollow space (hereafter referred to as a ‘cavity’) exposed to an otherwise
uniform flow U∞ at infinity. The magnitude of the effect depends on the ratio ζ0 ≡ R0/

√
k,

where R0 is the cavity size and k is the permeability of the material. As ζ0 increases,
the velocity at the centre of the circular cylindrical cavity vC

S becomes as large as 3U∞,
whereas the volume flux into that cavity region QS amounts to two times the volume
flux Q0 that would pass through the same region without the cavity. The analysis was
extended to a three-dimensional cavity. Raja Sekhar & Sano (2000) analysed the effect of
a macroscopic spherical cavity exposed to an otherwise uniform flow U∞ at infinity. The
latter revealed that the velocity at the centre of the cavity vC

S amounts to 6U∞, and that the
volume flux into the cavity region QS amounts to 3Q0 as ζ0 increases. These results were
experimentally verified by laser Doppler velocimetry (LDV) measurement for a cylindrical
cavity (Momii 1989). Meanwhile, experimental verification of a three-dimensional (3-D)
cavity is limited because of the difficulty in experimental set-up and measurement of
the 3-D cavity. However, as far as the hemispherical cavity bounded by a transparent
plate across the diameter is concerned, the velocity field was measured by an LDV, and
good agreement with theory was obtained except for the region very close to the plane
boundary (Sano et al. 2013). Above a certain critical velocity U∞

c , the cavity is found to
be destroyed from the upstream-side boundary (see Kaneko & Sano 2005; Sano & Kaneko
2005; Koizumi, Shirahashi & Sano 2009; Sano et al. 2013).

The interaction of two or more cavities in two-dimensional case are examined both
experimentally (Kaneko & Sano 2003, 2005) and numerically (Sano & Nagata 2006a;
Sano 2008, 2011). For instance, the interaction of two cavities of equal sizes depends on
the centre-to-centre distance l between them as well as the orientation angle α between
the centreline connecting the two cavities and the incident flow direction. These studies
revealed that (i) the volume flux into the downstream cavity increases in a configuration
with smaller α and smaller l, e.g. as much as 10 % increase was observed for |α| � 15◦
and l � 3. On the other hand, they found that (ii) it decreases for larger α and smaller l,
e.g. as much as 10 % decrease was observed for |α − 90◦| � 15◦ and l � 3. The variations
increase as much as 20 % as the distance l becomes small, but decrease to a few per cent
as l becomes as large as 5. They also pointed out the possibility of the collapse of the
cavities and fluidisation, which are caused by the local increase of the stress on the cavity
boundaries due to the increase of the velocity (Kaneko & Sano 2005; Sano & Kaneko
2005; Sano & Nagata 2006a,b; Sano 2011, 2020).

Recently, an asymptotic analysis of the two interacting cavities has been made in the
2-D case (Sano 2020), and 3-D case (Sano, Karmakar & Sekhar 2022). In the former, two
circular cylindrical cavities are arranged in an arbitrary configuration, and the velocity,
volume flux, stress distribution on the cavity boundaries, etc. are analysed by taking
account of the effect of the other cavity asymptotically. The latter theory is applied to
explain the experimental results on the collapse of two 2-D cavities, and the dependence of
the position of the onset of collapse on the orientation angle α is elucidated. The analysis is
extended to the 3-D case, where two spherical cavities of the same radius R0 are arranged
along the stream. Making use of the axisymmetry and the fore–aft symmetry, the effect
of the other cavity is asymptotically taken into account up to the order of (R0/l)4. The
dependence of the velocity, volume flux, stress distribution on the cavity boundaries, etc.
on the parameter ζ0 and the separation distance of the cavities l are examined. For practical
application, however, we need further analysis on two or more 3-D cavities of unequal sizes
in a general configuration.

In order to access a solution that is applicable to a general configuration and is valid
for any arbitrary position r, one may develop a numerical solution that is based on
964 A6-2
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computational approaches like the finite element, finite volume or boundary integral
equations. Indeed, there is a preliminary numerical simulation of two spherical cavities
of radius a exposed to a uniform flow based on a two-fluid model (Sano 2008). Although
the latter provides the flow field in special cases such as α = 0, π/3 and α = π/2 etc.,
under fixed l/a = 3, as well as the volume flux l/a vs α diagram into respective cavities (l
is the centre-to-centre distance of the two cavities; α is the orientational angle), there is not
much literature available in this direction. In this paper, the asymptotic analysis is extended
to the interaction of two spherical cavities of radius a and b with arbitrary configuration
(l, α). Although the present analysis is limited up to the order of (a/l)3 or (b/l)3, it allows
cavities of arbitrary sizes and orientation. Particular attention is paid to the interaction of
two cavities of equal size, and the dependences of the volume flux on the orientation α are
examined. This is with a view to elucidating the mechanism of the collapse of cavities, as
observed in 2-D experiments and the numerical simulation mentioned above, which may
predict landslides, the collapse of the river banks and cliffs at times of heavy rainfall as
well as create the new water channels in an otherwise impermeable granular tissues as in
angiogenesis.

Note that the characteristics of the collapse, deformation and movement of our
macroscopic cavity in a granular material are different from the behaviour of the void
region in a fluidised bed observed in a solid–gas or fluid–gas transportation or processing
system. In a solid–gas system such as a vertically set reactor of packed bed, void spaces in
a granular material grow with the upward flow of gas. Here, the solid phase (the granular
material) is dense and regarded as a continuous phase, among which small void domains
(gas phase, sometimes referred to as ‘bubbles’) are distributed. Under a vertical stream,
initially small void spaces side-by-side merge and/or catch up with each other as they
rise up the packed bed of particles, which grow in size, and continue upward motion
with acceleration by hydrostatic pressure. The macroscopic interface that distinguishes
the solid and gas phases may depend on many factors, such as flow rate of the gas phase,
concentration and distribution (or homogeneity) of each phase, ratio of material densities,
etc. so that the boundary of these ‘bubbles’ may not necessarily be clear, but their direction
of motion is the same as the main gas flow directed upward. With the increase of flow, the
whole system turns into a pneumatic transport regime, through bubbling fluidisation and
turbulent fluidisation (see Davidson & Harrison 1963; Davidson, Harrison & Guedes de
Carvalho 1977; Grace 1986; Holdich 2002; Yang 2003; Kunii & Levenspiel 2013).

On the other hand, in the fluid–gas system, where fluid is the continuous phase, bubbles
rise through the fluid phase, and their front boundaries form clear convex interfaces.
Depending on the Reynolds number, Eötös number and Morton number, the rear side
of the bubble may be dimpled, skirted or irregularly deformed, sometimes associated with
a wobbling motion in addition to the convective motion by the upward main stream (Clift,
Grace & Weber 1978). Even in the absence of the main stream, bubbles move upwards
under gravitational acceleration. In this case, if the bubble is viewed from the coordinate
system fixed to the bubble, the latter is observed to be stationary, and is exposed to a
uniform flow at infinity, which reveals the motion toward the upstream direction. The
latter situation looks similar to our void space in a granular material exposed to a uniform
flow at infinity. However, the difference lies in the presence of flux into the cavity, which
obscures the front boundary. Our granular material with macroscopic cavity, which may
be called a heterogeneous granular material, is in a quasi-equilibrium state, so that the
mechanical structure is maintained by solid contact forces between highly concentrated
grains. Viewed as a two-phase system, it may be regarded as a ‘fixed-bed’ regime as
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classified in the literature (Grace 1986), but the flow direction is free from gravity in our
system. So far, the fixed-bed regime has seemed to attract little attention in an industrial
application or particle technology for the purpose of transportation of two-phase flows
under gravity. Although a description of the slowly moving ‘bubble’ has been found, in
which gas flow bends toward the bubble (Davidson & Harrison 1963; Holdich 2002; Yang
2003; Kunii & Levenspiel 2013), the direction of motion of the ‘bubble’ is the same as
that of the gas flow. In the latter, determination of minimum fluidisation velocity focuses
on the force balance between the gravitational force and fluid drag, in which the bed is
well expanded with the increase of fluid flow in the upward direction. However, in a far
earlier stage before such an expansion occurs in which the main bodies of the particles are
still in solid contact, the configuration change of grains at the boundary of a void space
(larger than the interstices of particles) can trigger the global scale structural change. Thus,
the prediction of an accurate velocity of the gas flow mentioned above will be important
in fluidisation technology, to which such inhomogeneity of the gas phase (void space)
is decisive. The transition from the fixed-bed regime to another regime is much more
important in basically solid structures, where the local change of structure can trigger
catastrophic phenomena, such as landslides, collapse of river banks and cliffs. As will be
shown in this paper, the direction of propagation of the collapse in our case is opposite to
the flow, which is a striking contrast to the void space propagation in a vertically set reactor
of a solid–gas transportation system. Although our analytical approach is limited to a very
early stage of the collapse, in which the cavity remains almost spherical, it provides the
most vulnerable configuration of cavities and the direction of spread of the void space.
Our findings will provide a clue to the mechanism of the collapse of the material by
the enhanced fluid mechanical force, and will bridge the gap between fluidisation and
solidification in granular materials (see Campbell 1990; MiDi 2004; Aranson & Tsimring
2006; Forterre & Pouliquen 2008; Gray 2018; Morris 2020).

In the following, we show the method of calculation (§ 2), results on the flow and stresses
due to the interaction of 3-D cavities (§ 3) and discuss (§ 4) their characteristics and
physical implications for the collapse of granular material, based on the present calculation
and the previous one. Conclusions (§ 5) and appendices follow.

2. Method of calculation

2.1. Governing equations
The basic equations we adopt are the equations of continuity for an incompressible viscous
flow

∇∗ · v∗ = 0, (2.1a)

the generalised Darcy equation in a granular material

μ

k
v∗ = −∇∗p∗ + μΔ∗v∗, (2.1b)

and the Stokes equation inside a clear fluid region

μΔ∗v∗ = ∇∗p∗, (2.1c)

where v∗ and p∗ are the velocity and the pressure, respectively, with physical dimensions,
μ is the viscosity of the fluid and k is the permeability of the granular material. The
existing literature indicates that, although the ratio μe/μ (μe is the effective viscosity of
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fluid in the granular material) is of some interest, there is no precise mechanism to define it
accurately. Accordingly, different models have been used to estimate the dependency of the
effective viscosity μe on the viscosity μ inside a porous medium (see Givler & Altobelli
1994; Martys, Bentz & Garboczi 1994; Ochoa-Tapia & Whitaker 1995; Nield & Bejan
2013). In order to avoid any ambiguity, several authors considered the ratio μe/μ = 1 (see
Koch, Hill & Sangani 1998; Masoud, Stone & Shelley 2013), which is also the present case.
For the general case μe/μ /= 1, see Appendix A. We impose the continuity of velocity and
stress at the boundary of the cavity, which were satisfactorily satisfied by our previous
analysis and experiments.

2.2. Flow through a single spherical cavity

2.2.1. General expressions
We have already obtained the flow through a macroscopic spherical cavity in an
otherwise homogeneous granular material (Sano et al. 2022). The variables are made
non-dimensional by the characteristic length

√
k (microscopic scale) and the typical size

of the cavity R0 (macroscopic scale), velocity U∞ and viscosity μ as

x = x∗

R0
, v = v∗

U∞ , ( p, τij) =
( p∗, τ ∗

ij )

μU∞/R0
, (2.2a–c)

so that we have the basic equations in non-dimensional form

∇ · v = 0, (Δ − ζ 2
0 )v = ∇p, �v = ∇p, (2.3a–c)

where ζ0 = R0/
√

k. If we consider a cavity of radius a∗ (or in normalised form a =
a∗/R0) exposed to an otherwise uniform flow U∞

j in the xj direction, the flow field in
non-dimensional form is given as follows.
(i) Outside cavity (r ≥ a)

vi = [δij + Tij(r, a)]U∞
j , Tij(r, a) = C(a)hij(r) + D(a)Hij(r), (2.4a,b)

where

hij(r) =
(

f (r)δij − xixj

r2 g(r)
)

exp(−ζ0r), Hij(r) = −δij

r3 + 3xixj

r5 , (2.5a,b)

f (r) = ζ 2
0
r

+ ζ0

r2 + 1
r3 , g(r) = ζ 2

0
r

+ 3ζ0

r2 + 3
r3 , (2.6a,b)

C(a) = 15a3 eζ0a

Δ0(a)
, D(a) = a3Δ1(a)

Δ0(a)
, (2.7a,b)

Δ0(a) = (ζ0a)3 + 6(ζ0a)2 + 45ζ0a + 45, Δ1(a) = Δ0(a) − 30(ζ0a + 1). (2.8a,b)

(ii) Inside cavity (r ≤ a)

vi = U∞
j [A(a)(2r2δij − xixj) + B(a)δij], (2.9)

where

A(a) = −3ζ 2
0 (1 + ζ0a)

Δ0(a)
, B(a) = Δ2(a)

Δ0(a)
,

Δ2(a) = 3[2(ζ0a)3 + 7(ζ0a)2 + 15ζ0a + 15].

⎫⎪⎬
⎪⎭ (2.10a–c)
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2.2.2. Flow through a single spherical cavity under U∞ in the x direction
For a particular case U∞

j = δjx, the above expressions are described as

vx = 1 + C(a)

(
f (r) − x2

r2 g(r)
)

exp(−ζ0r) + D(a)

(
− 1

r3 + 3x2

r5

)
, (2.11a)

vy = −C(a)
xy
r2 g(r) exp(−ζ0r) + D(a)

3xy
r5 , vz = vy(y → z), for r ≥ a, (2.11b,c)

vx = A(a)(2r2 − x2) + B(a), vy = −A(a)xy, vz = vy(y → z), for r ≤ a.

(2.12a–c)

In terms of the spherical coordinate system, with the x axis along the flow direction at
infinity, they are for r ≥ a

vr =
(

1 − 2C(a)
1 + ζ0r

r3 exp(−ζ0r) + 2D(a)

r3

)
cos θ,

[
= 1

r2 sin θ

∂Ψ

∂θ

]
, (2.13a)

vθ =
(

−1 − C(a)f (r) exp(−ζ0r) + D(a)

r3

)
sin θ,

[
= − 1

r sin θ

∂Ψ

∂r

]
, (2.13b)

Ψ = sin2 θ

(
1
2

r2 − C(a)
1 + ζ0r

r
exp(−ζ0r) + D(a)

r

)
, (2.14)

p = ζ 2
0

(
−r + D(a)

r2

)
cos θ, (2.15)

τrr =
[
ζ 2

0 r + 4C(a)

r
g(r) exp(−ζ0r) − D(a)

(
ζ 2

0
r2 + 12

r4

)]
cos θ, (2.16a)

τθr =
[

C(a)

(
ζ 3

0
r

+ 3ζ 2
0

r2 + 6ζ0

r3 + 6
r4

)
exp(−ζ0r) − 6D(a)

r4

]
sin θ, (2.16b)

and for r ≤ a

vr = [A(a)r2 + B(a)] cos θ, vθ = −[2A(a)r2 + B(a)] sin θ, (2.17a,b)

Ψ = 1
2 [A(a)r4 + B(a)r2] sin2 θ, (2.18)

p = 10A(a)r cos θ, (2.19)

τrr = −6A(a)r cos θ, τθr = −3A(a)r sin θ. (2.20a,b)

2.3. Interaction of two spherical cavities
We consider two spherical cavities Ca and Cb in a general configuration. This situation
is described by first choosing the x axis along the uniform flow, which passes the centre
of the cavity Ca (denoted by O). Next, we choose the y axis such that it passes the centre
of cavity Ca and that the xy plane includes the centre of the other cavity Cb (denoted by
O′). The third axis z is chosen perpendicular to the xy plane, so that the x, y, z axes form
the right-handed Cartesian coordinate system (see figure 1). We denote the radius of the
cavities Ca and Cb by a and b, respectively, and the centre-to-centre distance of the cavities
by l. We assume non-overlapping cavities (l > a + b), and denote the angle of orientation
of the line connecting the centres of the two cavities from the x direction by α. We also
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y

U∞ r
b

α

P

Cavity Ca

Cavity Cb

O
a

x

O′

l

r′

r′ = r–l

θ

Figure 1. Interaction of two cavities.

take a spherical polar coordinate system (r, θ, φ) with its origin at O, where θ is the zenith
angle measured from the x axis. We denote the position vector of OP by r, O′P by r′ and
OO′ by l. Then the distance r′(≡ |r′|) is given by r′ =

√
l2 + r2 − 2rl cos(θ − α) + z2,

where r = |r|.

2.3.1. Flow outside the cavity

(i) Flow outside the two independent cavities
The flow field around a cavity Ca exposed to a uniform velocity U∞ (= 1) in the x

direction at infinity, (2.4a,b) is expressed by

vx = [1 + Txx(r, a)]U∞, vy = Tyx(r, a)U∞, vz = Tzx(r, a)U∞, (2.21a–c)

and the flow around a cavity Cb is similarly given. In the presence of two independent
cavities, we assume that the total flow field outside of the cavities is described by the
superposition

vx = 1 + Txx(r, a) + Txx(r′, b), (2.22a)

vy = Tyx(r, a) + Tyx(r′, b), vz = Tzx(r, a) + Tzx(r′, b). (2.22b,c)

(ii) Flow outside the two interacting cavities
To increase the accuracy taking account of the effect of the other cavity, we estimate the

induced flow δU(O) near the cavity Ca due to the cavity Cb assuming that the two cavities
are sufficiently far apart (l � a + b)

(δU∞
x (O), δU∞

y (O), δU∞
z (O)) ≡ (

Txx(r′, b), Tyx(r′, b), Tzx(r′, b)
) |O

= Db

l3
(Kx, Ky, 0) + O

(r
l

)4
, (2.23)

where
Kx = 3 cos2 α − 1, Ky = 3 cos α sin α, (2.24a,b)

and Db = D(b) for brevity. The latter is the additional uniform flow on the cavity Ca due
to cavity Cb. Similarly, the additional uniform flow on the cavity Cb due to cavity Ca is

(δU∞
x (O′), δU∞

y (O′), δU∞
z (O′)) = Da

l3
(Kx, Ky, 0) + O

(r
l

)4
. (2.25)
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Taking into account of the exponential decay of the Darcylet, and the r−3 decay of the
dipole flow, we assume the local flow around respective cavities up to order O(l−3) will be
generated by the uniform flow δxj + δU∞

j . In this approach, the velocity around the cavity
Ca is given by

va
x = [1 + Txx(r, a)]

(
1 + Db

l3
Kx

)
+ Txy(r, a)

(
Db

l3
Ky

)
+ O

(r
l

)4
, (2.26a)

va
y = Tyx(r, a)

(
1 + Db

l3
Kx

)
+ [1 + Tyy(r, a)]

(
Db

l3
Ky

)
+ O

(r
l

)4
, (2.26b)

va
z = Tzx(r, a)

(
1 + Db

l3
Kx

)
+ Tzy(r, a)

(
Db

l3
Ky

)
+ O

(r
l

)4
. (2.26c)

Local velocity field around cavity Cb is similarly given by shifting the origin of the
coordinate system to O′, describing the position vector r′ from the latter and exchanging
the roles of a and b.

To describe the global flow field we examine the superposition of (2.26a–c) and the
similar flow field in which the roles of Ca and Cb are exchanged. However, the asymptotic
behaviour (r � 1) of the above yields

vx ∼ 2 + Kx

l3
(Da + Db), vy ∼ Ky

l3
(Da + Db), vz ∼ 0, (2.27a–c)

which should be vx = 1, vy = vz = 0. Thus, our global flow field should be described by
subtracting the flow field

vx = 1 + Kx

l3
(Da + Db), vy = Ky

l3
(Da + Db), vz = 0, (2.28a–c)

from the simply superposed flow field (for this renormalisation, see also Appendix B), so
that we have

vx = [1 + Txx(r, a)]
(

1 + Db

l3
Kx

)
+ Txy(r, a)

(
Db

l3
Ky

)

+ [1 + Txx(r′, b)]
(

1 + Da

l3
Kx

)
+ Txy(r′, b)

(
Da

l3
Ky

)
− 1 − Kx

l3
(Da + Db),

(2.29a)

vy = Tyx(r, a)

(
1 + Db

l3
Kx

)
+ [1 + Tyy(r, a)]

(
Db

l3
Ky

)

+ Tyx(r′, b)

(
1 + Da

l3
Kx

)
+ [1 + Tyy(r′, b)]

(
Da

l3
Ky

)
− Ky

l3
(Da + Db), (2.29b)

vz = Tzx(r, a)

(
1 + Db

l3
Kx

)
+ Tzy(r, a)

(
Db

l3
Ky

)
+ Tzx(r′, b)

(
1 + Da

l3
Kx

)

+ Tzy(r′, b)

(
Da

l3
Ky

)
. (2.29c)
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Flow past two arbitrary spherical voids in granular material

2.3.2. Flow inside the cavity

(i) Local flow field outside of cavities in terms of spherical coordinate system
To obtain the flow field inside the cavity Ca, we rewrite (2.26a)–(2.26c) to a local

spherical polar coordinate system (r, θ, φ), whose origin is at the centre of cavity Ca.
The polar axis is chosen along the x axis from which the zenith angle θ is measured, while
the azimuthal angle φ is measured from the y axis. By these choices, we have

x = r cos θ, y = r sin θ cos φ, z = r sin θ sin φ. (2.30a–c)

Relations between the velocity components in the present spherical coordinate system and
the Cartesian coordinates are⎛

⎝vr
vθ

vφ

⎞
⎠ =

⎛
⎝ cos θ sin θ cos φ sin θ sin φ

− sin θ cos θ cos φ cos θ sin φ

0 − sin φ cos φ

⎞
⎠
⎛
⎝vx

vy
vz

⎞
⎠ . (2.31)

In this coordinate system, the flow outside of the cavity Ca (r ≥ a) is given by

vr = (1 + L(r, a))

[(
1 + Db

l3
Kx

)
cos θ + Db

l3
Ky sin θ cos φ

]
+ O

(r
l

)4
, (2.32a)

vθ = − (1 + M(r, a))

[(
1 + Db

l3
Kx

)
sin θ − Db

l3
Ky cos θ cos φ

]
+ O

(r
l

)4
, (2.32b)

vφ = (1 + M(r, a))

(
−Db

l3
Ky sin φ

)
+ O

(r
l

)4
, (2.32c)

where

L(r, a) = C(a)[ f (r) − g(r)] exp(−ζ0r) + 2D(a)

r3 ,

M(r, a) = C(a)f (r) exp(−ζ0r) − D(a)

r3 ,

⎫⎪⎪⎬
⎪⎪⎭ (2.33a,b)

and f (r), g(r) are the same as those defined in (2.6a,b). The pressure and stress
components up to O((r/l)3) are as follows:

p = −ζ 2
0

(
r − D(a)

r2

)[(
1 + Db

l3
Kx

)
cos θ + Db

l3
Ky sin θ cos φ

]
, (2.34)

τrr =
[
ζ 2

0 r + 4
r

C(a)g(r) exp(−ζ0r) − D(a)

(
ζ 2

0
r2 + 12

r4

)]

×
[(

1 + Db

l3
Kx

)
cos θ + Db

l3
Ky sin θ cos φ

]
, (2.35a)

τθr =
[

C(a)

(
ζ 3

0
r

+ 3ζ 2
0

r2 + 6ζ0

r3 + 6
r4

)
exp(−ζ0r) − 6D(a)

r4

]

×
[(

1 + Db

l3
Kx

)
sin θ − Db

l3
Ky cos θ cos φ

]
, (2.35b)

τφr =
[

C(a)

(
ζ 3

0
r

+ 3ζ 2
0

r2 + 6ζ0

r3 + 6
r4

)
exp(−ζ0r) − 6D(a)

r4

]
Db

l3
Ky sin φ. (2.35c)
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The flow pertaining to cavity Cb is similarly given with replacement of a, b, x, . . . , r by
b, a, x′, . . . , r′, using the local spherical polar coordinate system with origin O′.
(ii) Flow inside the respective cavities

Results shown in the previous subsections suggest that the flow inside cavity Ca
is given by the type of solution (2.9), where the asymptotic flow [1 + (Db/l3)Kx +
O(Db/l4)]U∞ in the x direction and the one (Db/l3)[Ky + O(Db/l4)]U∞ in the y direction
are superposed, so that the flow inside the cavity Ca is expected to be of the form

vx =
(

1 + Db

l3
Kx

)
[A(a)(2r2 − x2) + B(a)] − Db

l3
KyA(a)xy + O

(
Db

l4

)
, (2.36a)

vy = −
(

1 + Db

l3
Kx

)
A(a)xy + Db

l3
Ky[A(a)(2r2 − y2) + B(a)] + O

(
Db

l4

)
, (2.36b)

vz = −
(

1 + Db

l3
Kx

)
A(a)xz − Db

l3
KyA(a)yz + O

(
Db

l4

)
. (2.36c)

The flow inside the cavity Cb is similarly described by exchanging a, b, x, y, r with
b, a, x′, y′, r′.

In terms of the local spherical polar coordinate system pertaining to cavity Ca, velocity
components inside the cavity (2.36a–c) are given by

vr = [A(a)r2 + B(a)]
[(

1 + Db

l3
Kx

)
cos θ + Db

l3
Ky sin θ cos φ

]
+ O

(
Db

l4

)
, (2.37a)

vθ = −[2A(a)r2 + B(a)]
[(

1 + Db

l3
Kx

)
sin θ − Db

l3
Ky cos θ cos φ

]
+ O

(
Db

l4

)
,

(2.37b)

vφ = −Db

l3
Ky[2A(a)r2 + B(a)] sin φ + O

(
Db

l4

)
, (2.37c)

p = 10A(a)r
[(

1 + Db

l3
Kx

)
cos θ + Db

l3
Ky sin θ cos φ

]
+ O

(
Db

l4

)
, (2.38)

τrr = −6A(a)r
[(

1 + Db

l3
Kx

)
cos θ + Db

l3
Ky sin θ cos φ

]
+ O

(
Db

l4

)
, (2.39a)

τθr = −3A(a)r
[(

1 + Db

l3
Kx

)
sin θ − Db

l3
Ky cos θ cos φ

]
+ O

(
Db

l4

)
, (2.39b)

τφr = −3
Db

l3
KyA(a)r sin φ + O

(
Db

l4

)
. (2.39c)

The coefficients A(a), B(a), C(a), D(a) are determined by the continuity of the velocity
components and stress components at the boundary r = a, which are the same as (2.10a,b)
and (2.7a,b). The flow inside the cavity Cb is similarly determined by exchanging the roles
of cavities Ca and Cb.

3. Results

In a typical granular material we encounter, such as sand of grain size 0.1 ∼ 0.25 mm,
the observed value of the permeability is k ∼ 2 × 10−7 cm2, which implies that the value
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Flow past two arbitrary spherical voids in granular material

(b)(a) (c)

Figure 2. Dependence of the flow field on the separation distance l (a = 1, b = 1, α = 0◦, ζ0 = 100):
(a) l = 2.5; (b) l = 3; (c) l = 5.

of ζ0 is 2 × 103 for a cavity of 1 cm. We have shown in our previous papers (Sano 1983;
Raja Sekhar & Sano 2000; Sano et al. 2022) that the ζ0-effect saturates at around ζ0 ≈ 100.
Therefore, we choose the magnitude of ζ0 = 100 as a consistent value in the following,
unless otherwise stated. As far as the special case α = 0 of the present calculation is
concerned, our previous result (Sano et al. (2022), denoted here JFM2022), which is
valid up to O(1/l4), agrees with the present analysis up to O(1/l3) by the change of
renormalisation. More precisely, the normalisation of Ψ e ((4.2) of our JFM2022 paper)
is made to all expressions by multiplying by a factor of 1/(1 + 2E/l3), which is equal to
Δ/Δ0 ((4.15a–e) and (4.16a–c)). Then, the normalised Ψ differs from the α = 0 of the
present case by (3E1r3/l4) sin2 θ cos θ . Here, the order of the latter is O(1/l4), but the flux
into the cavity, estimated at r = a, θ = π/2, happens to be zero, because of the vanishing
coefficient. This implies that the interaction appears to be at utmost O(1/l5), which is
0.03, 0.01, 0.004, . . . for l = 2, 2.5, 3, . . ., respectively. In the present configuration, the
above argument may not strictly be applied, but is expected to be valid in the α ≈ 0
region that covers the most influential part. We also show a comparison of our flow
field with that obtained by numerical simulation as given in Appendix C, to support
qualitative agreement. Based on this evidence, results obtained for l/a � 2.5 are shown
in the following.

3.1. Velocity field
We show some examples of the streamlines on the z = 0 plane.

Figure 2(a–c) shows the dependence on the separation distance l of the two cavities of
the same size (a = 1, b = 1) positioned in tandem (α = 0◦); (a) l = 2.5, (b) l = 3, and (c)
l = 5. We see that the flow field is symmetric with respect to the mid-plane between the
cavities.

Figure 3(a–c) shows the dependence on the orientation α of the two cavities of the same
size (a = 1, b = 1) with l = 3; (a) α = 30◦, (b) α = 60◦ and (c) α = 90◦.

Figure 4(a–d) shows the flow field for α = 0◦, 30◦, 60◦, 90◦, with a = 1, b = 2 and
l = 6. We see a change in flow pattern depending on the configuration of the two cavities.

Figure 5(a,b) describes examples of the perspective view of the streamlines. To avoid the
complexity due to the overlapping streamlines, only those that flow into respective cavities
are drawn. Here, the black broken lines show the positions of the cavities, whose centres
are on the z = 0 plane. Note that only the dividing streamlines which flow into cavities Ca
and Cb are drawn in blue and red, respectively, and that those of the upstream-side ones
are drawn.
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(b)

(a)

(c)

Figure 3. Dependence of the flow field on α in the z = 0 plane (a = 1, b = 1, l = 3, ζ0 = 100): (a) α = 30◦;
(b) α = 60◦; (c) α = 90◦.

(b)

(a)

(c)
(d )

Figure 4. Dependence of the flow field on α in the z = 0 plane (a = 1, b = 2, l = 6, ζ0 = 100): (a) α = 0◦;
(b) α = 30◦; (c) α = 60◦; (d) α = 90◦.
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Flow past two arbitrary spherical voids in granular material

O′

O

y

y

z
z

xxO
O′

(b)(a)

Figure 5. Perspective view of the streamlines for (a) α = 45◦ and (b) α = 10◦, (a = b = 1, l = 4.0).

3.2. Velocity profiles

Figure 6 shows the contour plot of the velocity v =
√

v2
x + v2

y on the z = 0 plane. The
dotted pink and black circles show the position of the cavities. We see that the velocity
increases as we move towards the centre of the respective cavities. The flow behaviour is
180◦ rotational symmetric about the mid-point between the centre of the two cavities. The
flow field around each of the cavities reflects the dipole characteristics. Namely, the far
field around a single cavity is

vx ∼ 1 + Txx(r, a) ≈ 1 +
(a

r

)3
(3 cos2 θ − 1), vy ∼ Txy(r, a) ≈

(a
r

)3
3 cos θ sin θ,

(3.1a,b)

so that v ≈ 1 for θ = αc ≡ ± cos−1(1/
√

3) = ±54.7356 · · ·◦ (mod 180◦) for r � a. The
main contribution to the flow at a distance comes from the second term in Tij, that
characterises the potential doublet. Indeed, respective terms of Tij are

C(a)hij ∼ C(a) exp(−ζ0r) ∼ 15
ζ0r

(
1 − 6

ζ0a
+ O

(
1

ζ0a

)2
)

exp(−ζ0(r − a)),

D(a)Hij ∼ a3

r3

(
1 − 30

(ζ0a)2 + O
(

1
ζ0a

)3
)

,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.2a,b)

the former being very small compared with the latter for ζ0 � 1, r � a. Here,
contour-value unity is due to the uniform far field condition. Fore-and-aft symmetry of
the flow field is observed for the case α = 0◦ with respect to the mid-plane (see figure 6a).
One may observe that, for the cases α = 0◦ and 30◦, the water chain connecting the cavities
is strong (see figure 6a,b), and for the case α � 55◦ the water chain is weak (figure 6c,d).
In other words, the interaction of the cavities is more prominent when the two cavities are
oriented nearly along the flow and less prominent with increase of α (up to α � 55◦). As
α further increases, the water chain almost disappears and contour lines in the respective
cavities tend to become independent. For the case α = 90◦ we can recognise a negative
interaction between the cavities, and the water chain disappears completely (see figure 6d).

Dependence of vx on l for two equal sized cavities positioned in tandem is shown
in figure 7(a). We see that the velocity profile in this case is symmetric with respect
to the plane x = l/2. As l increases the velocity at the respective centres decreases.
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Figure 6. Contour plot of the magnitude of velocity v on the z = 0 plane (a = b = 1, l = 2.5, ζ0 = 100):
(a) α = 0◦; (b) α = 30◦; (c) α = 55◦; (d) α = 90◦.

For sufficiently large l, two cavities are almost independent. As l decreases, the velocity at
the centre of the respective cavities increases. These dependencies will be further clarified
in the next subsection.

Figure 7(b) depicts the axial velocity for two equal size cavities but with different
orientation angles α. Difference of the velocity is remarkable for the cases α = 0◦ and
α = 30◦ whereas it is less when α = 60◦ and α = 90◦. The reason is easily seen from
figures 6(c) and 6(d), where contour lines around cavity Cb have almost no overlap across
the mid-plane between the centre of the two cavities. One noticeable thing is that the axial
velocity in the neighbouring portion of the first cavity for α ≈ 55◦ case is the same as that
of a single cavity (see figure 7b).

Figure 8 shows the velocity profile vx on the plane passing the centres of both cavities.
Here, the velocity profile is plotted with respect to x = 0 (blue line) and x = l cos α (red
line). As α increases, the maximum velocity at the respective centres decreases. We see
that, for α = 0◦, the magnitude of the axial velocity is larger (see figure 8a) than that for
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Figure 7. Velocity profile along the x axis for two cavities of equal radii (a = b = 1, ζ0 = 100).
(a) Dependence of vx on l (α = 0◦). (b) Dependence of vx on α (l = 4).

a = 1, b = 1
l = 2.5, α = 0°
ζ0 = 100

a = 1, b = 1
l = 2.5, α = 30°
ζ0 = 100

vx vx vx

y

–2 0 2 4 6 8
–5

–4

–3

–2

–1

0

1

2

3

4

5

–2 0 2 4 6 8
–3

–2

–1

0

1

2

3

4

5

–2 0 2 4 6

–4

–2

0

2

4

6

(b)(a) (c)

x = 0
x = l cos α

a = 1, b = 1
l = 2.5, α = 60°
ζ0 = 100

Figure 8. Velocity profile on the z = 0 plane along x = 0 (blue) and x = l cos α (red)
(a = b = 1, l = 2.5, ζ0 = 100): (a) α = 0◦; (b) α = 30◦; (c) α = 60◦.

α = 30◦ and α = 60◦ (see figure 8b,c). This fact implies that cavities positioned nearly
along the flow interact strongly.

Figure 9 shows the axial velocity profile along the x-axis for two cavities of different
sizes in a tandem position (α = 0◦). Figure 9(a) shows the vx profile for different sizes
of cavity Cb keeping the size of Ca and the distance l constant. We observe that the
peak velocity of Ca increases as b increases, whereas the peak velocity of Cb is almost
unchanged. The same characteristics are recognised if the positions of Ca and Cb are
exchanged. Thus, it follows that, if two cavities of different sizes are placed at a fixed
distance along the stream, the peak velocity of the larger cavity is almost unchanged
whereas that of the smaller cavity is remarkably influenced. Figure 9(b) shows the
dependence of vx on ζ0, in which two cavities of different sizes are positioned in tandem.
We see that the magnitude of the velocity increases with ζ0. The velocity is almost uniform
for low values of ζ0 due to the high permeability of the porous medium. We see that, when
r � 1, vx ≈ 1 owing to the undisturbed flow.

3.3. Velocity at the centre of the cavity
From (2.36a)–(2.36c), the velocity at the centre of the cavity Ca is

(vx)
C
a = (1 + εblKx) B(a), (vy)

C
a = εblKyB(a), (vz)

C
a = 0, (3.3a–c)
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Figure 9. Velocity profile along the x axis for two cavities of unequal radii (a = 1, α = 0◦, l = 6).
(a) Dependence on b, and (b) dependence on ζ0.

where εbl = Db/l3, so that the magnitude vC
a and orientation θC

a are

vC
a = B(a)

√
(1 + εblKx)2 + (εblKy)2

= B(a)
√

[1 + εbl(3 cos2 α − 1)]2 + 9(εbl cos α sin α)2, (3.4a)

θC
a = arctan

(
εblKy

1 + εblKx

)
= arctan

(
3εbl cos α sin α

1 + εbl(3 cos2 α − 1)

)
. (3.4b)

The velocity and orientation of the flow at the centre of cavity Cb are similarly given by
exchanging the roles of Ca and Cb.

3.3.1. Velocity at the centre of cavities positioned in tandem
The maximum velocity vC

a max at the centre of cavity Ca is achieved at α = 0◦, and is given
by

vC
a max = (1 + 2εbl)B(a) =

(
1 + 2

b3

l3
Δ1(b)

Δ0(b)

)
Δ2(a)

Δ0(a)
, (3.5a)

whereas that of the maximum velocity at the centre of cavity Cb is

vC
b max = (1 + 2εal)B(b) =

(
1 + 2

a3

l3
Δ1(a)

Δ0(a)

)
Δ2(b)

Δ0(b)
. (3.5b)

For ζ0 � 1, (3.5a) and (3.5b) are approximated as

vC
a max = 6

[
1 + 2

b3

l3

(
1 − 30

(ζ0b)2 + · · ·
)]

·
[

1 − 5
2ζ0a

(
1 + 3

ζ0a
+ · · ·

)]
, (3.6a)

and

vC
b max = 6

[
1 + 2

a3

l3

(
1 − 30

(ζ0a)2 + · · ·
)]

·
[

1 − 5
2ζ0b

(
1 + 3

ζ0b
+ · · ·

)]
. (3.6b)

Under given values of fixed a, l and larger ζ0, variation of b influences vC
a max remarkably,

whereas it influences vC
b max only slightly. For example, by putting a = 1, l = 6, ζ0 = 100,
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Figure 10. Dependence of the velocity vC
a on the separation distance l of two cavities of equal size

(ζ0 = 100): (a) magnitude and (b) flow direction.

as shown in figure 9(a), we have vC
a max ≈ 5.89, 6.02, 6.27 and 6.68, whereas vC

b max ≈
5.89, 5.95, 5.98 and 5.99, respectively, for b = 1, 1.5, 2 and 2.5.

Similarly, for a = 1, b = 2, l = 6 as shown in figure 9(b), we have vC
a max ≈ 6.07

and vC
b max ≈ 5.89 for ζ0 = 50, whereas vC

a max ≈ 4.39 and vC
b max ≈ 5.09 for ζ0 = 10,

respectively, which confirm the results shown in figure 9(a,b).

3.3.2. Configuration dependence on the velocity at the centre of the cavities
We consider the magnitude of the velocity and flow direction at the centres of two cavities
of equal size. In this case, the flow field has 180◦ rotational symmetry about the mid-point
joining their centres. Figure 10(a) shows the dependence of the magnitude of the velocity
vC

a at the centre of cavity Ca on the configuration α and l of cavity Cb for the ζ0 = 100
case. Note that the latter maximum velocity amounts to 6.28, 5.94 and 5.86 at α = 0
for l = 3, 5, 10, respectively, which agrees with our previous calculation (see Sano et al.
(2022), figure 14). We also note that the velocity vC

a is larger than that for a single cavity
vC

S (≈5.8377 for ζ0 = 100) when the angle of orientation α is less than approximately
αc ≈ 55◦. The magnitude vC

a decreases monotonically as α increases, and becomes smaller
than vC

S when α exceeds αc. The range of variation, however, decreases with the increase
of the distance between the two cavities. Figure 10(b) shows the flow direction θC

a at
the centre of cavity Ca. The dotted line shows the configuration in which θC

a becomes
maximum (the same positions are also shown in figure 10a). The latter is given by
θC

a ≈ (3/2)εbl sin 2α + · · · for a given configuration l, b with εbl � 1, so that it tends
to α = 45◦ as εbl goes to zero. However, the two cavities become almost independent for
sufficiently large l, so that the velocity at respective centres looks parallel to the incident
flow in the x direction.

When the sizes of the two cavities are not equal, the above-mentioned tendency is much
enhanced in the smaller cavity, whereas the influence is less remarkable in the larger cavity.
Figures 11(a) and 11(b) are examples of vC

a , vC
b and θC

a , θC
b , respectively. Here, l = 5, a =

1 and ζ0 = 100 are fixed, and b is varied. To see the tendency, data for b up to 2.5 are
also added. The data points for Ca and Cb are shown by solid curves and dotted curves,
respectively, although the variation of the latter are indistinguishably small compared with
those of the former. The influence of the larger cavity Cb on the smaller cavity Ca is
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Figure 11. Comparison of the (a) magnitude of the velocity vC
a , vC

b and (b) flow direction θC
a , θC

b at the
centres of cavities of different sizes, where a = 1 and l = 5 are fixed while b is varied (ζ0 = 100); Ca (solid
curves) and Cb (dotted curves).

remarkable. For a = 1, b = 2, l = 5, for example, the velocity at the centre of cavity vC
a

amounts to 6.58 whereas that for cavity vC
b is 6.02 (for a = 1, b = 2.5, l = 5, they are

vC
a = 7.30 and vC

b = 6.03). The maximum deflections of the flow direction at respective
centres are θC

a = 5.33◦ and θC
b = 0.68◦ for the case a = 1, b = 2, l = 5, whereas they

are θC
a = 10.1◦ and θC

b = 0.68◦ for the a = 1, b = 2.5, l = 5 case. These examples show
that the smaller cavity is highly involved in the local flow created by the larger cavity,
but that the larger cavity suffers less influence from the smaller one (e.g. see particularly
figures 4(b,c) and 9(a,b)).

These results agree with those shown in the previous subsection, which will be discussed
later in the collapse of two cavities of different sizes.

3.4. Volume flux into the cavities
We shall consider two spherical cavities positioned at an arbitrary configuration, and
examine the effect of the interaction on the volume flux into the respective cavities. To
do this, we assume that the sizes of the cavities are the same (a = b = 1) as a simplest
case, and focus our attention on the dependence on the configuration. Figures 12(a) and
12(b) show the volume fluxes into Ca and Cb, respectively. In each figure, the abscissa is
the centre-to-centre distance l between the two cavities, and the ordinate is the orientation
α of Cb with respect to the direction of the velocity at infinity. The value of the volume
flux is normalised by the flux QS into a single cavity of radius a, where QS → 3(πa2) as
ζ0 → ∞. The contour map describing the α − l dependence is qualitatively the same as
that obtained for two 2-D cavities (Kaneko & Sano 2003; Sano & Nagata 2006a; Sano
2020).

We first note that, in the α = 0◦ case, the volume flux into each cavity is larger than
that which flows into a single cavity, as a result of the global effect that the combined
two cavities play the role of a single larger cavity. The interaction duly decreases with
the distance l, and tends to the same value as that for the single cavity. The two-cavity
interaction described above agrees with our previous work dealing with axisymmetric case
(Sano et al. 2022). These tendencies are also recognised for smaller α.
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Figure 12. Volume flux into cavities of the same size Ca and Cb (ζ0 = 100); dependence of configuration.
The inset is the close-up view around this region. (a) Upstream cavity Ca; (b) downstream cavity Cb.

How about the off-axial configuration? Figures 12(a) and 12(b) show that the variation
of the volume flux into respective cavities is generally recognised in l � 5. The volume
flux is enhanced in the region α � α1(l), whereas it is reduced in the region α � α2(l).
The numerical value of these criteria depends, of course, on the configuration. Roughly
speaking, a 5 % increase of the volume flux is expected within the region bounded by the
(l, α1) ≈ (3.5, 0◦) − (3.3, 15◦) − (3.0, 30◦) − (2.5, 45◦) curve, and an increase of 10 % is
expected within the (l, α2) ≈ (2.7, 0◦) − (2.6, 15◦) − (2.5, 25◦) curve. In contrast, a 5 %
decrease is observed within the region bounded by the (l, α3) ≈ (2.7, 90◦) − (2.5, 80◦)
curve. The latter is ascribed to our observation that the two cavities exert their suction
effect almost independently, so that the fluid volume in the middle region on the upstream
side that overlaps their influences is divided and flows into respective cavities (see i.e.
figure 3c).

It should be remarked that the dependence of the volume flux on l and α differs between
the upstream cavity and the downstream one. Although the magnitude of the difference is
not very large, a region is recognised in which the volume flux varies non-monotonically
in the downstream cavity, whereas it is not the case in the upstream cavity. This apparent
asymmetric l − α dependence between Ca and Cb is recognised around the configuration
l ≈ 4 and α ≈ 15 ∼ 45◦, which we shall examine in more detail. Figure 13(b–d) shows the
stream tubes projected on the xy plane, where the flows into cavity Ca and Cb, respectively,
are drawn in blue and red curves. In figure 13(a), red closed circles show the region
where the volume flux into cavity Cb is larger than that into cavity Ca. Figure 13(b–d)
corresponds to the typical configurations marked A ∼ C as shown in figure 13(a). A closer
look at figure 12(b) reveals that the volume flux contour shows a non-monotonic behaviour
around l ≈ 4 and α ≈ 20◦. As shown in figure 13(b), where l = 4 and α = 45◦, the stream
tube that flows into the downstream cavity is dilated by the upstream cavity, so that the
volume flux increases. In contrast, as shown in figure 13(d), where l = 4 and α = 10◦, the
stream tube that flows into the downstream cavity is constricted by the upstream cavity, so
that the volume flux decreases. Figure 13(c), where l = 4 and α = 25◦, shows a marginal
case, in which the volume flux is almost independent of the upstream cavity. Although
these figures give only the 2-D projections, their 3-D perspective views (e.g. as shown in
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Figure 13. (a) Comparison of the volume flux into cavities Ca and Cb of the same size. Red closed circles
show the region where the volume flux into cavity Cb is greater than that into cavity Ca. (b) Stream tubes
projected on the xy plane that flow into cavities Ca (blue) and Cb (red) for the cases (A) l = 4.0, α = 45◦,
(B) l = 4.0, α = 25◦ and (C) l = 4.0, α = 10◦. (b–d) Correspond to the configurations marked in figure 13(a).
(b,d) Respectively show the dilation and constriction of the stream tube into the downstream cavity.

figures 5(a) and 5(b) corresponding to figures 13(b) and 13(d), respectively) support the
above-mentioned variation.

3.5. Stress on the boundary of cavities
The normal stress on the boundary of granular material is important in that it determines
the critical condition for the collapse of a cavity. In particular, the negative normal stress
i.e. the normal stress from solid region to fluid region, is of crucial importance for this
criterion, because granular materials on the boundary are robust against the normal stress
from fluid to solid direction (as a consequence of the well-known ‘excluded volume’
effect), whereas the normal stress of the opposite direction has very small resistance.

The stress on the boundary of cavity Ca is given in (2.39a), which takes maximal value
on the plane φ = 0

(τrr)
B
a = 6a(−A(a))[(1 + εblKx) cos θ + εblKy sin θ ] = − 6aA(a)

A(a)a2 + B(a)
(vr)

B
a

= τB
a cos(θ − θC

a ), (3.7)
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Flow past two arbitrary spherical voids in granular material

where (vr)
B
a is the radial velocity component at the boundary of cavity Ca

τB
a = 6a(−A(a))

√
(1 + εblKx)2 + (εblKy)2 = −6aA(a)

B(a)
vC

a , (3.8)

where vC
a and θC

a are defined in (3.4a) and (3.4b), respectively. The last term of (3.8) is
the expression using the magnitude of the velocity at the centre of cavity Ca as defined
in (3.4a). Similarly, the normal stress on the boundary of (downstream-side) cavity Cb
is given by exchanging the roles of cavity Ca and cavity Cb. We first examine the
interaction of two cavities of an equal size (a = b = 1). An example of the contour map
on the l-α plane is given in figure 14 for the ζ0 = 100 case, showing the deviation of the
relative magnitude δτ ∗

rr of the normal stress component from that of the single cavity (i.e.
−6aA(a)), defined as

δτ ∗
rr = τB

a

(−6aA(a))
− 1. (3.9)

Along the curve α = αc(l) such that δτ ∗
rr = 0, the magnitude of the normal stress is the

same as that for a single cavity of the same size. This critical configuration αc is given by

αc = arccos

√
2 − εbl

3(2 + εbl)
, (3.10)

which tends to cos−1(1/
√

3) = 54.7356 · · ·◦ as the centre-to-centre distance of the cavities
l becomes large. For the configuration (l, α) with α < αc(l), two cavities collapse more
easily than they are placed independently. On the contrary, in the region α > αc(l), the
two cavities are more robust than when they are placed independently. These tendencies
are enhanced for shorter l in either case. As has been remarked in our previous paper
(Sano et al. 2022), two cavities along the stream are easier to collapse and merge, which
may create a long waterway along the stream if the distance between them is sufficiently
small.

We next examine two cavities of unequal size. To see this, we remark from (3.8) that

τB
a = 18

a

(
1 − 5

ζ0a
+ O

(
1

(ζ0a)2

))[
1 +

(
b
l

)3

(3 cos2 α − 1) + O
(

b
l

)6
]

, (3.11)

for ζ0a � 1 and b/l � 1, which is often encountered in practical granular material. The
maximum stress is inversely proportional to the radius of the cavity, which suggests that
the smaller cavity collapses easier than the larger one. We shall discuss this apparently
contradicting result (see Koizumi et al. 2009) in the next section.

4. Discussion

4.1. Criterion for the collapse of the granular surface
We shall consider the criterion for the collapse of a single spherical cavity of radius a∗,
which is given in dimensional form as

τ ∗3D
rr |r=a = μU∞

c

a∗ [−6aA(a) ]∗ cos θ ≈ 18μU∞
c

a∗

(
1 − 5

√
k

a∗ + · · ·
)

cos θ for ζ0a � 1,

(4.1)

where [· · · ]∗ implies that the quantity is evaluated with physical dimensions. To apply the
present result to the collapse of macroscopic cavities in the granular material, we shall
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Figure 14. Dependence of maximum normal stress on l and α (ζ0 = 100, a = b = 1).

examine the following two scenarios.(Scenario 1): from (4.1), the largest negative stress
is exerted at θ = π on the cavity, so that the material is destroyed at this point above a
certain critical velocity at infinity U∞

c1

U∞
c1 = fca∗

18μ

(
1 + 5

√
k

a∗ + · · ·
)

, (4.2)

where fc is a critical stress describing the ‘hardness’ of the material. The above scenario
suggests that the larger cavity is more robust than the smaller one. (Scenario 2): if we
assume that a small but finite portion of the upstream boundary θ1 ≤ θ ≤ π (θ1 = π −
�θc, �θc � 1) is relevant for the force balance, the local suction force Ff created by the
viscous fluid is estimated as

Ff =
∫ π

θ1

τ ∗3D
rr |r=a cos θ dS = 18πμa∗(�θc)

2U∞
(

1 − 5
√

k
a∗ + · · ·

)
. (4.3)

In this case, the critical velocity for collapse U∞
c2 is

U∞
c2 = Fc

18πμa∗(�θc)2

(
1 + 5

√
k

a∗ + · · ·
)

, (4.4)

where Fc(= Ff ) is a critical force describing the ‘hardness’ of the material. If the
collapsible portion �θc is constant, the present scenario suggests that smaller cavity is
more robust than the larger one.

The apparent discrepancy on the dependence of U∞
c on a∗ is resolved by assuming

the relation �S = π(a∗�θc)
2 and fc = Fc/�S, so that the two expressions are the same

irrespective of �θc. Scenario 1 is rather a mathematical perspective and refers to a point on
the cavity boundary, whereas scenario 2 refers to a physical perspective in which the finite
size of the grains is taken into account. In the latter, a few grains around the maximum
suction point will be involved in the collapse. Which scenarios are plausible? For clarifying
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this question, we need an independent check either in experimental or numerical studies.
So far, we have no systematic experimental data on the collapse of the spherical cavities.
In the quasi-2-D experiments, however, we obtained the results that the critical velocity
U∞

c is lower in the larger cavity, and that U∞
c depends inversely on the cavity size a∗ (see

Koizumi et al. (2009), figure 5, which is reproduced in figure 15 of the present paper),
although their argument developed there on the fitting function does not seem appropriate.
Their experiment was performed for the void space between two parallel plates in an
otherwise homogeneous granular material (refer to the original paper for the detail). After
the two-dimensionality of the flow field was checked in many respects, their experimental
results were well regarded as reflecting the collapse of a 2-D circular cavity. Meanwhile,
the normal stress per unit length of a circular cylindrical cavity of radius a∗ is calculated
by (Raja Sekhar & Sano 2000)

τ ∗2D
rr |r=a = μU∞

a∗

[
−1

2
c1a
]∗

cos θ = 4μU∞

a∗

(
1 −

√
k

2a∗ + · · ·
)

cos θ for ζ0a � 1,

(4.5)

since c1 = −8ζ 2
0 K1/[4ζ0K0 + (ζ 2

0 + 16)K1], where ζ0 = a∗/
√

k, and K0 ≡ K0(ζ0) and
K1 ≡ K1(ζ0) are the modified Bessel functions of the first kind of order 0 and 1,
respectively. Comparison of (4.1) and (4.5), where the dependence of U∞

c on a∗ is
qualitatively the same in 2-D and 3-D cavities, suggests that scenario 2 applies to the
spherical cavity. Collapse of structures in a granular material have been extensively studied
(see Duran 1997; Liu & Nagel 1998; Majmudar & Behringer 2005; Behringer 2015; Morris
2020), in which the solid frictional force, local arching between constituent grains and
an ‘excluded volume effect’ owing to finite size of grains, among others, are decisive to
maintain a quasi-equilibrium state of structure. Such a general feature of granular material
also supports the involvement of at least a few grains in causing structural change. Taking
the above evidence into account, we shall adopt scenario 2. Then, it follows that the
3-D larger cavities are prone to collapse as the velocity of the incident flow increases,
which results in the dispersion of cavities of a similar size. Furthermore, the cavities
positioned nearly along the flow direction are likely to collapse by interaction, which may
create a long waterway by successive merging. These processes may be applied to the
prediction of an extraordinarily fast spread of the contaminant through the soil, to the
medical engineering for new blood vessel creation in an otherwise impermeable tissue
(angiogenesis) and to the prediction of landslides, collapse of river banks and cliffs, etc. if
many such water passages spread in a sheet-like manner.

4.2. Comparison of 3-D cavities with 2-D cavities for arbitrary configuration
We have calculated the interaction of two spherical cavities in general configurations,
which, together with more accurate one focused on an axisymmetric configuration
(JFM2022), enables us to compare the interaction of two spherical cavities (3-D case)
and cylindrical cavities (2-D case) (Sano 2020). Throughout our study on the interaction
of macroscopic cavities in a granular material, we obtained several characteristics of their
interaction. We found that the interaction in the 2-D case is rather long range, so that the
volume flux into the downstream cavity is enhanced in a certain configuration (Kaneko
& Sano 2003; Sano & Nagata 2006a). For example, enhancement of the volume flux into
a downstream cavity of the same radius amounts to approximately 20 % for the α = 15◦
and l = 2.5 case, whereas its reduction amounts to approximately20 % for the α = 90◦
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Figure 15. Critical collapse velocity (reproduced from Koizumi et al. 2009).

and l = 2.5 case (figure 5 of Sano 2020). These variations are expected because some
additional fluid volume that flows into the upstream cavity flows into the downstream
cavity in the former case (which is observed for smaller l and smaller α, denoted here as
the ‘enhancement region’), whereas the fluid volume that occupies the common influential
region ahead of the cavities is shared between the two cavities in the latter case (which is
observed for smaller l and α ≈ 90◦, denoted here as the ‘reduction region’), which results
in the reduction of volume flux into respective cavities. The variation, however, decreases
gradually, like lγ , where γ ≈ −1. As a result, the collapse of the cavity can be initiated
at the angular position θc on the cavity boundary that is different from the front end with
respect to the incident flow direction, or at the position of the shortest minimum point
between the two cavities. The latter is owing to a ‘global effect’ of interaction, and the
granular material will be destroyed when the total stress exceeds a certain threshold value
of the material stiffness (Kaneko & Sano 2005; Sano & Nagata 2006a,b; Sano 2020). We
call this type of collapse ‘branch-I’.

From the theoretical point of view, however, the collapse of a cavity can be initiated
at the front end of the downstream cavity boundary, when the two cavities are arranged
along the flow direction (Kaneko & Sano 2005; Sano & Nagata 2006a,b; Sano 2020).
The latter is expected because stronger stream that is focused by the upstream cavity exerts
a larger stress directly on the downstream one. In particular, if the separation distance l is
sufficiently small, they are effectively regarded as a single larger cavity, so that the flow
field is totally enhanced to exceed the threshold value of destruction of the cavity boundary.
This type of collapse occurs as a ‘local effect’ of the flow field on the limited part of the
cavity boundary. We call the latter type of collapse ‘branch-II’.

Our 2-D experiments and numerical simulation (Kaneko & Sano 2005; Sano & Nagata
2006a,b) provide evidence depending on the configuration l and α (and ζ0) in the simplest
case of two cavities of the same size. Namely, the collapse of 2-D cavities is initially
observed at the front boundary of the downstream cavity if they are closely spaced
with α = 0 (branch-II). On the other hand, angular position θc increases with α > 0
(branch-I) provided that the two cavities lie in the enhancement region (Sano 2020).
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Figure 16. Schematic picture of the collapse of two cavities.

Which branches are chosen may depend on experimentally uncontrollable factors of the
material distribution and configuration of cavities that lead to asymmetry of the flow
(see figure 16). In any case, collapse occurs almost independently and simultaneously if
the cavities are sufficiently distant, because the difference in the upstream–downstream
configuration of the cavities becomes less important.

To resolve these complexities, we need to consider another and practically important
factor in the collapse of the granular boundary stemming from the structural stability
against symmetric vs asymmetric disturbances. It is well known in the physics of granular
materials (Duran 1997) that, in a sealed hourglass or a hopper where granular fluid may
normally flow down continuously, the flow of sand in cone- (or wedge-) shaped funnels
can be blocked in the vicinity of the discharge orifice by the arch effect. The latter
phenomenon depends on the size of the orifice with respect to the size of the grains,
as well as the friction between them. In the 2-D case, the blockages may happen even for
smooth granules in a smooth surface funnel, where normal force equilibrium is realised
under the (effectively) symmetric disturbances. Such a jamming state is reported e.g. for
a chain of as many as 10 grains at the boundary of granular material in a 2-D hopper of
opening angle approximately 30◦ (Behringer 2015). Here, the number and configuration
of grains involved in the equilibrium, and the extent of symmetry allowed to keep that
state, are determined by the network of force chains among lots of relevant particles, and
hence case by case, so that the flowing state may resume abruptly and unpredictably by
infinitesimal disturbances.

Viewing the above-mentioned characteristics, we can expect branch-II to branch-I type
bifurcation at the collapse of two 2-D cavities at a certain but non-zero α (see 2-D
case of figure 16). Note that the occurrence of the latter transition assumes the presence
of maximum volume flux and/or the maximum velocity on the boundary (or at the
centre of the cavity) at non-zero α positions. At this moment, the transition mentioned
above contains speculation, which was partially justified by the asymptotic analysis and
experiments on the interaction of two 2-D cavities (Sano 2020), but further analysis for
cavities that are close enough will be necessary.

In the 3-D case, on the other hand, a stable solid mechanical equilibrium state is not
easily realised in wet granular material because quite a number of quasi-equilibrium
states are possible. The latter implies that fluid mechanical stress plays a decisive role
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on the collapse of 3-D cavities, which requires analysis on both branch-I and branch-II
possibilities, as are given in the present paper and JFM2022, respectively.

In our previous study (JFM2022), we obtained the interaction of two spherical cavities
in a tandem position (α = 0), which provides the basic information on branch-II, such as
the dependence of enhanced velocity and stress on l, the range of influence of the effect
of upstream cavity, etc. As shown in (6.5) of JFM2022, the velocity at the centre of the
cavities behaves as

V2D
c ∼ 3

1 − 1/l2
U∞, V3D

c ∼ 6
1 − 2/l3

U∞, (4.6a,b)

for 2-D and 3-D cases, respectively, for ζ0 � 1. In addition to the difference of the
magnitudes 3 and 6 respectively for 2-D and 3-D cases (which reflects the extent of
flow concentration at the lowest approximation for 2-D and 3-D cases), the asymptotic
behaviour of the 3-D case shows a faster decrease than that of the 2-D case. As for the
volume flux into the downstream cavity in tandem arrangements, the increment amounts
to as much as 20 % for l = 3 (figure 10 of JFM2022), which is found to be much larger than
the one achieved for any other configuration α /= 0 (as shown in the present paper). From
the knowledge of the types of collapse observed in the 2-D case, transition to branch-I
type needs the presence of such a maximum volume flux region of (l, α) that is clearly
distinguished from the one immediately behind the cavity. However, the present study
shows that the volume flux enhancement region is the same as the one obtained in the
tandem arrangement configuration (figures 12 and 13). The latter is considered to be a
result of strong localisation of flow by the upstream cavity, as well as shorter range of
interaction in 3-D cavities, which implies that the only branch-II type collapse is expected
in 3-Dcavities.

Throughout our study, we obtain a hypothesis that the interaction of 3-D cavities is
highly localised and the region of influence is limited along a narrower region in the
longitudinal direction, whereas that of 2-D cavities is rather global and the region of
influence spreads more broadly in the transverse direction. Therefore, two circular cavities
(2-D case) of the same size within a short distance in a tandem position will collapse
as branch-II type, whereas they will collapse as branch-I type if the orientation of the
two cavities is angled within the enhancement region. On the other hand, two spherical
cavities (3-D case) of the same size in an enhanced region will collapse only as branch-II
type. In other positions, they will collapse almost independently as is observed for a single
spherical cavity.

At present, the above consideration is limited to two equal cavities of the same size,
which should be substantiated by future investigation, including the extension to unequal
cavities, and analyses of the flow field around closely spaced cavities. Further study will
also be necessary to validate these speculations from both approaches by fluid mechanics
and granular material physics.

5. Conclusions

We have calculated the interaction of two macroscopic spherical cavities of radii a and b
whose separation distance between their centres is l and orientation angle is α with respect
to an otherwise uniform velocity at infinity. Here, we confine α to a range between 0 and
90◦ taking account of the symmetry between the two cavities. The influence of the flow
field created by one cavity on the other cavity is taken into account asymptotically. The
main results we obtained are the following.

964 A6-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

31
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.312


Flow past two arbitrary spherical voids in granular material

(i) A uniform flow at infinity U∞ passing through the macroscopic cavities in an
otherwise homogeneous granular material locally focuses to respective cavities, so
that the velocity inside the cavities varies remarkably, whose magnitude depends
on the ratio ζ0 ≡ R0/

√
k, where R0 is the typical size of the cavity and k is the

permeability. It has been shown that the velocity at the centre of a single spherical
cavity vC

S amounts to as large as 6U∞ for ζ0 � 1. In the presence of two cavities
of equal size, we found that the flow inside the cavity is further enhanced if the
angle α is less than a critical angle αc(l), where αc = cos−1(1/

√
3) = 54.7356 · · ·

for l � a. The latter reflects the dipole characteristics of the flow field around
respective cavities. The amount of increment depends, besides ζ0, on α and the
distance l between the two cavities. Generally speaking, the velocity at the centre
of the cavity vC

a (or vC
b ) is largest at α = 0◦, and it amounts to e.g. 6.48U∞ for

l = 3a and ζ0 � 1, whereas it approaches 6U∞ as l increases (in agreement with
our previous calculation by Sano et al. 2022). On the other hand, if α is larger
than αc, the velocity at the centre of each cavity vC

a (or vC
b ) decreases owing to

the interfering interaction, such that the upstream-side fluid volume around them,
that would otherwise flow into respective cavities, overlaps. Accordingly a reduced
amount of fluid flows into the respective cavities. The latter effect is larger for smaller
l with α ≈ 90◦, and decreases with l. When the sizes of the two cavities are not equal,
the above-mentioned tendency is much enhanced in the smaller cavity, whereas the
influence is less remarkable in the larger cavity. For example, the velocity at the
centre of the smaller cavity vC

a becomes larger than 6.5U∞, whereas that of the
larger cavity vC

b remains at approximately 6U∞ for b/a = 2, l = 5 and α = 0◦. At
the same time, the flow direction at the centre of the smaller cavity θC

a changes
more than 5 degrees for b/a = 2, l = 5, α ≈ 50◦, whereas that of the larger cavity
θC

b remains almost unchanged. These results imply the stronger involvement of the
smaller cavity in the larger one.

(ii) The volume fluxes into respective cavities Qa and Qb were calculated based on our
asymptotic model. In particular, the configuration dependence is elucidated for two
cavities of equal size. The l − α contour map for the flux into upstream cavity Qa
and that for the downstream cavity Qb are qualitatively the same as those of the
velocity contour maps. Thus, the fluxes increase as l reduces for α < αc, whereas
they decrease as l reduces for α > αc. They attain more than 10 % increase of QS
for α = 0◦ as l approaches 2.5, where QS is the volume flux into a single spherical
cavity of the same radius a. (Note that QS = 3(πa2U∞), which is the volume flux
that a uniform flow U∞ passes through the single cavity for ζ0 � 1.) Meanwhile, a
more than 5 % decrease of QS is expected for α = 90◦ as l approaches 2.5. In either
case, the volume flux tends to QS with the increase of l. A closer look at Qa and Qb,
however, reveals that they are not symmetric with the exchange of positions of the
upstream and downstream cavities, in spite of the symmetry of the flow fields. The
former asymmetry occurs at a certain configuration, in which the stream tube that
flows into the downstream cavity is dilated, or constricted, toward the other cavity.
The corresponding change is not recognisable in the upstream cavity, because of the
negligibly small influence of the downstream cavity on the incoming flow into the
upstream cavity.

(iii) We calculated the velocity and stress fields both inside and outside of the spherical
cavities based on our asymptotic model. With regard to the collapse of the cavity,
the negative normal stress distribution on the cavity boundary −τrr is important.
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We found that the latter is proportional to the velocity at the centre of that cavity
vC, as well as the normal component at the boundary of respective cavities vB

r , as
far as the present approximation is concerned. This means that the configuration
dependence of the τB

rr distribution is qualitatively the same as that of vC or vB
r .

Thus, in the case of two cavities of equal size, configuration dependence is such
that the magnitude of the stress is larger when they are closer to each other and
positioned along the flow, whereas it is smaller when they are closer to each other and
arranged spanwise. The latter tendency changes at a critical angle αc, but becomes
indistinguishable as l increases. However, the dependence of its magnitude on the
size of the cavities is different. The latter can easily be understood by looking at the
asymptotic behaviours

(τB
a , vC

a , (vr)
B
a )

=
[

18
a

(
1 − 5

ζ0a
+ · · ·

)
, 6
(

1 − 5
2ζ0a

+ · · ·
)

, 1 − 30
(ζ0a)2 + · · ·

]
F(b, l, α),

(5.1)

where F(b, l, α) = 1 + (b/l)3 (3 cos2 α − 1) + · · · for ζ0a � 1. The configuration
dependence of stress on cavity Cb is similarly obtained by exchanging the roles of Ca
and Cb. Under fixed value of the cavity size and configuration, the magnitude of τB

a is
inversely proportional to the size of the cavity a, in contrast to the O(a0) dependence
of the peak values in vC

a and (vr)
B
a . In the presence of two cavities of radii a and

b with separation distance l, the magnitude of the stress on cavity Ca (radius a)
depends primarily on the cavity size a, followed by the effect of the other cavity at
the order of O((b/l)3) with amplitude proportional to the orientation 3 cos2 α − 1.

(iv) As mentioned before (Kaneko & Sano 2005; Sano & Nagata 2006a; Koizumi et al.
2009; Sano 2020; Sano et al. 2022), cavities will be destroyed if the fluid mechanical
force Ff exceeds the force Fg that keeps the structure at the boundary of the granular
material. Although the detailed mechanisms of transition and flows of granular
materials and/or dense suspensions are much complicated and material dependent,
Fg may be regarded as a certain constant once that material is given. Based on these
assumptions, we seek the critical velocity above which cavities are destroyed. To do
so, we calculate the force Ff exerted on a small but finite area of the front boundary
of the cavity by the viscous flow (in the x direction), which is given by the integral
of the stress τxr|r=a over the area of a few grain sizes. According to our present
analysis, the condition Ff ≥ Fg leads to the critical velocity U∞

c , which is inversely
proportional to the cavity size. Then, we can expect the collapse of larger cavities for
a slower stream, which breaks the cavities to a similar size, and nearby cavities along
the stream collapse and merge to create a long water channel. This mechanism may
be applied to civil engineering such as the prediction of landslides and the collapse
of river banks, and also to medical engineering such as new blood vessel creation
in an otherwise impermeable tissue (angiogenesis), etc., for which further research
work is awaited.

Appendix A. Note on the effective viscosity in the granular region

When we consider the flow of viscous fluid of viscosity μ through a granular
region of permeability k, the generalised Darcy equation is given by, corresponding
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to (2.1b),
μ

k
v∗ = −∇∗p∗ + μeΔ

∗v∗, (A1)

where μe is the effective viscosity in the granular region. If non-dimensionalised by
(2.2a–c), i.e.

x = x∗

R0
, v = v∗

U∞ , p = p∗

μU∞/R0
, (A2a–c)

(A1) becomes
(Δ − ζ 2

e )v = ∇p̃, (A3)

where

ζe =
√

μ

μe
ζ0,

(
ζ0 = R0√

k

)
, p̃ = μ

μe
p. (A4a–c)

Here, μe/μ is always larger than 1 in a suspension containing solid particles as has been
dealt with in this paper. This implies that effective value ζe is reduced by a factor of√

μ/μe (≤ 1). Pressure p is also reduced by a factor of μ/μe in the granular region.
General solutions of (A3) with continuity equation ∇ · v = 0 are of the same form as
(2.4a,b), (2.5a,b) and (2.6a,b). Inside the cavity, the flow is governed by the Stokes
equation

�v = ∇p, (A5)

in non-dimensional form, (which is the same as (2.3c). General solutions of (A5) with
continuity equation ∇ · v = 0 are of the same form as (2.9).

Based on these equations, we shall consider the flow through a single spherical cavity.
In terms of the spherical coordinate system, solutions in the granular region are given by
(2.13a,b), (2.14), (2.15), (2.16a,b) with ζ0 replaced by ζe, while p and τij are multiplied by
a factor of μ/μe. For example, pressure, (2.13), becomes

p̃ = μ

μe
p = μ

μe
ζ 2

0

(
−r + D(a)

r2

)
cos θ = ζ 2

e

(
−r + D(a)

r2

)
cos θ. (A6)

The above modifications apply to the coefficient C(a) and D(a), as well as
Δ0(a), Δ1(a), Δ2(a).

On the other hand, the flow inside the cavity is given by (2.17a,b), (2.18), (2.19) and
(2.20a,b). Matching of boundary conditions is also satisfied by replacing ζ0 with ζe in
A(a) and B(a). In the latter, however, p and τij are not multiplied by a factor of μe/μ.

As a consequence, streamlines are the same irrespective of μ/μe, except for replacing
ζ0 by ζe. (This implies that the flow field for any ζe is given by the one with

√
μ/μe times

the ζ0 in this paper.) The difference appears when we discuss the dynamical effect, such
as the criteria of the collapse of cavities.

Appendix B. Renormalisation of U∞

Throughout our analysis, we consider the effect of macroscopic cavities in an otherwise
uniform velocity U∞ at infinity. In the latter, a steady flow is maintained under a given
constant pressure gradient, which will be balanced by the solid friction between the
contacting grains as well as the fluid mechanical resistance force due to the constituent
particles. However, if we create cavities in an otherwise homogeneous material, the
above-mentioned force balance changes, so that the velocity may increase under the
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L0

S0 S0

V0 ( = S0L0)

V∗

�p �p′

L0

U∞ U

(a) (b)

Figure 17. Effect of cavity region in a homogeneous granular material.

same constant pressure gradient. Then, we need to consider the renormalisation of the
velocity and/or pressure at infinity. To see this, let us consider the flow in an otherwise
homogeneous granular material of length L0 along the flow direction and cross-section
S0 (figure 17a), where a uniform flow U∞ is maintained by a higher pressure �p at the
upstream end. Here, we omit the effect of the solid friction force between the contacting
grains for simplicity, and consider the resistance force f0 = μKU∞ from each of the
constituent grains, where μ is the viscosity of the fluid and K is the component of the
resistance tensor along the flow direction.

As far as the fluid mechanical resistance force is concerned, the force balance is given
as

�pS0 = −(V0n)f0 = −(L0S0n)μKU∞, (B1)

where n is the number density of the particles. From (B1), we have

U∞ = − �p
(L0n)μK

= − k
μ

�p
L0

, (B2)

where k = 1/(Kn) is regarded as the permeability of the material. Equation (B2) is the
well-known Darcy’s law. We now consider a void space (macroscopic cavity) of volume
V∗ (figure 17b), so that the pressure difference and the velocity at infinity change to �p′
and U′, respectively. Then, the force balance will be

�p′S0 = −(L0S0 − V∗)nμKU′. (B3)

From (B1) and (B3), we have

�p′

�p
=
(

1 − V∗

V

)
U′

U∞ , (V = L0S0). (B4)

In many experiments, the pressure difference is the controllable global quantity, because
the hydrostatic pressure difference between the inlet and outlet of the water channel with
granular bed is easier to set up. In the latter, the pressure difference is kept constant
irrespective of the presence of the cavity regions, so that we have a modified velocity
at infinity

U′ = U∞/

(
1 − V∗

V

)
. (B5)

As mentioned before, we assume that the undisturbed velocity far upstream U∞ is a
specified quantity in our theoretical model. This implies that we should renormalise the
velocity at infinity by multiplying a factor 1 − V∗/V , or by subtracting excessive amount of
velocity V∗/V , to adjust the flow to U∞(= 1). An accurate estimation of V∗/V , however,
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needs detailed examination taking into account the structure of the granular material,
which requires further research. Instead, the velocity renormalisation shown in the text,
where excessive amount of velocity is subtracted to achieve U∞(= 1), will suffice for
present purposes.

Appendix C. Comparison of numerical simulation with asymptotic analysis

In order to check the accuracy of our asymptotic analysis by an independent study, we
shall compare the flow field of our present work with our previous numerical simulation
(Sano & Nagata 2006a; Sano 2008). Because of the length limitation of the paper, only
the volume flux diagram similar to figure 13(a) of the present paper was shown in the
latter (Sano 2008), where numerical simulation on the flow field and pathlines in many
configurations, as well as their application to angiogenesis, were presented. The method
of numerical calculation was fully given in our previous paper (Sano & Nagata 2006a),
where the 2-D case was exemplified. As shown below, the method is applicable to both 2-D
and 3-D configurations with arbitrary shapes of cavities, although it is time consuming and
applies to individual situations. We considered the flow of a viscous fluid of viscosity μ

and density ρ in the test section, where N particles of the same size are placed randomly
and densely (with average porosity about 0.4) except for the macroscopic cavity regions.

As the governing equations of the fluid, we employed the two-fluid model derived by
Anderson & Jackson (1967), and calculated the locally averaged porosity ε, velocity u and
pressure p in the Eulerian description

∂ε

∂t
+ ∇ · (εu) = 0, (C1)

ρ

(
∂(εu)

∂t
+ ∇ · (εuu)

)
= −ε∇p + μ�u − F d. (C2)

Typical mesh size was 150 × 100 × 60 in the 3-D case. We took account of the collapse of
the cavity region, so that the velocity of each particle vp was determined in the Lagrangian
description

(m + m0)
dvp

dt
= F d + F l + F f , (C3)

where m is the mass of the particle, and m0 is the virtual mass. From the order estimation in
typical situations, the Basset term was found to be negligible. The force F l is approximated
from the lubrication theory between neighbouring particles, and F f is the frictional force
between the particles in contact (assuming a friction constant adjusted to the experimental
one). Meanwhile, we adopted the drag force F d proposed by Ergun (1952)

F d = −[150μ(1 − ε) + 1.75ρd|u − vp| × 1 − ε

ε3d2 (u − vp), (C4)

where d is the particle diameter. The number of particles was N = 80 000 ∼ 100 000. The
flow field was calculated by repeating the following procedures: (i) determine the porosity
from the locations of particles, (ii) estimate the force on the fluid by taking account of the
porosity and the velocity, (iii) compute the flow field and then (iv) calculate the movement
of each particle using (C3), which is allowed for |F d| larger than |F f |.

Figure 18 (white lines on blue background) is one of the examples of the streamlines
around two spherical cavities with orientation α = 60◦ (a = 1, l = 3, ε = 0.39), which
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a = 1, l = 3, α = 60˚

Figure 18. Comparison of numerical simulation with asymptotic analysis: streamlines around two spherical
cavities of equal size a = 1 in the plane passing their centres (l = 3, α = 60◦). White lines on blue background
denote numerical simulation and blue lines on white background denote asymptotic analysis.

was presented at ICTAM22 (Sano 2008). Here, positions of the particles are fixed, and
the locally averaged flow field in the plane passing the centre of the two cavities is
shown. The superposed blue lines on the white background are the ones calculated by
the present asymptotic analysis for the same configuration with ζ0 = 100. In the former,
the average porosity was ε = 0.39, which implies k = 10−6 ∼ 10−3 (cm2) in a gravel. In
the simulation, we chose d = 1 mm, and a = 30d = 3 cm, so that a/

√
k = 100 ∼ 3000,

which is comparable to our calculation with ζ0 = 100. Note that the ζ0 effect saturates
to the ζ0 = ∞ case for ζ0 above approximately 100, as shown in our previous papers.
Considering that the granular material was prepared by the random pouring of particles,
the flow field will have some fluctuation. In spite of this, the flow field obtained by
numerical simulation seems to agree satisfactorily with the one by our asymptotic theory.
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