
6

Fraı̈ssé Limits by the Pound

Fraı̈ssé sequences and their limits are universal constructions whose impact
on functional analysis and Banach space theory is not yet well appreciated.
There are very good expositions in which one can find the many subtleties and
applications of Fraı̈ssé constructions: an introduction to the basic algebraic
theory dealing exclusively with countable structures is in Hodges’ treatise
[214, Chapter 7], but even Pestov [385, Section 6.5] can serve that purpose;
Kubiś paper [308] develops a wide variety of examples in various areas,
including universal algebra, continuum theory and general topology; Lupini’s
paper [342] has a more functional analysis orientation. Our rather pedestrian
approach is aimed to the construction and study of two concrete examples:
the p-Gurariy space Gp, a separable p-Banach space of almost universal
disposition, and the p-Kadec space Kp, a separable p-Banach space of almost
universal complemented disposition with a 1-FDD. In a sense, they are the
same object in different categories: Gp is the Fraı̈ssé limit in the category
of finite-dimensional p-Banach spaces and isometric embeddings, and Kp

is the Fraı̈ssé limit in a related category whose morphisms are pairs of
maps (a contractive embedding and a projection) between finite-dimensional
p-Banach spaces whose ‘separable’ objects (those arising as inductive limits of
sequences of finite-dimensional ones) are spaces with 1-FDD. Let us present
a comparison table of their similarities and different structural properties, even
if we are well aware that some entries might be unintelligible at this moment:
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288 Fraı̈ssé Limits by the Pound

Gp Kp

AUD AUCD
Isometrically unique Isometrically unique

Fraı̈ssé limit of isometries Fraı̈ssé limit of contractive pairs
Trivial dual if p < 1 Separating dual for all p

Locally injective in pB No
L∞-space when p = 1 Never

BAP only if p = 1 1-FDD for all p
Almost isotropic for all p Only if p = 1
Universal for separable Complementably universal for

p-Banach spaces separable p-Banach with BAP

6.1 Fraı̈ssé Classes and Fraı̈ssé Sequences

A category C has the amalgamation property if each diagram of the form

B B
%%

A

99

%%
fits into a commutative diagram A

99

%%
D

C C

99

and has the joint embedding property if, given two objects A, B, there is C ∈ C
such that both A and B have morphisms into C:

A
%%
C

B

99

An object of C is initial if there is a unique morphism from it to any other object
in C. Any category with an initial object I and the amalgamation property
has the joint embedding property: just amalgamate the morphisms I −→ A
and I −→ B. It is clear the categories pB and Q have the joint embedding
and amalgamation properties since direct sums and pushouts can be used to
construct the required diagrams. Much more relevant for the purposes of this
chapter is that the same is true, for each 0 < p ≤ 1, for the ‘isometric’
subcategory of pB in which arrows are isometries and for the contractive
subcategory pB1, as Lemma 2.5.2 says. The space 0 is initial in all these
categories.
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6.1 Fraı̈ssé Classes and Fraı̈ssé Sequences 289

Proposition 6.1.1 Let C be a countable category (countable objects, count-
able arrows) having the amalgamation and joint embedding properties. Then
there is a sequence of morphisms un : Cn −→ Cn+1 such that

(a) if A is an object of C then there is n such that Hom(A,Cn) , ∅;
(b) if v : Cn −→ A is a morphism of C then there is m > n and a morphism

w : A −→ Um such that w ◦ v is the bonding morphism Un −→ Um.

Proof Since there are only countable many morphisms in C, we can take a
sequence ( fn, kn) passing through all the pairs of the form ( f , k), where f is a
morphism of C and k ∈ N is a ‘control number’, in such a way that each ( f , k)
appears infinitely many times. The sequence (un) is constructed by induction,
starting with any morphism. If C has an initial object, choose any morphism
whose domain is the initial object to start. Having defined un−1 : Un−1 −→ Un,
we take a look at ( fn, kn), with fn : A −→ B and control number kn. If either
kn ≥ n or the ‘domain’ of fn (the object A) is not Ukn just wait: set Un+1 = Un

and take un as the identity of Un. Otherwise, kn < n and the domain fn is Ukn .
Thus we have two morphisms with domain A = Ukn , namely the ‘bonding
morphism’ ı(kn,n) : Ukn −→ Ukn+1 −→ · · · −→ Un and fn itself. Since C has the
amalgamation property, these fit into a commutative diagram

Ukn = A
fn //

bonding morphism

��

B

whatever
��

Un
f ′n // C

Then, setting Un+1 = C and un = f ′n completes the induction step. Let us check
that the resulting sequence (un)n≥1 has the required properties. It is clear that
(a) follows from (b) and the joint embedding property, so let us prove (b). Let
f : Un −→ A be a morphism. Take m > n such that ( fm, km) = ( f , n). Then
the (m − 1)th morphism of the sequence (un)n≥1 arose from the amalgamation
diagram

Ukm = Un
f //

ı(n,m−1)

��

A

ı(n,m−1)′

��
Um−1

ım−1= f ′ // Um

It follows that ı′(n,m−1) ◦ f = ı(n,m−1) ◦ ım−1 = ı(n,m) is the bonding morphism
Un −→ Um. �
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290 Fraı̈ssé Limits by the Pound

A sequence of morphisms satisfying the conditions of the proposition is
called a Fraı̈ssé sequence. The diagram

C1 // C2 // · · · // Cn //

&&

· · · // Cm // · · ·

A

88

illustrates the relevant property of Fraı̈ssé sequences.

6.2 Almost Universal Disposition

Fix p ∈ (0, 1] once and for all. All reasoning that follows is independent of
the actual value of p, but it is required that p be the same everywhere. A
p-Banach space X is said to be of almost universal disposition (AUD) if, given
finite-dimensional p-normed spaces E, F and isometries u : E −→ X, v : E −→
F, for each ε > 0, there is an ε-isometry w : F −→ X such that u = wv.
Diagramatically,

E
isometry //

isometry ��

F

ε-isometry��
X

(6.1)

To be precise, one should speak of spaces of almost universal disposition for
finite-dimensional p-Banach spaces, but let it stand. It is clear that assuming
either that E is a subspace of X (and u is plain inclusion) or that E is a subspace
of F (and v the inclusion) leads to equivalent formulations, a fact that will be
used without further mention. The property of AUD was first considered for
Banach spaces by Gurariy, who constructed the separable Banach space G that
bears his name in 1966. Its general p-version is:

Theorem 6.2.1 For each p ∈ (0, 1] there exists a unique, up to isometries,
separable p-Banach space of almost universal disposition.

This space will be constructed, according to the general plan of the chapter,
as the limit of a Fraı̈ssé sequence of isometries between finite-dimensional
spaces. It can also be constructed using the Device to obtain a ‘countable and
finite-dimensional’ version of 2.13.1. Spaces of (almost) universal disposition
will be encountered again in Section 7.3 and Note 7.5.4.

From Rational p-Norms to Allowable Isometries

We define now a countable category admitting amalgamations and whose
morphisms are a family of isometries that is ‘dense’ among all isometries.
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A point x ∈ Kn is said to be rational if all its coordinates are rational. When
K = C, this means that both the real and imaginary parts are rational numbers.
A linear map f : Kn −→ Km is said to be rational if it carries rational points
into rational points. A rational p-norm on Kn is one whose unit ball is the
p-convex hull of a finite set of rational points. Thus, a rational p-norm is given
by the formula

|x| = inf


∑

i

|λi|
p

1/p

: x =
∑

i

λixi


for some finite set x1, . . . , xn of rational points. For each n ∈ N, let Nn be the set
of all p-norms on Kn, where K0 is understood as 0, and set N =

⋃
n≥0 Nn. We

recursively define a class of p-norms which, in the absence of an awe-inspiring
name, we call ‘allowed p-norms’ (formally, a subset of N), as follows:

(a) Each rational p-norm is allowed.
(b) If f : Kn −→ Km is rational and injective and | · | is an allowed p-norm on

Km then ‖x‖ = | f (x)| is an allowed p-norm on Kn.
(c) If f : Kn −→ Km is rational and surjective and | · | is an allowed p-norm on

Kn then ‖y‖ = inf |x| : y = f (x) is allowed on Km.
(d) If | · |1 and | · |2 are allowed p-norms on Kn and Km, respectively, then the

p-sum ‖(x, y)‖ =
(
|x|p1 + |y|p2

)1/p is allowed on Kn+m.
(e) If | · |1 and | · |2 are allowed p-norms on Kn and Km, respectively, then the

direct product ‖(x, y)‖ = max(|x|1, |y|2) is an allowed p-norm on Kn+m.
(f) If | · |1 and | · |2 are allowed p-norms on Kn and Km, respectively, and

f : Kn −→ Km is a rational map then the following p-norm is allowed on
Km for every rational number ε > 0:

‖y‖ = inf
{(
|x|p1 + (1 + ε)p|z|p2

)1/p
: y = f (x) + z, x ∈ Kn, g ∈ Km

}
.

An allowed space is just the direct product of finitely many copies of
the ground field furnished with an allowed p-norm. Finally, we declare an
isometry u : E −→ F allowable if E and F are allowed p-normed spaces and
u is rational. Conditions (a) to (f) enable us to perform the basic categorical
constructions within the allowable category, as we will see along this chapter.

Lemma 6.2.2 There is a Fraı̈ssé sequence of allowable isometries.

Proof We need only check that the countable category of allowable isome-
tries with initial object 0 admits amalgamations. The proof offers a good
opportunity to review the pushout construction. Let f : E −→ F and g : E −→
G be allowable isometries. This means that E, F,G are Kk,Kn,Km equipped
with allowed p-norms and with both f and g rational. Condition (d) implies
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292 Fraı̈ssé Limits by the Pound

that F ⊕p G is an allowed space and the map ( f ,−g) : E −→ F ⊕p G is rational
and injective. Let (ei)1≤i≤k be the unit basis of E and let

( f1, . . . , fk, fk+1, . . . , fn) and (g1, . . . , gk, gk+1, . . . , gm)

be rational bases of F and G with fi = f (ei) and gi = g(ei) for 1 ≤ i ≤ k.
Clearly,

( f1 − g1, . . . , fk − gk, f1 + g1, . . . , fk + gk fk+1, . . . , fn, , gk+1, . . . , gm)

is a rational basis of F ⊕p G = Kn+m which we relabel as (v1, . . . , vk, . . . , vn+m).
We define a rational map h : F ⊕p G −→ Kn+m−k by h

(∑
1≤i≤n+m civi

)
=

(ck+1, . . . , cn+m). Let H be Kn+m−k equipped with the p-norm

‖x‖ = inf
{
‖y‖ : x = h(y), y ∈ F ⊕p G

}
,

which is allowed by (c). One has the commutative diagram

E
f //

g

��

F

g
��

G
f // H

with f and g allowable since they are the inclusions of G and F into F ⊕p G
followed by h. �

The isometric pushout diagram just constructed has the following additional
property: for every pair of rational maps g′ : F −→ Kr and f ′ : G −→ Kr such
that g′ f = f ′g, there is a unique rational map h : H −→ Kr such that hg = h f :

E
f //

g

��

F

g
�� g′

��

G
f //

f ′

//

H
h

%%
Kr

Thus, the allowable category has both amalgamations and pushouts.

Proof of Theorem 6.2.1: Existence

Let us fix a Fraı̈ssé sequence of allowable isometries

U1 // U2 // · · · // Un // Un+1 // · · · (6.2)

and prove that the direct limit U of that sequence in pB is a space of AUD. We
can identify each Uk with its image in U so that one can assume U =

⋃
k≥1 Uk.
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6.2 Almost Universal Disposition 293

To understand why the Fraı̈ssé character of the sequence (6.2) entails the AUD
of its limit, pick an isometry E −→ F between finite-dimensional spaces and
an isometry E −→ U. Assume first that we have been so lucky that v : E −→ F
is allowable and E −→ U is the composition of an allowable isometry u : E −→
Un and the inclusion Un −→ U. Since (6.2) is Fraı̈ssé, amalgamating u and v
within the allowable category yields a commutative diagram

U0 // U1 // · · · // Un //

%%

· · · // Um // · · ·

E

99

%%

H

99

F

99

so that the required extension of u is even an isometry in this case. Before
passing to the general case, let us perform a couple of mathematical asanas
to gain some flexibility. The first one is just to relax the commutativity of
Diagram 6.1:

Lemma 6.2.3 Let E be a finite-dimensional subspace of a p-Banach space X,
and let F be a finite-dimensional p-Banach space. Assume that for every ε > 0
and every isometry v : E −→ F, there is an ε-isometry w : F −→ X such that
‖w(v(x)) − x‖ ≤ ε‖x‖ for all x ∈ X. Then X is of almost universal disposition.

Proof This obviously follows from the fact that if H is a basis of E then for
every ε > 0 there is δ (depending on ε and H ) such that if u : E −→ X is a
linear map with ‖u(b)‖ ≤ δ for every b ∈H then ‖u‖ ≤ ε. �

The second one is to open the no-brainer chakra: allowable isometries are
‘dense’ among all isometries between finite-dimensional spaces.

Lemma 6.2.4 Let u : E −→ F be an isometry where E is an allowed space
and F is a finite-dimensional p-normed space. For each ε > 0, there is an
allowable isometry u0 : E −→ F0 and a surjective ε-isometry g : F −→ F0

such that u0 = g u.

Proof We may assume that ε is rational. Let (ei)1≤i≤n be the unit basis of
E = Kn and pick ( f j)1≤ j≤m such that {u(e1), . . . , u(en), f1, . . . , fm} is a basis of
F. Let g : F −→ Kn+m be the isomorphism associated to that basis and take a
rational p-norm | · |0 on Kn+m making g an ε-isometry such that (1 + ε)−1‖y‖ ≤
|g(y)|0 ≤ (1 + ε)‖y‖. Then u0 = g u is a rational ε-isometry: in fact, u0(x) =

(x, 0). We define a new p-norm on Kn+m by the formula

|y| = inf
{(
‖x‖p + (1 + ε)p|z|p0

)1/p
: y = u0(x) + z, x ∈ Kn, z ∈ Kn+m

}
.

Note that the unit ball of | · | is just the p-convex hull of the union of the unit
ball of ‖ · ‖ and the ball of radius (1 + ε)−1 of ‖ · ‖0. This p-norm satisfies the
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estimate (1+ε)−1|y|0 ≤ |y| ≤ (1+ε)|y|0 for y ∈ Kn+m, has to be allowed on Kn+m

(by the last allowance rule) and makes u0 into an isometry, which is therefore
allowable. Hence, if F0 is Kn+m equipped with | · |, we have (1 + ε)−2‖y‖ ≤
|g(y)| ≤ (1 + ε)2‖y‖ for y ∈ F. �

We are now ready to handle the general case and show that U satisfies the
hypothesis of Lemma 6.2.3. Let F be a finite-dimensional p-Banach space,
v : E −→ F an isometry and E a subspace of U. Fix ε > 0. Since

⋃
k Uk is

dense in U, there is a contractive ε-isometry uε : E −→ Un, for n sufficiently
large, such that ‖uε(x) − x‖ ≤ ε‖x‖ for all x ∈ E. Form the pushout in pB,

E
uε //

v
��

Un

v
��

F
uε // PO

so that uε is again a contractive ε-isometry, while v is an isometry to which
Lemma 6.2.4 can be applied to find an allowable isometry v0 : Un −→ F0

together with a surjective ε-isometry g : PO −→ F0 such that v0 = gv. Finally,
the Fraı̈ssé character of (6.2) guarantees that for some m > n, there is an
allowable w0 : F0 −→ Um such that w0v0 is the inclusion of Un into Um. The
full picture appears in the commutative diagram

U1 // · · · // Un //
v0

))v ##

· · · // · · · // Um // · · ·

E
uε

<<

v

##

PO g
// F0

w0

;;

F

uε
;;

By letting w = w0guε, we obtain a contractive 3ε-isometry extending uε and
so ‖w(x) − x‖ ≤ ε‖x‖ for x ∈ E.

Proof of Theorem 6.2.1: Uniqueness

Is it not almost obvious that any two separable p-Banach spaces of almost
universal disposition are almost isometric? That is, that for each ε > 0,
there is a surjective ε-isometry between them. Proposition 6.2.10 provides an
explicit proof, just in case it is not clear. Much more surprising is that they are
actually isometric, which we are going to prove now. Our approach to isometric
properties of spaces of AUD depends one way or another on the following pair
of lemmas:
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Lemma 6.2.5 Fix ε ∈ (0, 1). Let X and Y be p-normed spaces and let
ı : X −→ X ⊕ Y and  : Y −→ X ⊕ Y be the canonical inclusions. If f : X −→ Y
is an ε-isometry then there is a p-norm on X⊕Y for which ı and ı are isometries
such that ‖  f − ı ‖ ≤ ε.

Proof The p-norm that does the trick is

‖(x, y)‖ = inf
{(
‖x0‖

p
X + ‖y1‖

p
Y + εp‖x2‖

p
X

)1/p
: (x, y) =

(
x0 + x2, y1 − f (x2)

)}
.

We must check that ‖(x, 0)‖ = ‖x‖X for all x ∈ X. The inequality ‖(x, 0)‖ ≤ ‖x‖X
is obvious. For the converse, suppose x = x0 + x2 and y1 = f (x2). Then

‖x0‖
p
X + ‖y1‖

p
Y + εp‖x2‖

p
X = ‖x0‖

p
X + ‖ f (x2)‖pY + εp‖x2‖

p
X

≥ ‖x0‖
p
X + (1 − ε)p‖x2‖

p
X + εp‖x2‖

p
X

= ‖x0‖
p
X + ‖(1 − ε)x2‖

p
X + ‖εx2‖

p
X

≥ ‖x‖pX .

Next we prove that ‖(0, y)‖ = ‖y‖Y for every y ∈ Y . That ‖(0, y)‖ ≤ ‖y‖Y
is again obvious. To prove the reversed inequality, assume x0 + x2 = 0 and
y = y1 − f (x2). As t → tp is subadditive on R+ for p ∈ (0, 1], we have

‖x0‖
p
X + ‖y1‖

p
Y + εp‖x2‖

p
X = ‖x2‖

p
X + ‖y1‖

p
Y + εp‖x2‖

p
X

= ‖y1‖
p
Y + (1 + εp)‖x2‖

p
X

≥ ‖y1‖
p
Y + (1 + ε)p‖x2‖

p
X

≥ ‖y1‖
p
Y + ‖ f (x2)‖pY

≥ ‖y‖pY .

Finally, ‖  f − ı‖ = sup‖x‖≤1 ‖ ( f (x)) − ı(x)‖ = sup‖x‖≤1 ‖(−x, f (x))‖ ≤ ε. �

The indulgent reader will forgive us if, for the remainder of the chapter, we
use the notation X� ε

f Y for the space X⊕Y endowed with the quasinorm defined
in the preceding proof. This quasinorm depends on f and ε and also on p, but
this should cause no confusion. A linear operator f : X −→ Y will be called a
strict ε-isometry if (1 + ε)−1‖x‖X < ‖ f (x)‖Y < (1 + ε)‖x‖X for 0 < ε < 1 and
every non-zero x ∈ X. When X is finite-dimensional, every strict ε-isometry is
an η-isometry for some η < ε.

Lemma 6.2.6 Let U be a p-Banach space of almost universal disposition. Let
Y be a finite-dimensional p-Banach space, X a subspace of U and ε ∈ (0, 1). If
f : X −→ Y is a strict ε-isometry then for each δ > 0, there exists a δ-isometry
g : Y −→ U such that ‖g( f (x)) − x‖ < ε‖x‖ for every non-zero x ∈ X.
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296 Fraı̈ssé Limits by the Pound

Proof Choose 0 < η < ε for which f is an η-isometry. Reducing δ if neces-
sary, we may assume that δp + (1 + δ)pηp < εp. Form the space X� η

f Y and let
ı : X −→ X � η

f Y and  : Y −→ X � η
f Y denote the canonical inclusions so that

‖  f − ı‖ ≤ η. If h : X� η
f Y −→ U is a δ-isometry such that ‖h(ı(x))− x‖ ≤ δ‖x‖

for x ∈ X then g = h  is a δ-isometry from Y into U and

‖x − g( f (x))‖p ≤ ‖x − h(ı(x))‖p + ‖h(ı(x)) − h( ( f (x))‖p

≤ δp‖x‖p + (1 + δ)p‖ı(x) − ( f (x))‖p

≤ (δp + (1 + δ)pηp)‖x‖p < εp‖x‖p. �

We need a technique to ‘paste’ operators defined on a chain of subspaces.
Let A and B be p-Banach spaces and (An) a chain of subspaces whose union
is dense in A. Let an : An −→ B be a sequence of operators such that
‖an+1|An − an‖ ≤ εn, where

∑
n ε

p
n < ∞, with supn ‖an‖ < ∞. For each x ∈ Ak,

the Cauchy sequence (an(x))n≥k converges in B so there is a unique operator
a : A −→ B such that a(x) = limn≥k an(x) whenever x is in some Ak. This
operator shall be referred to as the pointwise limit of the sequence (an). The
following remarkable result completes the proof of Theorem 6.2.1.

Proposition 6.2.7 Fix ε ∈ (0, 1). Let U,V be separable p-Banach spaces
of almost universal disposition, and let X be a finite-dimensional subspace of
U. If f : X −→ V is a strict ε-isometry then there exists a bijective isometry
h : U −→ V such that ‖h(x) − f (x)‖ ≤ ε‖x‖ for every x ∈ X. In particular, U
and V are isometric.

Proof Fix 0 < ε0 < ε such that f is an ε0-isometry. Let (εn)n≥1 be any
decreasing sequence of positive numbers with ε1 < ε0. We inductively define
sequences of linear operators ( fn), (gn) and finite-dimensional subspaces (Xn),
(Yn) of U and V , respectively, such that the following conditions are satisfied
for every n ≥ 0:

(0) X0 = X, Y0 = f [X], and f0 = f ;
(1) fn : Xn −→ Yn is an εn-isometry;
(2) gn : Yn −→ Xn+1 is an εn+1-isometry;
(3) ‖gn fn(x) − x‖ < εn‖x‖ for every non-zero x ∈ Xn;
(4) ‖ fn+1gn(y) − y‖ < εn+1‖y‖ for every non-zero y ∈ Yn;
(5) Xn ⊂ Xn+1, Yn ⊂ Yn+1,

⋃
n Xn and

⋃
n Yn are dense in U and V , respectively.

We use (0) to start the inductive construction. Suppose that fi, Xi, Yi, for i ≤ n,
and gi for i < n, have been constructed. Applying Lemma 6.2.6 twice, we find
gn, Xn+1, fn+1 and Yn+1. To guarantee that (5) holds, we may start by choosing
sequences (xn) and (yn) dense in U and V , respectively, and then require first
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that Xn+1 contain both xn and gn[Yn] and then that Yn+1 contain both yn and
fn+1[Xn+1]. After that, fix n ≥ 0 and x ∈ Xn with ‖x‖ = 1. Using (4) and (1), we
get ‖ fn+1gn fn(x) − fn(x)‖ < εn+1‖ fn(x)‖ ≤ εn+1(1 + εn), while (3) and (2) yield
‖ fn+1gn fn(x) − fn+1(x)‖ ≤ ‖ fn+1‖ ‖gn fn(x) − x‖ < (1 + εn+1)εn Combining,

‖ fn(x) − fn+1(x)‖p ≤ ‖ fn+1gn fn(x) − fn(x)‖p + ‖ fn+1gn fn(x) − fn+1(x)‖p

≤ ε
p
n+1(1 + εn)p + (1 + εn+1)pε

p
n . (6.3)

If we agree that (εn)n≥1 was chosen so that∑
n≥0

(
ε

p
n+1(1 + εn)p + (1 + εn+1)pε

p
n

)
< εp, (6.4)

then ( fm(x))m≥n is a Cauchy sequence. We define h(x) = limm≥n fm(x) for
x ∈

⋃
n Xn. This h is an isometry since it is an εn-isometry for every n.

Consequently, it extends to an isometry U −→ V , which we do not relabel.
Furthermore, (6.3) and (6.4) imply ‖ f (x) − h(x)‖p ≤

∑∞
n=0 ‖ fn(x) − fn+1(x)‖p ≤

εp‖x‖p for x ∈ X. It remains to see that h is a bijection. To this end, we check
as before that (gn(y))n≥m is a Cauchy sequence for every y ∈ Ym. Once this is
done, we obtain an isometry g : V −→ U. Conditions (3) and (4) inform us that
gh = 1U and hg = 1V . �

Let us denote (the isometric type of) this unique space Gp and call it the
p-Gurariy space; when p = 1, we obtain the original Gurariy space, denoted G.
Proposition 6.2.7 establishes that the spaces Gp are almost isotropic, in
the sense that given x, y ∈ Gp with ‖x‖ = ‖y‖ = 1 and ε > 0, there is a bijective
isometry f of Gp such that ‖y − f (x)‖ ≤ ε. The next section uncovers some
additional properties that Gp shares with all spaces of AUD.

Extension of Operators and Automorphisms

The second lesson we will learn in the forthcoming Section 7.1 is that
extending operators to operators does not mean extending isomorphisms to
isomorphisms. Even so, the first lesson is that extending isometries means
extending operators. Thus, the AUD notion, which is more demanding than
local injectivity or the forthcoming UFO (Definition 7.1.3), imposes severe
restrictions on the extension of both operators and automorphisms.

Proposition 6.2.8 Every p-Banach space U of AUD:

(a) is locally 1+-injective; for p = 1, this means that it is a Lindenstrauss space,
(b) contains an isometric copy of each separable p-Banach space.
(c) Moreover, if p < q ≤ 1 then L(U,Y) = 0 for all q-Banach spaces Y; in

particular, U has trivial dual.
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Proof Part (a) is a dirty pushout trick. Assume τ : E −→ U is contractive and
that U is of almost universal disposition. Look at the diagram

E τ //

inclusion

��

τ[E]

isometry

��

inclusion

)) U

F contraction // PO
ε-isometry

44

and draw your own conclusions. Part (b) can be derived by iteratively applying
Proposition 6.2.6: let X be a separable p-Banach space, and let (Xn)n≥1 be a
chain of finite-dimensional subspaces whose union is dense in X. Then there
is a sequence fn : Xn −→ U in which fn is a strict 2−n-isometry such that
‖ fn+1|Xn − fn‖ < 2−n. The pointwise limit of these operators is an isometry of X
into U. To prove (c), we first prove that, given a normalised x ∈ Gp and ε > 0,
there are x′ε, x

′′
ε ∈ Gp such that x = x′ε + x′′ε with ‖x′ε‖, ‖x

′′
ε ‖ ≤ (1 + ε)2−1/p.

Indeed, consider the isometry u : [x] −→ Gp given by plain inclusion and the
isometry v : [x] −→ `2

p given by v(x) = 2−1/p(1, 1). Let w : `2
p −→ Gp be any

ε-isometry extending u, and set x′ε = 2−1/pw(1, 0) and x′′ε = 2−1/pw(0, 1). That
done, the proof goes as in the Lp case in 1.1.5: if u : Gp −→ Y is an operator
and ‖x‖ = 1, then taking ε > 0 and x′ε, x

′′
ε ∈ Gp as before, we have

‖ux‖ ≤
(
‖ux′ε‖

q + ‖ux′′ε ‖
q)1/q

≤ (1 + ε)21−q/p‖u‖.

Since x and ε are arbitrary, ‖u‖ ≤ 21−q/p‖u‖, which is only possible if u = 0. �

Lemma 6.2.9 Let A be a finite-dimensional subspace of a space U of AUD
and let B be finite-dimensional. If g : A −→ B is an embedding then for each
ε > 0, there is an embedding f : B −→ U such that f (g(a)) = a for every a ∈ A
with ‖ f ‖ ≤ (1 + ε)‖g−1‖ and ‖ f −1‖ ≤ (1 + ε)‖g‖.

Proof We use an even dirtier trick than before. In less than no time, the reader
will realise that one can assume ‖g−1‖ = 1. To ease notation, we will write
h = g−1. Let us take the pushout with the inclusion g[A] −→ B as follows:

g[A] ı //

h
��

B

h
��

A ı // PO

It is clear that ı is an isometry and ‖h−1‖ = ‖g‖ ≥ 1. By Lemma 2.5.2, ı is an
isometry and h is an embedding with ‖h‖ ≤ 1 and ‖(h)−1‖ ≤ ‖h−1‖ = ‖g‖. Now
let w : PO −→ U be an ε-isometry such that wı(a) = a for all a ∈ A. Then
f = wh is an embedding which obviously satisfies f g(a) = a, for all a ∈ A,
and ‖ f ‖ ≤ (1 + ε). Moreover, ‖ f −1‖ ≤ ‖(h)−1‖‖w−1‖ ≤ ‖g‖(1 + ε). �
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Proposition 6.2.10 Let U and V be separable spaces of AUD. Let A ⊂ U
and B ⊂ V be finite-dimensional subspaces. If ϕ0 : A −→ B is an isomorphism
then, for each ε > 0, there is an isomorphism ϕ : U −→ V extending ϕ0 and
such that ‖ϕ‖ ≤ (1 + ε)‖ϕ0‖ and ‖ϕ−1‖ ≤ (1 + ε)‖ϕ−1

0 ‖.

Proof The result follows from Lemma 6.2.9 and a simple back-and-forth
argument. Let (εn)n≥0 be a sequence of positive numbers such that

∏
n(1+εn) ≤

1 + ε, and write U =
⋃

n Un, where (Un) is an increasing sequence of finite-
dimensional subspaces of U beginning with U0 = A. Moreover, let (Vn) be an
increasing sequence of finite-dimensional subspaces of V such that V =

⋃
n Vn,

with V0 = B. Let ϕ0 : A −→ B be an isomorphism. By Lemma 6.2.9, let
ψ1 : V1 −→ U be an extension of ϕ−1

0 : ϕ0[U0] −→ U, with ‖ψ1‖ ≤ (1+ε1)‖ϕ−1
0 ‖

and ‖ψ−1
1 ‖ ≤ (1 + ε1)‖ϕ0‖. Then let ϕ2 : ψ1[V1] + U2 −→ V be an extension of

ψ−1
1 : ψ1[V1] −→ V such that ‖ϕ2‖ ≤ (1 + ε2)‖ψ−1

1 ‖ and ‖ϕ−1
2 ‖ ≤ (1 + ε2)‖ψ1‖

provided by Lemma 6.2.9. Continuing in this way, one obtains a pair of
operators ϕ, ψ such that ψϕ = 1U , ϕψ = 1V , with ‖ϕ‖ ≤ (1 + ε)‖ϕ0‖ and
‖ψ‖ ≤ (1 + ε)‖ϕ−1

0 ‖ and ϕ|A = ϕ0. �

6.3 Almost Universal Complemented Disposition

The following notion is a kind of almost universal disposition focused only
on 1-complemented subspaces; another possibility, considered in [116], is to
additionally require that the projections be, in some sense, ‘compatible’.

[a] If F is a finite-dimensional p-normed space, E is a 1-complemented
subspace of F and u : E −→ X is an isometry with 1-complemented
range, then for every ε > 0, there is an ε-isometry F −→ X with (1 + ε)-
complemented range extending u.

To properly frame it, we will consider the structure of embedding and
projection as a whole.

Categories of Pairs

We will find it convenient to use the notation u : E // Foo for pairs u =

〈u[, u]〉 consisting of operators u[ : E −→ F and u] : F −→ E such that
u]u[ = 1E . Thus, u[ is an embedding of E into F and u] is a projection
along u[. It is to be understood that the ‘solid’ arrow represents the embedding
part u[ and the ‘dotted’ arrow is the projection part u], so that the space E is
the ‘domain’ of u and F is the ‘codomain’. Our explanation for this musical
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notation is that the reader should think of flat and sharp keys on a piano as
modulations of the same note (in this case, the arrow). The composition of
u : E // Foo and v : F // Goo is, as one would expect, v◦u = 〈v[u[, u]v]〉.
We measure the ‘size’ of a pair by taking ‖u‖ = max

(
‖u[‖, ‖u]‖

)
. Note that

‖u‖ ≥ 1 (unless E = 0) and that ‖u‖ ≤ 1 + ε implies that u[ is an ε-isometry.
If ‖u‖ = 1 (or u = 0), we say that u is contractive. Finally, we declare
a contractive pair u : E // Foo to be allowable if E and F are allowed
p-normed spaces and both u[ and u] are rational maps. Clearly, the allowable
pairs form a countable category.

Definition 6.3.1 A p-normed space X is said to be of almost universal
complemented disposition (AUCD) if, for all contractive pairs u : E // Xoo

and v : E // Foo with F a finite-dimensional p-normed space, and every
ε > 0, there exists a pair w : F // Xoo such that u = w ◦ v and ‖w‖ ≤ 1 + ε.

The situation is illustrated by the following diagram in which both the solid
arrows (embeddings) and the dotted arrows (projections) commute:

E
v[ //

u[

$$

F
v]

oo

w[

zzX

w]

::

u]

dd (6.5)

Hence, the AUCD property is formally stronger than [a]. Note that, according
to our definitions, the ‘null pair’ 0 // Foo is contractive. Thus, spaces with
trivial dual are excluded from Definition 6.3.1 and do not have property [a].

Amalgamating Pairs

We now establish that pairs have the amalgamation property.

Lemma 6.3.2 Given pairs u : E // Foo and v : E // Goo there are
pairs u = 〈u[, u]〉 and v = 〈v[, v]〉 such that the following diagram commutes:

E
u[ //

v[

��

F
u]

oo

v[

��
G

v]

OO

u[ // H
u]

oo

v]

OO

Moreover,

• if u and v are contractive then so are u and v;
• if u is contractive and ‖v[‖ ≤ 1 then u is contractive and ‖v]‖ ≤ ‖v]‖;
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• if u and v are allowable pairs then u and v can be taken to be allowable.

Proof The proof is based on the isometric properties of the pushout construc-
tion presented in Section 2.5. We start with u[ and v[ so that H = PO is their
pushout space and obtain the commutative diagram

E u[ //

v[

��

F

v[

��
G u[ // PO

(6.6)

The projection u] is provided by the universal property of the pushout applied
to the operators 1G, v[u]:

E u[ //

v[

��

F

v[

�� v[u]

��

G u[ // PO
u]

''
G1G

while v] is obtained from 1F and u[v]. We have (see Lemma 2.5.2) that

• ‖u[‖, ‖v[‖ ≤ 1,
• ‖u]‖ ≤ ‖v]‖ ‖u[‖,
• ‖v]‖ ≤ ‖u]‖ ‖v[‖,
• u]u[ = 1G, that is, u = 〈u[, u]〉 is a pair,
• v]u[ = u[v],
• v]v[ = 1F , that is, v = 〈v[, v]〉 is a pair,
• u]v[ = v[u].

It only remains to check that the projections commute, that is, u]v] = v]u].
This follows from the uniqueness part of the universal property of the pushout
construction: since u]u[ = v]v[ (they are the identity on E), there must be a
unique operator γ : PO −→ E making the following diagram commute:

E u[ //

v[

��

F

v[

�� u]

��

G u[ //

v]

00

PO
γ

'' E
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Since both u]v] and v]u] can be chosen for γ, they agree. This also proves the
first two ‘moreover’ statements. To prove the third one, just use the allowable
version of the pushout that appears in Lemma 6.2.2. �

Correction and Approximation

Before putting Fraı̈ssé to work, let us state and prove three useful correction
and approximation techniques that greatly simplify the manipulation of pairs.
Before even that, we make the simple observation that every isomorphism
f : X −→ Y can be understood as part of a pair 〈 f , f −1〉 : X // Yoo .

Lemma 6.3.3 Let E be a finite-dimensional subspace that is complemented
by a projection P in a p-Banach space X, and let e1, . . . , ek be a normalised
basis of E. For every ε > 0, there is δ > 0, depending on ε, ‖P‖ and the chosen
basis, such that if xi ∈ X satisfy ‖ei − xi‖ < δ for 1 ≤ i ≤ k then the linear map
f : X −→ X given by

f (x) =

xi if x = ei for 1 ≤ i ≤ k

x if x ∈ ker P

satisfies ‖ f − 1X‖ < ε.

Proof Take K so large that
(∑

i |λi|
p)1/p

≤ K ‖
∑

i λiei‖. Pick x ∈ X and write
x = y + z with y = Px and then y =

∑
i λiei. Then, since z ∈ ker P, one has

‖ f x − x‖ = ‖ f y − y‖ =

∥∥∥∥∥∥∥∑i

λi(xi − ei)

∥∥∥∥∥∥∥ ≤ δ
∑

i

|λi|
p

1/p

≤ δK‖y‖ ≤ δK‖P‖‖x‖.

Hence δ = ε/(K‖P‖) suffices. �

In particular, f is an automorphism. The hypothesis that E is complemented
is necessary: in a rigid space (where the only endomorphisms are the scalar
multiples of the identity), such an f cannot exist.

Lemma 6.3.4 If u : E // Foo is a pair with ‖u‖ ≤ 1 + ε then there is a
p-norm | · | on F such that, for all f ∈ F, one has

(1 + ε)−1‖ f ‖ ≤ | f | ≤ (1 + ε)‖ f ‖ (6.7)

and u becomes contractive when the original p-norm of F is replaced by | · |.

Proof The hypotheses imply that u[ is an ε-isometry. The unit ball of the new
p-norm of F has to be the p-convex hull of the set

u[[BE] ∪ (1 + ε)−1BF .
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We thus define | f | = inf
{(
‖x‖p + (1 + ε)p‖g‖p

)1/p : f = u[(x) + g, x ∈ E, g ∈ F
}

and check that everything works with this p-norm. First, taking x = 0 and
g = f , we have | f | ≤ (1 + ε)‖ f ‖. The other inequality of (6.7) is as follows: if
f = u[(x) + g, then | f | ≥ (1 + ε)−1‖ f ‖ since

‖x‖p+(1+ε)p‖g‖p = ‖x‖p+(1+ε)p‖ f−u[x‖p ≥
‖u[x‖p + ‖ f − u[x‖p

(1 + ε)p ≥
‖ f ‖p

(1 + ε)p .

Let us compute the ‘new’ quasinorms of u[ and u]. Given x ∈ E, one has
|u[x|p ≤ ‖x‖p, so the quasinorm of u[ is at most 1. Actually, it is clear that
|u[x| = ‖x‖ for all x ∈ E. Indeed, we have

|u[x|p = inf
{
‖y‖p + (1 + ε)p‖g‖p : u[x = u[(y) + g, y ∈ E, g ∈ F

}
= inf

{
‖y‖p + (1 + ε)p‖u[(x − y)‖p : y ∈ E

}
≥ inf {‖y‖p + ‖x − y‖p : y ∈ E}

= ‖x‖p.

Finally, we check that |u]| = sup| f |≤1 ‖u
] f ‖ = sup| f |<1 ‖u

] f ‖ ≤ 1. If | f | < 1, we
can write f = u[(x) + g, with ‖x‖p + (1 + ε)p‖g‖p < 1. Hence

‖u] f ‖ = ‖u](u[x + g)‖ = ‖x + u]g‖

≤
(
‖x‖p + ‖u]g‖p

)1/p
≤ (‖x‖p + (1 + ε)p‖g‖p)1/p < 1. �

The following is a version of Lemma 6.2.4 for pairs.

Lemma 6.3.5 Given a contractive pair u : E // Foo , with allowed domain
E, and ε > 0, there is an allowable pair u0 : E // F0oo and an ε-isometry
g : F −→ F0 making the following diagram commute:

F

u]tt g

��

E

u[
44

u[0

**
F0

u]0

jj g−1

OO

Proof Assume that ε is rational. Let (ei)1≤i≤n be the unit basis of E = Kn, and
let ( f j)1≤ j≤m be a basis of ker u]. Then {u[(e1), . . . , u[(en), f1, . . . , fm} is a basis
of F. Let g : F −→ Kn+m be the induced isomorphism. Take a rational p-norm
| · |0 on Kn+m such that (1 + ε)−1‖y‖ ≤ |g(y)|0 ≤ (1 + ε)‖y‖ for every y ∈ F. Now
consider the pair u0 = 〈g, g−1〉 ◦ u. Then u0 is rational (we have u[0(x) = (x, 0)
and u]0(x, y) = x) and

∥∥∥ u0 : E // (Kn+m, | · |0)oo
∥∥∥ ≤ 1 + ε. Finally, we define

a new p-norm on Kn+m by the formula

|y| = inf
{(
‖x‖p + (1 + ε)p|z|p0

)1/p
: y = u[0(x) + z, x ∈ Kn, z ∈ Kn+m

}
.
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This p-norm has to be allowed on Kn+m (by the last condition of the list),
satisfies the estimate (1 + ε)−1| · |0 ≤ | · | ≤ (1 + ε)| · |0 and makes u0 into a
contractive pair (see the proof of Lemma 6.3.4) which is therefore allowable.
Hence, if F0 is Kn+m equipped with | · | then for every y ∈ F, we have

(1 + ε)−2‖y‖ ≤ |g(y)| ≤ (1 + ε)2‖y‖. �

A Space of Almost Universal Complemented Disposition

The allowable pairs form a countable category that admits amalgamations
(Lemma 6.3.2) and has an initial object. It follows from Proposition 6.1.1 that
there exists a Fraı̈ssé sequence

U1
// U2

//oo · · · //oo Unoo //oo · · · //oo Umoo //oo · · ·oo

Define the p-Kadec space Kp to be the direct limit of the inductive system
formed by the (u[n):

U1
u[1 // U2 // · · · // Un

u[n // Un+1 // · · ·

Theorem 6.3.6 Kp is a space of almost universal complemented disposition.

Proof We identify each Un with its image in Kp. Let u : E // Kpoo and

v : E // Foo be contractive pairs, where F is a finite-dimensional p-normed
space, and let 0 < ε < 1. We recommend that the reader work out the case in
which both u and v are allowable pairs, using amalgamation and the properties
of Fraı̈ssé sequences. In the general case, we first push u into some Un even
if this spoils the isometric character of the embedding and the projection is no
longer contractive. To this end, note that since the union of the subspaces Un is
dense in Kp, a straighforward application of Lemma 6.3.3 provides an integer
n and an automorphism f of Kp such that f [u[[E]] ⊂ Un with ‖ f − 1Kp‖ < ε

and max
(
‖ f ‖, ‖ f −1‖

)
< 1 + ε. After dividing f by ‖ f ‖ and multiplying f −1 by

‖ f ‖, we may assume that ‖ f ‖ = 1 and ‖ f −1‖ < (1 + ε)2. Then 〈 f , f −1〉 ◦ u is
a pair from E to Kp that ‘factors’ through the natural pair ın : Un

// Kpoo in

the sense that 〈 f , f −1〉 ◦ u = ın ◦ uε, where uε : E // Unoo is defined as

u[ε = ı
]
n f u[, u]ε = u] f −1ı[n.

Indeed u]ε is a projection along u[ε since u]εu[ε = u] f −1ı[nı
]
n f u[ = 1E . Now we

work with this uε and return to u at the end of the proof. Let us amalgamate uε
and v in the pushout diagram
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E
v[ //

u[ε
��

F
v]

oo

u[ε
��

Un

u]ε

OO

v[ // PO
v]

oo

u]ε

OO

Note that since ‖u[ε‖ ≤ 1, the lower pair v = 〈v[, v]〉 is contractive. Then
we apply Lemma 6.3.5 to v to obtain an allowed space F0 together with an
ε-isometry g : PO −→ F0 such that v0 = 〈g, g−1〉 ◦ v is an allowable pair.
Finally, as the sequence (un)n≥1 is Fraı̈ssé, there is m > n and an allowable pair
w0 : F0

// Umoo such that w0 ◦ v0 is the bonding pair Un
// Umoo , so we

have the following commutative diagram of pairs:

U1
// · · ·oo // Un

u]ε||

bonding pair //oo
v[0

**

v[

""

Um

w]
0
��

//oo · · ·oo

E

uε
<<

v[

""

PO
v]

bb

u]ε{{

g // F0
g−1

oo
v]0

jj

w0

OO

F

uε
;;

v]

bb

In particular, we have w0 ◦ 〈g, g−1〉 ◦ u ◦ v = uε = 〈 f , f −1〉 ◦ u, and letting
w = 〈 f −1, f 〉 ◦ w0 ◦ 〈g, g−1〉 ◦ uε, we are done, since w ◦ v = u and

‖w‖ ≤ ‖〈 f −1, f 〉‖ ‖w0‖ ‖〈g, g−1〉‖ ‖u∗‖ ≤ (1 + ε)3 < 1 + 7ε. �

Further Properties of Kp

Next we study isometric properties of Kp: universality and uniqueness. There
is a key fact that allows us to recover ‘approximate pairs’ (pairs of operators
f † : X −→ Y and f ‡ : Y −→ X whose composition is close to the identity of X)
as a composition of the arrows of two pairs with a common, ad hoc codomain.

Lemma 6.3.7 Let f † : X −→ U and f ‡ : U −→ X be contractive operators
such that ‖ f ‡ f † − 1X‖ ≤ ε. There are contractive pairs α : X // X � ε

f † Uoo

and β : U // X � ε
f † Uoo such that f † = β]α[, f ‡ = α]β[ and ‖α[−β[ f †‖ ≤ ε.

The relevant diagram is
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X
α[

++
f †

��

X � ε
f † U

α]

kk

β]ssU

β[
33f ‡

OO

Proof We know from the proof of Lemma 6.2.5 that ‖(x, 0)‖ = ‖x‖ and
‖(0, y)‖ = ‖y‖ for every x ∈ X and every y ∈ U. Thus, letting α[(x) = (x, 0) and
β[(y) = (0, y), we see that ‖α[−β[ f †‖ ≤ ε. As for the projections, we are forced
to define α](x, y) = x + f ‡(y) and β](x, y) = y + f †(x). It is then clear that

α]α[ = 1X , β]β[ = 1U , f † = β]α[, f ‡ = α]β[.

To see that α] and β] are contractive, pick (x, y) ∈ X � ε
f † U and assume

(x, y) = (x0 + x2, y1 − f †x2) = (x0, 0) + (0, y1) + (x2,− f †(x2)).

We then have

‖α](x, y)‖ = ‖x0 + x2 + f ‡(y1) − f ‡ f †(x2)‖ ≤ (‖x0‖
p + ‖y1‖

p + εp‖x2‖
p)1/p ,

‖β](x, y)‖ = ‖ f †(x0) + y1‖ ≤ (‖x0‖
p + ‖y1‖

p)1/p
≤ (‖x0‖

p + ‖y1‖
p + εp‖x2‖

p)1/p

and, since ‖(x, y)‖ is the infimum of the numbers that might appear in the right-
hand side, we have ‖α]‖, ‖β]‖ ≤ 1. �

Universality

A skeleton in a quasi-Banach space X is an increasing chain (Xn)n≥1 of finite-
dimensional subspaces of X whose union is dense in X and such that each Xn

is 1-complemented in Xn+1. Those inclusions and projections can be arranged
into a sequence of contractive pairs X1

// X2
//oo · · ·oo A quasi-Banach

space has a skeleton if and only if it is the direct limit of a sequence of
contractive pairs, and ‘skeleton’ is just a transcription of 1-FDD: if (Yn)n≥1 is a
1-FDD of X then defining Xn = Y1 + · · ·+ Yn, we obtain a skeleton; conversely,
if (Xn)n≥1 is a skeleton then fixing contractive projections πn : Xn+1 −→ Xn and
letting Y1 = X1 and Yn+1 = ker πn, we get a 1-FDD.

Proposition 6.3.8 Every p-Banach space with a skeleton is isometric to a
1-complemented subspace of Kp.

Proof Let (Xn)n≥1 be a skeleton of X. For each integer n ≥ 1, we denote
the ‘bonding’ pair Xn

// Xn+1oo by ξn, that is, ξ[n is the inclusion of Xn into
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Xn+1 and ξ
]
n : Xn+1 −→ Xn is a fixed contractive projection. Considering the

spaces Un as subspaces of Kp, we shall construct an increasing sequence of
integers (k(n))n≥0 and a system of contractive operators f †n : Xn −→ Uk(n) and
f ‡n : Uk(n) −→ Xn such that

(1) ‖ f ‡n f †n − 1Xn‖ < 2−n,
(2) ‖ f †n+1|Xn − f †n ‖ < 2−n,
(3) ‖ f ‡n+1|Uk(n) − f ‡n ‖ < 2−n.

Since
∑

n 2−np < ∞, the pointwise limits of the sequences ( f †n ) and ( f ‡n ) provide
a contractive pair X // Kpoo , which will complete the proof. The required

sequence is constructed by induction. We can assume X1 = 0 so that f †1 = 0 and
f ‡1 = 0. Now suppose that f †n : Xn −→ Uk(n) and f ‡n : Uk(n) −→ Xn have already
been constructed and let us see how to get k(n+1) and the maps f †n+1 : Xn+1 −→

Uk(n+1) and f ‡n+1 : Uk(n+1) −→ Xn+1. We suggest that the reader fetch a pencil
and some paper for a bit of scribbling.

Xn
ξ[n //

f †n

��

α[

!!

Xn+1
ξ
]
n

oo

α[{{

f [

��

W
α]

aa

β]

��

ξ
[

n // PO

α]
;;

ξ
]

n

oo

g

��
A

u[

##

g−1

OO

Uk(n)

β[

FF

f ‡n

OO

// Uk(n+1)

u]

cc

bonding pair
oo

f ]

OO

Set ε = ‖ f ‡n f †n − 1Xn‖ < 2−n and reserve a small δ > 0 of room. The precise
value of δ will be specified later.

• First, we apply Lemma 6.3.7 to f †n and f ‡n . By doing so, we obtain the
space W and the left triangle in the preceding diagram. Note that α = 〈α[, α]〉

and β = 〈β[, β]〉 are contractive pairs such that

‖β[ f †n − α
[‖ ≤ ε, f †n = β]α[, f ‡n = α]β[.

• Then, we amalgamate ξn and α using Lemma 6.3.2, which yields the upper
commutative trapezoid.

• Next, we apply Lemma 6.3.5 to the composition ξn ◦ β (which is a
contractive pair), thus obtaining a surjective δ-isometry g : PO −→ A in such a
way that the composition 〈g, g−1〉 ◦ ξn ◦ β turns out to be an allowable pair.

https://doi.org/10.1017/9781108778312.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108778312.008
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• Since the sequence of pairs (un) is Fraı̈ssé, there must be some k(n + 1) >
k(n) and an allowable pair u : A // Uk(n+1)oo such that u ◦ 〈g, g−1〉 ◦ ξn ◦ β is

the bonding pair Uk(n)
// Uk(n+1)oo .

• Now, look at the pair f = u ◦ 〈g, g−1〉 ◦ α. Note that f need not be
contractive, as we only have the bound ‖ f ‖ ≤ ‖〈g, g−1〉‖ ≤ 1 + δ.

One has:

(4) f ] f [ = 1Xn+1 ,
(5) ‖ f [|Xn − f †n ‖ ≤ (1 + δ)ε,
(6) f ]|Uk(n) = ξ[n f ‡n .

The first identity is trivial. As for (5), note that f [|Xn = u[ g ξ
[

n α
[, hence

‖ f [|Xn − f †n ‖ = ‖u[ g ξ
[

n α
[ − u[ g ξ

[

n β
[︸    ︷︷    ︸

inclusion

f †n ‖ ≤ ‖g‖‖β
[ f †n − α

[‖ ≤ (1 + δ)ε.

To check (6), observe that the inclusion of Uk(n) into Uk(n+1) can be written as

u[ g ξ
[

n β
[. Besides, f ] = α] g−1u], so, recalling that α] ξ

[

n = ξ[ α], we have

f ]|Uk(n) = α] g−1u] u[ g ξ
[

n β
[ = α] ξ

[

n β
[ = ξ[nα

]β[ = ξ[n f ‡n .

As a final touch to render the maps contractive, set f †n+1 =
f [

1+δ
and f ‡n+1 =

f ]

1+δ
.

Then f ‡n+1 f †n+1 = (1 + δ)−21Xn+1 . Hence, using (4) for small δ, we get

‖ f ‡n+1 f †n+1 − 1Xn+1‖ ≤ 1 −
1

(1 + δ)2 <
1

2n+1 .

And also for δ sufficiently small, we get from (5) and (6) that

‖ f †n+1|Xn − f †n ‖
p ≤ ‖ f †n+1 − f [‖p + ‖ f [|Xn − f †n ‖

p ≤ δp + (1 + δ)pεp < 2−pn,

‖ f ‡n+1 − ξ
[
n f ‡n ‖ = ‖ f ‡n+1 − f ]‖ ≤ δ < 2−n. �

To deduce now that Kp is complementably universal for the spaces with
the BAP, we need only firmly grab the trolley of Proposition 6.3.8 and push
it resolutely towards Lemma 2.2.20’s Platform 9 & 3/4: that we can freely
assume that the space Y has a 1-FDD, and actually a skeleton, instead of a
mere BAP. Do it without hesitation:

Corollary 6.3.9 Every separable p-Banach space with the BAP is isomorphic
to a complemented subspace of Kp.

It is difficult to imagine a space peskier than Kp. Indeed, the following spaces
are all isomorphic to Kp:
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• Products Kp × X, when X is a separable p-Banach space with the BAP.
• Spaces of Kp-valued sequences X(Kp), when X is a p-Banach sequence

space – in particular, this includes `q(Kp) for p ≤ q < ∞ and c0(Kp).
• The p-convex envelope of Kq for 0 < q < p (see Corollary 6.3.12) and the

space C(∆,Kp).

In contrast, if 0 < p < 1, the space Kp ⊕p Lp is of almost universal
complemented disposition and not isomorphic to Kp. This assertion will later
on be complemented by Propositions 6.3.13 and 10.7.2.

Uniqueness

We now address the uniqueness of Kp. The peak result here is Proposition
6.3.11, the 1-complemented companion of Proposition 6.2.7. We are pleased
to make the reader aware that the skeleton assumption is quite natural: it
corresponds, in the category of contractive pairs, to standard separability in
pB. The route to the proof is now based on a stability result that is interesting
in its own right:

Proposition 6.3.10 Let E be a finite-dimensional p-Banach and ε > 0. Let
X be a p-Banach space with a skeleton and that satisfies [a]. If f † : E −→ X
and f ‡ : X −→ E are contractive operators such that ‖ f ‡ f † − 1E‖ < ε then
there is an isometry f [ : E −→ X with 1-complemented range and such that
‖ f † − f [‖ < ε.

Proof We fix a skeleton (Xn) of X, and we denote the corresponding pairs of
operators by ξn : Xn

// Xoo and ξ(n,k) : Xn
// Xkoo . We also fix a sequence

(εn)n≥0 of positive numbers with ε1 < ε such that ‖ f ‡ f † − 1E‖ < ε1 and∑
n≥0 ε

p
n < εp. Note that we must first choose ε1 and then the other εn. Using

a small perturbation of the identity of X, we can obtain n(0) and contractive
operators f †0 : E −→ Xn(0) and f ‡0 : Xn(0) −→ E such that

‖ f † − f †0 ‖ < ε0 and ‖ f ‡0 f †0 − 1E‖ ≤ ε1.

Applying Lemma 6.3.7 to f †0 , f ‡0 and ε1, we obtain the diagram

E
α[

**
f †0

��

W
α]

jj

β]ttXn(0)

β[
44f ‡0

OO
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in which α and β are contractive pairs and

f †0 = β]α[, f ‡0 = α]β[, ‖α[ − β[ f ‡0 ‖ ≤ ε1.

Since X has property [a], after normalising a suitable almost-isometry W −→
X and the corresponding projection, we obtain n(1) > n(0) and contractive
operators γ† : W −→ Xn(1) and γ‡ : Xn(1) −→ W satisfying

‖γ‡γ† − 1W‖ < ε2 and ‖γ†β[ − ξ[(n(0),n(1))‖ < ε2.

Letting f †1 = γ†α[ and f ‡1 = α]γ‡, we have ‖ f ‡1 f †1 − 1E‖ < ε2 and

‖ f †1 − f †0 ‖
p = ‖γ†α[ − γ†β[ f †0 + γ†β[ f †0 − f †0 ‖

p

≤ ‖α[ − β[ f †0 ‖
p + ‖γ†β − ξ[(n(0),n(1))‖

p

< ε
p
1 + ε

p
2 .

Continuing in this way, we obtain an increasing sequence (n(k))k≥0 and
contractive operators f †k : E −→ Xn(k) and f ‡k : Xn(k) −→ E satisfying

• ‖ f ‡k f †k − 1E‖ ≤ εk+1,

• ‖ f †k+1 − f †k ‖ <
(
ε

p
k+1 + ε

p
k+2

)1/p
.

The second estimate implies that ( f †k )k is a Cauchy sequence in L(E, X) since

‖ f †k+m − f †k ‖ ≤

m−1∑
i=0

‖ f †k+i+1 − f †k+i‖
p


1/p

≤

m−1∑
i=0

ε
p
k+i+2 + ε

p
k+i+1


1/p

.

The first estimate then implies that the double sequence ( f ‡k f †n )k,n converges
to the identity of E in the sense that for every δ > 0 there is m such that
‖ f ‡k f †n − 1E‖ < δ whenever k, n ≥ m. Define f [ : E −→ X as the pointwise
limit of the sequence ( f †k )k. To obtain a suitable projection along f [, we can
use the local compactness of E: pick a non-trivial ultrafilter U on N and set
f ](x) = limU(n) f ‡n (x) for x ∈

⋃
k Xk, and extend by continuity to all of X. It is

clear that f [ and f ] are contractive. Finally, given y ∈ E, we have

f ] f [y = lim
U(n)

f ‡n
(

f [y
)

= lim
U(n)

f ‡n
(
lim

k
f †k y

)
= lim

U(n)

(
lim

k
f ‡n f †k y

)
= lim

k,n
f ‡n f †k y = y.

This shows that f [ is an isometry whose range is 1-complemented in X. �

Proposition 6.3.11 Let X,Y be p-Banach spaces with skeletons and that
satisfy [a], let A be a 1-complemented subspace of X and let B be a 1-
complemented subspace of Y. If f0 : A −→ B is a surjective isometry then for
every ε > 0, there is a surjective isometry f : X −→ Y such that ‖ f |A − f0‖ < ε.
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Proof The proof is a typical back-and-forth argument, oiled by Proposition
6.3.10. Fix a sequence of positive real numbers (εn)n≥0 such that

∑
n≥0 ε

p
n < ε

p.
Let (Xn) and (Yn) be chains of finite-dimensional 1-complemented subspaces
of X and Y , respectively, with dense union. Set A1 = A + X1. Then f −1

0 embeds
isometrically B into A1, as a 1-complemented subspace. Since Y has property
[a], for each δ > 0, there is a δ-isometry f1/2 : A1 −→ Y whose range is (1+δ)-
complemented, extending the inclusion of B. Apply Proposition 6.3.10 to f1/2
with δ small enough to obtain an isometry f1 : A1 −→ Y with 1-complemented
range such that ‖ f1( f −1

0 (y)) − y‖ < ε1‖y‖ for all non-zero y ∈ B. Set B1 =

f1[A1] + B + Y1 and apply the same argument to obtain an isometry g1 : B1 −→

X with 1-complemented range with ‖g1( f1(x)) − x‖ < ε1‖x‖ for all non-zero
x ∈ A1. Now set A2 = g1[B1] + A1 + X2 and let f2 : A2 −→ Y be an isometry
with 1-complemented range such that ‖ f2(g1(y)) − y‖ < ε2‖y‖ for all non-zero
y ∈ B1, and so on. Continuing in this way, we obtain increasing sequences
(An)n≥0 and (Bn)n≥0 of finite-dimensional 1-complemented subspaces of X and
Y , respectively, with dense union, where A0 = A and B0 = B together with
isometries fn : An −→ Bn and gn : Bn −→ An+1 satisfying

(1) ‖gn( fn(x)) − x‖ < εn‖x‖ for all non-zero x ∈ An,
(2) ‖ fn+1(gn(y)) − y‖ < εn‖y‖ for all non-zero y ∈ Bn,

where g0 = f −1
0 . The situation is illustrated in the following (‘almost

commutative’) diagram

A //

f0
��

A1
f1

  

// A2
f2

  

// · · ·

B //
g0

??

B1 //
g1

>>

B2

g2

>>

// · · ·

We define an operator f : X −→ Y as follows: if x ∈ Ak, set f (x) = limn≥k fn(x).
The definition makes sense because ( fn(x))n≥k is a Cauchy sequence. Indeed,
for x ∈ An, we have

‖ fn+1(x) − fn(x)‖p ≤ ‖ fn+1(x) − fn+1(gn( fn(x)))‖p + ‖ fn+1(gn( fn(x))) − fn(x)‖p

≤ ‖ fn+1‖
p‖x − gn( fn(x))‖p + ε

p
n‖ fn(x)‖p

≤ 2εp
n‖x‖p.

Since
∑

n≥0 ε
p
n is finite, we see that f is well defined on

⋃
n An, and so it extends

to a contractive operator on X which we also call f . Besides, for x normalised
in A = A0, we have

‖ f (x) − f0(x)‖ ≤

∑
n≥0

‖ fn+1(x) − fn(x)‖p
1/p

≤

∑
n≥0

2εp
n

1/p

≤ 21/pε.
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Proceeding analogously with the sequence (gn), we obtain a contractive
operator g : Y −→ X given by g(y) = limn≥k gn(y) for y ∈ Bk. It follows from
(1) and (2) that g f = 1X and f g = 1Y . �

Now that Proposition 6.3.11 is complete, let us stop and smell the roses it
has brought to blossom. One result with a fine scent is that any p-Banach space
with a skeleton and property [a] is isometric to Kp and, therefore, of almost
universal complemented disposition. (Intrigued by the role of the skeleton?
Please move to the next section.) Another fragrant one is:

Corollary 6.3.12 If 0 < p < q ≤ 1 then the q-Banach envelope of Kp is Kq.

Proof We only sketch the proof. Fix 0 < p < q ≤ 1. The key point is
that a contractive pair u : E // Foo between finite-dimensional p-normed
spaces is also a contractive pair u : E(q)

// F(q)oo . Thus, taking the pairs
between finite-dimensional q-normed spaces that arise from the q-Banach
envelopes of the allowable pairs of p-Banach spaces, the class of which we
will momentarily call A, we obtain a Fraı̈ssé class A(q) since the amalgamation
property is inherited from A. These pairs are ‘dense’ among the contractive
pairs of finite-dimensional q-normed spaces because each q-norm is also a
p-norm. Moreover, if U1 // U2 //oo ...oo is the Fraı̈ssé sequence used to
define Kp, it is clear that the q-Banach envelope of Kp arises from the sequence

U1
(q)

// U2
(q)

//oo ...oo , which is easily seen to be a Fraı̈ssé sequence for

A(q). Therefore, its limit is isometric to Kq. �

The Banach space K1 is almost isotropic too. This follows from Proposition
6.3.11 and the fact that all lines are 1-complemented. It is not isotropic (almost
isotropic with ε = 0) since the unit sphere of K1 contains points where the
norm is smooth and points where it is not (think of an isometric copy of, say
`2
∞), while a surjective isometry should preserve each class. In sharp contrast,

there is no equivalent p-norm rendering Kp almost isotropic when p < 1: if
X is almost isotropic and isomorphic to Kp then the functional |x| = ‖x‖ +

sup‖x∗‖≤1 |x
∗(x)| is another p-norm which must be preserved by every isometry

of the original p-norm of X. It quickly follows (see the complete argument in
[57, Theorem 3.3]) that | · | = 2‖ · ‖. Thus, ‖x‖ = sup‖x∗‖≤1 |x

∗(x)| and X would
be locally convex, which is not the case.

Other Spaces of Kadec Type

Let us examine now what occurs when dropping the skeleton assumption:
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Proposition 6.3.13 Every separable p-Banach space is isometric to a 1-com-
plemented subspace of a separable p-Banach space with property [a].

The proof is based on a slight weakening of our notion of pair introduced in
Section 6.3.

Definition 6.3.14 A λ-pair u = 〈u[, u]〉 consists of two contractive operators
u[ : E −→ F and u] : F −→ E such that u]u[ = λ1E , where λ > 0. A •-pair is a
λ-pair for some unspecified λ.

Thus, 1-pairs are the former contractive pairs. Note that if u = 〈u[, u]〉 is a
λ-pair then 〈u[, λ−1u]〉 is a pair which is not contractive in general and u[ is a
contractive ε-isometry, where ε = λ−1 − 1. Also, if u = 〈u[, u]〉 is a pair then
the normalisation 〈u[/‖u[‖, u]/‖u]‖〉 is a λ-pair, where λ = (‖u[‖‖u]‖)−1. We
extend the use of the notation u : E // Foo to •-pairs as well as most of the
conventions of Section 6.3. If u : E // Foo is a λ-pair and v : F // Goo is
a µ-pair, then v◦u = 〈v[u[, u]v]〉 is a λµ-pair. The distance between two •-pairs
u, v between the same spaces is defined as ‖u − v‖ = max

(
‖u[ − v[‖, ‖u] − v]‖

)
.

Lemma 6.3.15 Let X be a p-Banach space and I an index set. For each i ∈ I,
let ui : Ei

// Fioo be a 1-pair and vi : Ei
// Xoo a λi-pair. Then there is

a p-Banach space X′, a 1-pair ξ : X // Yoo and, for each i ∈ I, a λi-pair
vi : Fi

// X′oo such that ξ ◦ vi = vi ◦ ui; i.e. the diagram

Ei

u[i //

v[i
��

Fi
u]i

oo

v[i
��

X

v]i

OO

ξ[ // X′
ξ]

oo

v]i

OO

is commutative. Moreover, if I is finite and each Fi is finite-dimensional then
X′/ξ[[X] is finite-dimensional.

Proof This is a combination of the Device technique and Lemma 6.3.2.
Consider the 1-pair Π : `p(I, Ei) // `p(I, Fi)oo given by Π[ =

∏
i u[i ,Π

] =∏
i u]i and the operator Σ =

⊕
i v[i : `p(I, Ei) −→ X and form the pushout

`p(I, Ei)
Π[

//

Σ

��

`p(I, Fi)
Π]

oo

Σ
��

X
Π[ // PO(Π[,Σ)
Π]

oo
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where Π] arises from the universal property of PO applied to the pair of
operators

(
1X ,ΣΠ]). This provides the 1-pair ξ. As for the •-pairs v j we first

define v[j as the restriction of Σ to F j. To get v]j, just consider the pair of

operators λ jπ j : `p(I, Fi) −→ F j and u[jv
]
j : X −→ F j, where π j sends (xi)i∈I

to x j. Note that u[jv
]
jΣ = λ jπ jΠ

[, as both send (yi)i∈I to λ jy j. �

Proof of Proposition 6.3.13 Let A be the set of allowable pairs of p-normed
spaces, and let (an)n≥1 be an enumeration of A, where a1 = 1K. We are going
to construct a chain of contractive pairs

X1

ξ[1 // X2

ξ[2 //
ξ
]
1

oo X3
//

ξ
]
2

oo · · ·oo (6.8)

together with a sequence of sets of •-pairs (Dn)n≥1 and enumerations (un
k)k≥1 in

such a way that

(1) X1 = X and Xn+1/ξ
[
n[Xn] is finite-dimensional;

(2) the elements of Dn are •-pairs u : E // Xnoo with allowed domain;

(3) Dn has the following density property: for every •-pair v : E // Xnoo

with allowed domain and each ε > 0 there is u ∈ Dn such that ‖v[−u[‖ < ε
and ‖v]v[ − u]u[‖ < ε (note that we don’t care about ‖v] − u]‖);

(4) Dn ⊂ Dn+1 in the sense that if u ∈ Dn then ξn ◦ u ∈ Dn+1;
(5) if a ∈ A≤n and u ∈

⋃
k≤n Dk

≤n is a λ-pair with the same domain then there
is a commutative diagram

E
a[ //

u[

��

F
a]

oo

u[

��
Xn

u]

OO

ξ[n // Xn+1
ξ
]
n

oo

u]

OO

where u is a λ-pair, A≤n = {a1, . . . , an} and similarly with Dk
≤n.

For the initial step, we set X1 = X and choose D1 as in (3). This can
be done because each L(E, X) is separable and there are countably many
allowed spaces. Condition (5) is automatic because of our choice of a1. For
the inductive step, assume that one has constructed X1, . . . , Xn together with
D1, . . . ,Dn and the corresponding enumerations that satisfy (1)–(5). Then we
apply the preceding lemma to the 1-pairs of A≤n and the •-pairs in

⋃
k≤n Dk

≤n
that have the same domain, and we set Xn+1 = X′n and ξn = ξ. Note that
Xn+1/ξ

[
n[Xn] is finite-dimensional. Finally, we choose a countable set of •-pairs

Dn+1 ‘containing’ every •-pair of the form ξn ◦ v for v ∈ Dn and satisfying
(3), and we enumerate it. Let a(X) be the direct limit of the system (6.8).
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Let us verify that a(X) has property [a]. Assume E is 1-complemented in
a finite-dimensional space F and that u[ : E −→ a(X) is an isometry with
1-complemented range. We consider 1-pairs v : E // Foo and u : E // Xoo

in which v[ is the inclusion of E into F, v] is a contractive projection onto E
and u] is a contractive projection along u[. Fix ε > 0. Furthermore, ε1, ε2, ε3

will appear in the course of the proof, and the only thing that we care about
is that εn+1 → 0 as εn → 0. Pick δ > 0. First, we use Lemma 6.3.3 to
obtain a small automorphism f of a(X) and n such that f u[[E] ⊂ Xn. Let
u1 be the normalisation of 〈 f u[, u] f −1〉. This can be done in such a way that
‖ f − 1a(X)‖ < ε1; ‖ f ‖, ‖ f −1‖ < 1 + ε1; and ‖u1 − u‖ < ε1. We can assume that
E = Kk with some p-norm ‖ · ‖. Let ‖ · ‖0 be a small allowed perturbation of the
p-norm of E, and let E0 = (E, ‖ · ‖0). Let u2 be the normalisation of the formal
identity 〈1, 1〉 : E // E0oo , and let

E
v[ //

u[2
��

F
v]

oo

u[2
��

E0

u]2

OO

v[ // H
ν]

oo

u2
]

OO

be provided by Lemma 6.3.2. As v is a 1-pair with allowed domain, we can
immediately activate Lemma 6.2.4 to get an almost isometry g : H −→ F0 such
that v0 = 〈g, g−1〉 ◦ v : E0

// F0oo is allowable. This can be done in such a

way that (a) max
(
‖u]2u[2 − 1E‖, ‖u

]
2u[2 − 1E‖

)
< ε2; (b) ‖g‖, ‖g−1‖ < 1 + ε2 and

(c) ‖x‖0 ≤ ‖x‖ < (1 + ε2)‖x‖0 for all non-zero x ∈ E. Let u3 : E0
// a(X)oo

be the normalisation of u1 with respect to the p-norm of E0. This is clearly a
λ-pair, with 1 − λ < ε3, provided ε1 and ε2 are sufficiently small. By (3), we
can find a µ-pair u4 ∈ Dn such that ‖u[4 − u[3‖ < ε3, still with 1− µ < ε3. By (5),
there is m > n and a µ-pair u4, making the following diagram commute:

E0

v[0 //

u[4
��

F0
v]0

oo

u[4
��

Xn

u]4

OO

bonding pair // Xmoo

u]4

OO

Let us consider the operator U = u[4gu[2 : F −→ Xm. It should be obvious that
if ε1, ε2, ε3 are sufficiently small,

• ‖U |E − u : E −→ a(X)‖ < δ;
• ‖U‖ < 1 + δ;
• if P = u]2g−1u]4, then PU = η1F , with |η − 1| < δ and ‖P‖ < 1 + δ.
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We now write F = E ⊕ ker v] in order to then set Ũ(x, y) = u[(x) + U(y), a true
extension of u[. If δ is sufficiently small, then ‖U − Ũ‖ < ε and ‖PŨ −1F‖ < ε.
To obtain a small norm projection of a(X) along Ũ, we use:

6.3.16 Correcting a defective pair Let F and Y be p-Banach spaces. Let
f † : F −→ Y and f ‡ : Y −→ F be operators satisfying ‖ f ‡ f † − 1F‖ ≤ ε, where
ε < 1. There is an automorphism a of F such that

• ‖a − 1F‖ ≤ ε(1 − εp)−1/p,
• ‖a‖ ≤ (1 − εp)−1/p,
• ‖a−1‖ ≤ (1 + εp)1/p,
• a f ‡ f † = 1F .

The proof is straightforward: set a =
∑

n≥0(1F − f ‡ f †)n and check the
required properties. �

The inexorable conclusion is that when X doesn’t have the BAP, the
space a(X) cannot be isomorphic to Kp since it cannot have the BAP either.
Therefore:

6.3.17 For every p ∈ (0, 1], there exist non-isomorphic separable p-Banach
spaces with property [a].

It is clear that if X has a skeleton then so does a(X), and Proposition 6.3.13
provides an alternative construction of Kp and a new proof of Proposition
6.3.8. On the other hand, it is clear that the only reason a(X) could fail the
BAP (or any other approximation property) is because X already lacks it: X is
1-complemented in a(X) and a(X)/X has a 1-FDD.

6.4 A Universal Operator on Gp

Finding operators on a given quasi-Banach space can be a difficult task. Or an
impossible one, since rigid spaces exist. The space Gp is not rigid: Propositions
6.2.7 and 6.2.10 say that it has plenty of automorphisms. Our aim is to
construct a contraction u ∈ L(Gp) with ker u ≈ Gp and satisfying the following
condition:

(♥) For every separable p-Banach space X and every contractive operator
s : X −→ Gp, there exists an isometry e : X −→ Gp such that s = ue.

This will show that Gp has non-trivial projections since, taking as s the
identity of Gp, one obtains an isometric embedding e : Gp −→ Gp and eu is a
projection on Gp with kernel and range isometric to Gp. To get the announced
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6.4 A Universal Operator on Gp 317

construction, we will fix a separable p-Banach space H and develop some
abstract nonsense. Piece by piece, everything will make sense. We start by
defining a special category H whose objects are contractive operators from
finite-dimensional p-Banach spaces into H; a morphism from e : E −→ H to
f : F −→ H is an isometry ı : E −→ F such that e = f ı:

E

ı

��

e

,, H

F f

22

Although this category is conceptually more complex than those used in the
preceding sections, our treatment, based on purely formal properties, is similar.
Our nonsense training begins with:

Lemma 6.4.1 The category H admits amalgamations.

What does this mean? It means that when one has three objects e : E −→
H, f : F −→ H, g : G −→ H in H and morphisms ı : e −→ f ,  : e −→ g, there
is another object h : H −→ H and morphisms ı′ : g −→ h, ′ : f −→ h such that
′ ◦ ı = ı′ ◦ . The point is, we do know that the lemma is true and how to prove
it: just stare at the commutative diagram

E
′ //

ı

��

e

,,

G
g

**
ı′

��

H

F
′

//

f

22

H
h

44

(6.9)

and set H = PO, the pushout of ı and . Great. We also need an ‘H-version’ of
Lemma 6.2.5:

Lemma 6.4.2 Let f : X −→ Y be an ε-isometry between finite-dimensional
p-Banach spaces, and let r : X −→ H and s : Y −→ H be contractive
operators such that ‖s f − r‖ ≤ ε. Let ı and  be the inclusions of X and Y,
respectively, into X � ε

f Y. The operator r ⊕ s : X � ε
f Y −→ H is contractive,

and (r⊕ s) i = r, (r⊕ s) j = s. In particular, ı : r −→ (r⊕ s) and  : s −→ (r⊕ s)
are morphisms in H.
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Proof Fix (x, y) ∈ X ⊕ Y and assume x = x0 + x2, y = y1 − f (x2). Then

‖(r ⊕ s)(x, y)‖p = ‖r(x0) + r(x2) + s(y1)− s( f (x2))‖p ≤ ‖x0‖
p
X + ‖y1‖

p
Y + εp‖x2‖

p
X .

As ‖(x, y)‖p is the infimum of all expressions that can arise as the right-hand
side of the preceding inequality, we see that ‖(r ⊕ s)(x, y)‖p ≤ ‖(x, y)‖p. �

To return to Fraı̈ssé’s world, we need a countable ‘dense’ subcategory of H
having amalgamations. Let D be a dense, countable, linearly independent sub-
set of H and let H0 denote the dense subspace of all finite linear combinations
of elements of D with rational coefficients. We define a subcategory H0 of H
as follows:

• The objects of H0 are contractive operators e : E −→ H whose domain is
allowed and that send the rational vectors of E into H0.

• Given objects e : E −→ H and f : F −→ H in H0, an H0-morphism ı : e −→
f is an H-morphism whose underlying isometry is allowable.

Lemma 6.4.3 H0 has amalgamations.

Proof (Proof of) Lemma 6.2.2 + Diagram 6.9. �

Proposition 6.1.1 says that H0 has a Fraı̈ssé sequence

u1
ı1

−−−−−−→ u2
ı2

−−−−−−→ · · · (6.10)

Since each un : Un −→ H is an object of H0 and the arrows ın are morphisms
in H0, what one actually has is a commutative diagram

U1
ı1 //

u1

,,

U2
ı2 //

u2

++

· · · // Un
ın //

un

""

· · ·

H

(6.11)

having the following property:

(†) Given a finite-dimensional p-Banach space V , an isometry e : Un −→ V
and a contractive operator v : V −→ H such that ve = un, for each ε > 0,
there exist m > n and an ε-isometry e′ : V −→ Um such that ‖e′e− ı(n,m)‖ <

ε and ‖ume′ − v‖ < ε, where ı(n,m) = ım−1 · · · ın.

Of course, all this comes preloaded in the definition of a Fraı̈ssé sequence
when v and e are in H0, even with ε = 0. In the general case, we first apply
Lemma 6.2.4 to e, thus obtaining an allowable e0 : Un −→ V0 and a surjective
ε-isometry g : V −→ V0 such that e0 = ge. Although un = vg−1e0, which is Ok,
we cannot apply the preceding case to vg−1 because we do not know that vg−1
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is contractive or that it takes rational vectors to H0. It is clear, however, that
there is v0 : V0 −→ H0 in H0 such that ‖v0 − vg−1‖ < ε:

Un
e0 //

e

**

un

!!

V0

g−1tt

v0

~~

V

g
44

v

��
H

The dashed part of the diagram is there to remind us that it is merely almost
commutative. Construct the space Un �εe0

V0, equipped with the direct sum
operator un ⊕ v0, and activate Lemmas 6.2.5 and 6.4.2: if we denote the
inclusions of Un and V0 into Un �εe0

V0 by ı and , we have ‖ e0 − ı‖ ≤ ε

by Lemma 6.2.5, and since ‖v0e0 − un‖ ≤ ε, we conclude that ı : un −→ un ⊕ v0

and  : v0 −→ un ⊕ v0 are H-morphisms. But un ⊕ v0 maps the rational vectors
of Un�εe0

V0 to H0, and ı : Un −→ Un�εe0
V0 is allowable, by (f). It follows that

ı : un −→ un⊕v0 is actually in H0. Since (6.10) is Fraı̈ssé for H0, there is m > n
and k : un ⊕ v0 −→ um such that k ◦ ı = ı(n,m), the bonding morphism un −→ um.
Let us ignore V for a moment and depict the situation in the diagram

Un e0
//

ı

''

un

��

ı(n,m)

))
V0



ww

v0

��

Um

um

xx

Un �εe0
V0

k

22

un⊕v0

��
H

It is now clear that the required map is e′ = k g:

• e′ is an ε-isometry since g is and , k are isometries.
• ‖e′e − ı(n,m)‖ = ‖k ge − ı(n,m)‖ = ‖k e0 − ı(n,m)‖ = ‖k e0 − kı + kı − ı(n,m)‖ ≤ ε.
• As ‖v0−vg−1‖ < ε, we have ‖v−v0g‖ ≤ ε‖g‖ ≤ ε(1+ε). But ume′ = umk g =

v0g, so ‖ume′ − v‖ ≤ 2ε.

Consider the directed system of p-Banach spaces U0
ı1
−→ U1

ı2
−→ Y2 −→ · · ·

underlying the sequence (6.11). Set U = lim
−−→

Un and let u : U −→ H be the
direct limit of the operators un. The main properties of these objects can be
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summarised as follows: we know now that U contains an isometric copy of X
as long as X is separable and L(X,H) , 0, and will know soon (Theorem 6.4.5)
that U is isometric to Gp. In the meantime:

Proposition 6.4.4 For every separable p-Banach space X and every con-
tractive operator s : X −→ H, there exists an isometry e : X −→ U such that
s = ue. In particular, u is surjective and right-invertible.

Proof We identify each Un with its image in U so that un = u|Un and all the
bonding maps are plain inclusions. Fix an operator s : X −→ H with ‖s‖ ≤ 1.
Let (Xn)n≥1 be an increasing sequence of finite-dimensional subspaces whose
union is dense in X, with X1 = 0. Set sn = s|Xn and εn = 2−n/p. We shall
inductively construct an increasing sequence k : N −→ N and contractive
εn-isometries en : Xn −→ Uk(n) satisfying ‖uk(n)en − sn‖ ≤ εn and also
‖en+1|Xn − en‖ ≤ (εp

n + ε
p
n+1)1/p. This clearly implies that the sequence (en)

converges pointwise to an isometry e : X −→ U such that s = ue. We set
k(1) = 1 and e1 = 0. Having defined en : Xn −→ Uk(n) with ‖sn − uk(n)en‖ ≤ εn,
we may apply Lemma 6.4.2 with f = en to get the commutative diagram

Uk(n)



��

uk(n)

''
Xn �

εn
en Uk(n)

sn⊕uk(n) // H

Xn

ı

OO

sn

77

which shows that ı is a H-morphism from sn to sn ⊕ ukn . On the other hand,
the inclusion of Xn into Xn+1, which we momentarily denote by ξ, is clearly
an H-morphism from sn to sn+1, and amalgamating ı and ξ, we arrive at the
diagram

Uk(n)



��
uk(n)

''

Xn �
εn
en Uk(n)

ξ′ //

sn⊕uk(n)
,,

W
w

** H

Xn
ξ

//

ı

OO

sn

22

Xn+1

ı′

OO

sn+1

44
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Here, W is a finite-dimensional p-normed space and ‖w‖ ≤ 1. Applying (†)
to the isometry ξ′ , we find k(n + 1) > k(n) and obtain a contractive εn+1-
isometry e′ : W −→ Ukn+1 such that

‖uk(n+1)e′ − w‖ ≤ εn+1 and ‖e′ξ′  − ı(k(n),k(n+1))‖ ≤ εn+1. (6.12)

Setting en+1 = e′ı′ : Xn+1 −→ W −→ Uk(n+1), we complete the induction step.
Indeed, en+1 is a contractive εn+1-isometry. Moreover,

‖uk(n+1)en+1 − sn+1‖ = ‖uk(n+1)ε
′ı′ − wı′‖ ≤ ‖uk(n+1)e′ − w‖ ≤ εn+1,

since sn+1 = wı′, while

‖en−en+1|Xn‖
p = ‖en−e′ı′ξ‖p = ‖en−e′ξ′ı‖p ≤ ‖en − e′ξ′ en‖︸           ︷︷           ︸

(?)

p
+‖e′ξ′(ı − en)‖︸           ︷︷           ︸

(??)

p.

We have (?) = ‖ı(k(n),k(n+1))en − e′ξ′ en‖ ≤ ‖e′ξ′ − ı(k(n),k(n+1))‖ ≤ εn+1 by (6.12)
and (??) ≤ ‖ı − en‖ ≤ εn by Lemma 6.2.5. This completes the induction step
and the proof. �

Taking s = 1H, we see that u is surjective and right-invertible. Thus, we have
a split exact sequence 0 −→ ker u −→ U

u
−→ H −→ 0.

Theorem 6.4.5 Whatever the space H could be, ker u is isometric to Gp and
so U is isomorphic to Gp × H. If, additionally, H is a locally 1+-injective
p-Banach space then also U is isometric to Gp and, therefore, Gp is isomorphic
to Gp ×H.

Proof To prove that ker u is isometric to Gp we first check that the operator
u : U −→ H has the following additional property:

(‡) If E is a subspace of a finite-dimensional p-Banach space F, g : F −→ H
is contractive and e : E −→ U is an isometry such that ue = g|E then for
each δ > 0, there is a δ-isometry f : F −→ U satisfying ‖ f |E − e‖ < δ and
‖u f − g‖ < δ.

Indeed, after taking a small perturbation, we may assume that e : E −→ Un

is an ε-isometry with ‖ue − g|E‖ < ε. Apply Lemma 6.4.2 to e : E −→ Un,
g : E −→ H and un : Un −→ H to obtain a commutative diagram

Un



��

un

''E �εe Un
g⊕un // H

E

ı

OO

g

77
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with ‖ e− ı‖ ≤ ε. Now, amalgamating ı : E −→ E�εe Un, which is a morphism
from g : E −→ H to g ⊕ un : E �εe Un −→ H, with the inclusion ξ : E −→ F
regarded as a morphism from g : E −→ H to g : F −→ H, we obtain a finite-
dimensional p-normed space W and a commutative diagram

Un



��
un

''

E �εe Un
ξ′ //

sn⊕ukn

,,

W
w

** H

E
ξ

//

ı

OO

sn

22

F

ı′

OO

g

44

with ‖w‖ ≤ 1. Now applying (†) to w and the embedding ξ′ , we obtain m > n
and an almost isometry w′ : W −→ Um such that umw′ is close to w and w′ξ′ 
is close to ı(n,m). Finally, the composition

f : F
ı′

−−−−−−→ W
w′

−−−−−−→ Um −−−−−−→ U

is the desired δ-isometry. Returning to ker u, let F be a finite-dimensional p-
normed space; e : E −→ ker u an isometry, where E is a subspace of F; and ε >
0. We shall construct an ε-isometry f : F −→ ker u such that ‖ f (x) − e(x)‖ ≤
ε‖x‖ for every x ∈ E. This will show that ker u is of AUD, thus completing the
proof. To do so, fix some small δ and apply (‡), taking g as the zero operator
from F to H to get a δ-isometry f ′ : F −→ U such that ‖ f ′|E − e‖ < δ and
‖u f ′‖ < δ. Of course, we cannot guarantee that f ′ takes values in ker u. To
amend this, let r : H −→ U be a right-inverse for u, with ‖r‖ ≤ 1, and set
f = (1U − ru) f ′, that is, f (x) = f ′(x)− r(u( f ′(x))). Then f takes values in ker u
since u f = 0 and, moreover, ‖ f − f ′‖ = ‖ru f ′‖ ≤ δ. Thus, for δ sufficiently
small, f : F −→ ker u is an ε-isometry with ‖ f |E − e‖ < ε and we are done.

We now assume that H is locally 1+-injective among p-Banach spaces and
prove that U is isometric to Gp. It suffices to check it is of AUD by showing
that it satisfies the hypothesis of Lemma 6.2.3. Let v : E −→ F be an isometry,
where E is a subspace of U and F a finite-dimensional p-normed space. Fix
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δ > 0, and pick a contractive δ-isometry u : E −→ Un such that ‖u(x) − x‖ ≤
δ‖x‖ for x ∈ E. Let us form the pushout square

E v //

u
��

F

u
��

Un
v // PO

Here v is an isometry and u is a contractive δ-isometry as in Lemma 2.5.2.
Since H is locally 1+-injective and PO is finite-dimensional, there is an
operator ũn : PO −→ H such that un = ũnv, with ‖ũn‖ ≤ 1 + δ. Next we
touch up the p-norm of PO to render ũn contractive: for instance, we may take
|x | = max

(
‖x ‖PO, ‖̂un(x) ‖H

)
. If V denotes the space PO so p-normed then

v : Un −→ V is still isometric and ‖ũn : V −→ H‖ ≤ 1 and we may use (†) to
get m > n and a δ-isometry v′ : V −→ Um such that ‖v′v − ı(n,m)‖ ≤ δ. Finally,
if δ > 0 is sufficiently small, the composition

w : F u // PO
identity // V v′ // Um

inclusion // U

is an ε-isometry such that ‖w(v(x)) − x‖ ≤ ε‖x‖ for every x ∈ E. This shows
that U is isometric to Gp. �

Time for applications.

Corollary 6.4.6 Gp ' Gp × Gp ' c0(N,Gp) ' C(∆,Gp).

Proof The theorem just proved yields that if H is a separable locally 1+-
injective p-Banach space then Gp × H is isomorphic to Gp. Pick H = Gp,
which is locally 1+-injective according to Proposition 6.2.8(a), to obtain that
Gp is isomorphic to Gp ×Gp and thus to any finite product Gp × · · · ×Gp. The
spaces c0(Gp) and C(∆,Gp) can be written as the limit of a chain of subspaces
isometric to Gp ⊕∞ · · · ⊕∞ Gp, and so they are locally 1+-injective; since Gp '

Gp×c0(N,Gp) and Gp ' Gp×C(∆,Gp), the Pełczyński decomposition method
applies. �

The applications of Theorem 6.4.5 are seriously limited by the scarcity of
examples of locally injective p-Banach spaces for p < 1, which basically
are reduced to . . . Gp! When p = 1, all Lindenstrauss spaces are locally 1+-
injective Banach spaces, and Corollary 6.4.6 can be strengthened to:

Corollary 6.4.7 Every separable Lindenstrauss space is isometric to a
subspace of G that is complemented by a contractive projection whose kernel
is isometric to G.
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Thus, if X is a separable Lindenstrauss space, then G ' X×G ' X⊗̌εG. This
does not mean that every copy of X is complemented in G. Also, Theorem 6.4.5
shows that some hyperplanes of the almost isotropic space G are isometric to
the whole space, since when p = 1, the base field is 1-injective, and we can fix
H = K. To the best of our knowledge, Hilbert spaces were the only previously
known spaces combining both properties.

6.5 Notes and Remarks

6.5.1 What If ε = 0?

Upon moving ε from here to there in the definitions of Section 6.3 (and there
are various heres and theres to choose), we obtain more or less equivalent
variants of the definitions appearing in the text. Actually, the version of
property [a] and the definition of AUCD we used do not match those of [183]
or [116]. While 6.3.16 clearly shows that [a] is equivalent to Garbulińska’s
property (E) of [183], we cannot ensure that Definition 6.3.1 is equivalent
to Definition 2.1 in [116]. And yet, as the following shows, an ε of room is
necessary to stay in the separable world.

Proposition Let X be a p-Banach space containing a 2-dimensional Euclidean
subspace E and having the following property: for every 3-dimensional
p-normed space F and every isometry v : E −→ F with 1-complemented range,
there is an isometry w : F −→ X such that wv is the inclusion of E into X. Then
the dimension of X is at least the continuum.

Proof The proof uses an idea of Haydon, taken from [80; 75]. Let us follow
it in the real case. Let E be the Euclidean plane and S the unit sphere of E. For
each u ∈ S , we consider the p-norm

|(x, t)|u = max
(
‖x‖2, ‖(〈x, u〉, t)‖p

)
on E × R and let Fu denote the resulting 3-dimensional space. (The unit ball
of Fu is the intersection of a ‘vertical’ right cylinder and a ‘horizontal’ right
prism whose basis is the 2-dimensional `p-ball with ‘peaks’ at (0, 1) and (u, 0).)
Note that ‖(x, 0)‖u = ‖x‖2 (so E is isometric to a subspace of Fu) and that
|(x, t)|u ≥ ‖x‖2 for each (x, t) ∈ Fu (so the obvious projection is contractive).
Now we consider E as a subspace of X and assume that for every u ∈ S , we
can find an isometry fu : Fu −→ X such that fu(x, 0) = x. Clearly, fu must have
the form fu(x, t) = x + teu for some fixed eu in the unit sphere of X. Now let
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S + be the ‘positive part’ of S so that 0 < 〈u, v〉 < 1 for different u, v ∈ S +. We
claim that ‖eu − ev‖ = 1 for u, v ∈ S + unless u = v. Pick λ > 0; we have

‖eu − ev‖
p ≥ ‖eu + λu‖p − ‖ev + λu‖p = |(λu, 1)|pu − |(λu, 1)|pv .

But |(λu, 1)|pu = 1 + λp, while for large λ, |(λu, 1)|pv = max (λp, 1 + λp〈u, v〉p) =

λp. Hence the dimension of X is, at least, the cardinality of S +. �

Thus any space of ‘universal (complemented) disposition for spaces of
dimension up to 3’ has dimension at least c.

6.5.2 Before Gp Spaces Fade Out

Shortly hereafter, Fraı̈ssé constructions will fade away in the remainder of this
volume, although spaces of (almost) universal (complemented) disposition will
not. But first, a few remarks that, once you are told, become very noticeable.
The headline is that very few things are known about operators on Gp when
p < 1. Indeed, the behaviour of operators on Gp is puzzling. On one hand,
L(Gp) contains a large number of automorphisms and isometries as well
as some projections. It follows from Proposition 6.2.7 that if F is a finite-
dimensional subspace of Gp then Gp/F depends only on the dimension of
F, up to isomorphisms. Let us denote the isomorphism type of the quotient
of Gp by an n-dimensional subspace by Gp/(n). Since Gp is isomorphic to
its square, Gp/(n + m) ' Gp/(n) × Gp/(m) and also Gp/(n) '

(
Gp/(1)

)n.
The sequence 0 −→ K −→ Gp(1) −→ 0 is not trivial because Gp has trivial
dual and therefore Gp/(1) is not a K -space. So, the prickly issue is whether
Gp is a K -space. If the answer were yes then Gp could not be isomorphic
to Gp/(1) (something we do not know either). When p = 1, both questions
have an affirmative answer: G is isomorphic to its hyperplanes and, as for any
L∞-space, it is a K -space by 3.4.6. However, we do not know whether Gp

is prime or primary when 0 < p < 1 or how to find an uncomplemented
copy of Gp in the whole space, which is quite irritating. And since we cannot
discard the existence of non-zero separable and separably injective p-Banach
spaces, Gp could actually be such a space. In any case, all such spaces must
be complemented subspaces of Gp. Ironically, it is the abundance of operators
with values in Gp that makes it very difficult to define operators on Gp:

Proposition If X is a separable p-Banach space and Y is a topological vector
space such that L(X,Y) = 0, then L(Gp,Y) = 0.

Indeed, assume u : Gp −→ Y is non-zero and take g ∈ Gp such that u(g) , 0.
Let v : X −→ Gp be an embedding, pick x ∈ X and let w ∈ L(Gp) be such that
w(v(x)) = g. Then uwv is a non-zero operator in L(X,Y), a contradiction.
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326 Fraı̈ssé Limits by the Pound

Thus, for instance, L(Gp,Y) = 0 if Y is either an ultrasummand, by the
Corollary in Note 1.8.3, or Y = L0 since L(Lp/Hp, L0) = 0 for exactly the
same reasons that L(Lp/Hp, Lp) = 0 for 0 < p < 1 (see Kalton [250, Theorem
7.2] or Aleksandrov [6, Corollary 4.4 on p. 49]). The same reasoning shows
that every non-zero operator defined on Gp must be an isomorphism on some
copy of `2 because this is what happens in Lp when 0 < p < 1; see [283,
Theorem 7.20] for perhaps the simplest proof.

6.5.3 Fraı̈ssé Classes of Banach Spaces

Knowing that a given structure is a Fraı̈ssé limit opens a door to a deeper
appreciation of its properties. It is therefore not unproductive to ask which
classes of finite-dimensional Banach spaces have the amalgamation property.
Two obvious answers are ‘all finite-dimensional spaces’ (whose Fraı̈ssé limit
is G) and ‘the Euclidean ones’ (whose Fraı̈ssé limit is the separable Hilbert
space). To be true, what people knowledgeable about (continuous) Fraı̈ssé
structures work with are separable classes with stable versions of the amal-
gamation property. What is required is that, given δ-isometries f : E −→ F
and g : E −→ G, there exist some space H in the class and isometries
g : F −→ H, f : G −→ H such that ‖g f − f g‖ < ε, with ε depending on δ,
and perhaps on dim E. Our naive approach relies on Lemma 6.2.5 to guarantee
stability. Very recently [170], the Banach spaces Lp for p , 4, 6, 8 . . . have
gained access to the elite club of Fraı̈ssé spaces, which means that the class
of finite-dimensional subspaces of Lp has a certain (stable) amalgamation
property for those values of p. Those amalgamations are not plain pushouts,
though. What prevents Lp from being Fraı̈ssé when p = 4, 6 . . . depends on the
fact, proved by B. Randrianantoanina, that those Lp contain isometric copies
of the same finite-dimensional spaces with very different projection constants
[398], which is in turn connected with [345, Theorem 3] where, elaborating
earlier work of Plotkin/Rudin, Lusky had shown that if 0 < p < ∞ is not
4, 6, 8, . . . then, given an isometry ϕ0 : E −→ Lp from a finite-dimensional
subspace E of Lp and ε > 0, there is an automorphism ϕ ∈ L(Lp) extending ϕ0

such that ‖ϕ‖, ‖ϕ−1‖ < 1+ε (the reader can check this with Proposition 6.2.10).
The Kechris–Pestov–Todorcevic (KPT) correspondence [293] provides an

unexpected connection between Fraı̈ssé structures and topological dynamics.
A topological group is extremely amenable if every continuous action on a
compact set has a fixed point. The KPT correspondence states that, given a
Fraı̈ssé class C, the group of automorphisms of its Fraı̈ssé limit is extremely
amenable in the strong operator topology if and only if C has the approximate
Ramsey property, something that has to do with continuous colorings; see
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[385, Section 6.6] for a very readable introduction. Neither implication in the
KPT correspondence is trivial. One can count among the applications that the
otherwise mysterious isometry group of G is extremely amenable, because the
class of all finite-dimensional normed spaces has the approximate Ramsey
property; see [32]. Moving in the opposite direction, it implies that finite-
dimensional Euclidean spaces have the approximate Ramsey property since
the isometry group of a separable Hilbert space is (a Lévy group and thus)
extremely amenable; see [385, Section 2.2]. More information on extreme
amenability and approximate Ramsey properties can be found in [385] and
more examples of Fraı̈ssé classes in functional analysis in [342].

Sources

This chapter’s blueprints were drawn in [80; 75; 116], which, in turn, are based
on ideas of [310; 183]. The spaces underpinning the chapter are very classical
objects in Banach space theory. In [203] Gurariy constructed the space that
bears his name, coined the term AUD and proved Proposition 6.2.10 and, in
particular, that any two separable AUD Banach spaces are almost isometric.
The prefix was eliminated by Lusky in [343], a fine paper (which goes without
saying when talking about Lusky’s papers) which contains the additional result
that the isometry group of G acts transitively on the set of smooth points of the
unit sphere. More information about G and related constructions can be found
in [22, Section 3.4]. A new proof of the uniqueness of Gurariy space was given
by Kubiś and Solecki in [310]: the proof basically consists in showing that
any separable AUD Banach space is the Fraı̈ssé limit of the class of finite-
dimensional spaces and isometries. Given the potential target of their paper, a
tactical move was not to pronounce the word ‘Fraı̈ssé’. The paper contains the
Banach ancestor of the key Lemma 6.2.5 and has (perhaps shared with [308])
the unquestionable merit of introducing Fraı̈ssé structures into the Banach
space business. The construction of Gp in Section 6.2 just transplants Kubiś
and Solecki’s ideas to the soil of p-Banach spaces; the presentation in [80] is
more akin to [22, Chapter 3] and uses the Device. A forerunner of Gp appears
in [248, Theorem 4.3]. The construction of Kp, taken from the ‘related issues’
of [75], is an adaptation for quasi-Banach spaces of Garbulińska-Wȩgrzyn’s
[183], where the idea of regarding spaces of Kadec type as Fraı̈ssé structures
appears for the first time and property [a] is introduced as property (E).
Categories of embedding-projection pairs had been defined and exploited in
[308, Section 6]. Proposition 6.3.13 is the [a] version of [116, Theorem 4.1];
there, it is shown that if X is a Banach space with separable dual then the output
a(X) is a Banach space with the additional property that given contractive pairs
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u : E // Xoo and v : E // Foo , where F is a finite-dimensional normed
space, for every ε > 0, there exists a pair w : F // Xoo such that ‖u−w◦v‖ <
ε and ‖w‖ < 1 + ε. This property was called ‘almost universal complemented
disposition’ in [116]. We are not as convinced today that it deserves that name,
mainly because, as mentioned before, we cannot ensure it is equivalent to
AUCD. The topic of complementably universal spaces for a class A (spaces
in the class containing complemented copies of every space in A ) emerges
in 1969 when Pełczyński [381] exhibits his celebrated ‘universal basis’ space:
a complementably universal space for the class of Banach spaces with basis.
In 1971, Kadec [240] obtains the first complementably universal member of
the class of separable Banach spaces with the BAP. Back to back with it, the
next article in the same issue of Studia is from Pełczyński and Wojtaszczyk
[384] and shows the existence of a complementably universal space for FDD,
necessarily isomorphic to Kadec’s. Still in the same volume, Pełczyński proved
[382] that every Banach space with the BAP is complemented in a space with
a basis, thus making it clear that his own universal space was complementably
universal for the BAP and thus isomorphic to Kadec space. Kalton (who else?)
performs in [247] a study of universal and complementably universal F-spaces
and mentions the existence a complementably universal p-Banach space for the
BAP for fixed 0 < p < 1. He just adds that ‘it is easy to duplicate the results for
Banach spaces’. It is clear from [247, Theorem 4.1 (b) and Corollary 7.2] that
Kalton is alluding to Pełczyński’s universal space. He concludes by remarking
that ‘there are a number of other existence and non-existence results known
for other classes of separable spaces’. From the Pełczyński decomposition
method, it follows that two separable complementably universal p-Banach
spaces for the BAP are isomorphic, and thus it turns out that Kp is isomorphic
to Kalton’s space, while K1 is just a renorming of the spaces of Pełczyński,
Kadec and Pełczyński and Wojtaszczyk. Several questions can be posed about
those spaces, but two especially burning ones are: Does Kadec’s space have
property [a] in its own norm? Are the isometry groups of the spaces Kp

extremely (or otherwise) amenable in the SOT? It cannot go unmentioned that
no separable complementably universal space exists for the class of separable
Banach spaces [233]. Universal operators date back to Rota’s celebrated
‘model operator’ on Hilbert space. The material of Section 6.4 is taken
from [80]. The category H is a typical slice category; see [27, Section 1.6,
Example 4]. Theorem 6.4.5 subsumes several results scattered in the literature.
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