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GEOMETRIC CHARACTERIZATION 
OF INTERPOLATING VARIETIES 

FOR THE (FN)-SPACE A°p OF ENTIRE FUNCTIONS 

CARLOS A. BERENSTEIN, BAO QIN LI AND ALEKOS VIDRAS 

ABSTRACT. A necessary and sufficient geometric characterization and a necessary 
and sufficient analytic characterization of interpolating varieties for the space of entire 
functions A® will be obtained in the paper, which as an application will also give a 
generalization of the well-known Pôlya-Levinson density theorem. 

1. Introduction. Let p(z) be a weight (see Definition 2.1 below) and A® be the vec­
tor space of all the entire functions satisfying: supzeC \f(z)\e~~ep{z) < oo for any e > 0. 
For instance, when p(z) — |z|, A® is the space of all entire functions of infraexpo-
nential type. Let Ap,n denote the vector space of all entire functions on C satisfying: 
supzGC \f(z)\e~~>p{z) < oo. Then Ajj = f]ne^Ap^n is the projective limit of the spaces Ap,n, 
where N := {1,2,. . .}. Under its natural locally convex topology A® becomes a nuclear 
Fréchet (FN)-algebra. Algebras of this type appear naturally in complex and functional 
analysis. The present paper is concerned with the interpolation problem for A®. That is, 
roughly speaking, find conditions for a given multiplicity variety V = {(zk, rnk)} such 
that for any doubly indexed complex sequence {#*,/} with convenient growth conditions 
there exists an entire function/ e A{

p satisfying/^/ := ^-7^ — aKi for any k G N 
and 0 < / < nik — 1. Interpolation problems are studied due to their applications to 
harmonic analysis. We are interested in finding necessary and sufficient conditions for a 
given multiplicity variety to be an interpolating variety for A®, especially, getting purely 
geometric conditions that depend only on the distribution of points of a given variety. We 
note that in the case of the algebra Ap, i.e., the algebra of all the entire functions satisfy­
ing: sup,eC \f(z)\e~Bp{z) < 00 for some B > 0, this problem has recently been completely 
solved by Berenstein and Li (see [BL1]). We also refer the reader to the papers [BL1], 
[BL2], [BL3], [BT], [SI], [S2], etc. for related results on interpolation theory in the space 

v 
It was shown in [V] that the very well-known density theorem of Polya-Levinson ([L]) 

can be stated as follows. Let V = {An}^j be a sequence of non-zero complex numbers 
converging to infinity and satisfying 
(1.1) R e A n > 0 , 
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(1-2) \lmX„\=o(\X„\), 

as n —• co, and for some c > 0 and any «,^GN, 

|A„-A*| >c\n-k\. 

Then, V is an interpolating variety for the space A°p with p(z) = \z\, Le. the space of 
functions of infraexponential type (The conditions (1.1) and (1.2) are actually superflu­
ous, see Theorem 5.1 and Remark 5.2). This theorem of Polya-Levinson provides the 
motivation for this paper and leads naturally to ask when an arbitrarily given sequence 
V = {zk} in C or more general, a multiplicity variety V = {(zk, mk)} is interpolating for 
the space Ap with p being an arbitrary weight. We shall solve this problem in the present 
paper. 

The paper is divided into four parts. In Section 2, we introduce the basic definitions 
and notations. In Section 3, we will give purely geometric characterization of interpo­
lating varieties for A®p which enables us to determine whether or not a given multiplicity 
variety is an interpolating variety by direct calculation. The geometric conditions will 
also yield necessary and sufficient analytic conditions as given in Section 4. Finally in 
Section 5, we obtain, as an application, a completely different proof of the above Polya-
Levinson density theorem with the conditions (1.1) and (1.2) removed. 

Let us mention that our main result is the geometric characterization of interpolating 
varieties for A®. The difficulty of this problem is that unlike the space Ap for which the 
geometric conditions follow form the analytic conditions (see [BL1]), the space Ap is 
endowed with the rather complicated topology of the projective limits, which makes it 
hard to adopt the line of reasoning from [BL1] to the space A°p. 

2. Definitions and notation. In this section, we recall and introduce some defini­
tions and notation, which we need in the sequel. 

DEFINITION 2.1. A subharmonic function p: C—>[0, oo) is called a weight function 
if it satisfies the following conditions: 

(2.1) log(l + \z\
2) = o(p(z)), 

(2.2) p(z) = p(\z\) 

and 

(2.3) p(2z) = 0(p(z)). 

Note that the subharmonicity of p(z) and (2.2) imply that p(er) is convex and p(r) is 
increasing by Riesz's convexity theorem(see [BG, 4.4.27]). Also, (2.3) implies that there 
are constants C\ > 0, C2 > 0 such that 

(2.4) p(z + 0 < Cip(z) + C2, whenever \z - <| < 1. 
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DEFINITION 2.2. Let p be a weight. Then we set 

Ap=lfE A(C) : 3Af > 0, sup ]f{z)\e~A^z) < oo} 
zee 

endowed with the inductive limit topology and 

A°p= If E A(C) : Ve > 0, sup \f(z)\e'€piz) < oo}. 
zee 

endowed with the topology of the projective limit, where A(C) is the set of all entire 
functions. 

A basic example of such weight functions is p(z) — \z\a, (a > 0). As we said before, 
for a = 1,/ E A® means that/ is of infraexponential type. 

Let V = {(z/t, mk)}
(
k
xL{ be a multiplicity variety, that is, a sequence of points {zk}^L\ C 

C with \zk\ —* oo, and a sequence of positive integers {ra^}^ corresponding to the 
multiplicities of the points Zk- Associated to V, there is a unique closed ideal in A(C), 

/ = l(V) = {/* £ A(C) : / vanishes at Zk with multiplicity > m^}. 

Two functions g, h E A(C) can be identified modulo / if and only if 

— — = — — = akh 0 < / < mk, k = 1,2,.... 

The quotient space A(C)/I can be identified to the space of all sequences {a^i} of com­
plex numbers (cf. [BT]). We shall describe them as "analytic functions" on V, and denote 
that space by A(V). The map 

p:A(Q—A(V), P(g)= j ^ p } 

is called the restriction map. 

DEFINITION 2.3. Let V = {(zk, w*)}j£i be a multiplicity variety. Then we define 

A°(V) := a = {< ,̂/}*<EN : Ve > 0,sup ]T |aM| exp(-e/?(z*)) < oo . 
1 £GN /=0 J 

It is easy to see that p(Ap
)) C A°(V), but in general, the space A®(V) is too large. 

We consider the following interpolation problem for A°p: Under what conditions does 
the map p map AJJ onto A®(V)1 That is, under what conditions is it true that for any 
doubly indexed sequence {a*,/} £ A{J(V) there exists an entire function/ E AjJ such that 

A/ •= f—jf^ = «it,/ for any A: G N and 0 < / < mk — 1, i.e., there is a / G A^ with 
prescribed first m̂  Taylor coefficients at ẑ  for every k E N? 

DEFINITION 2.4. If p maps A° onto A°(V), we will say that V is an interpolating 
variety for AJJ. 
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We recall, by the way, that if p maps onto from Ap to the space 

AP(V) := la = {tf*,/}*eN ^ 3A« > 0,sup ]T \akj\ exp(-Aap(zk)) < oo , 
1 *GN /=0 J 

then V is called an interpolating variety for Ap. 

It turns out that the following valence function of V plays an essential role in interpo­
lation theory. 

DEFINITION 2.5. Let V = {(zk,mk)}
(^l be any multiplicity variety. The counting 

function of V, denoted by n(r, V), is defined to be the number of points of V, counted 

with their multiplicities, in the disk {z : |z| < r}. The valence function of V, denoted by 

N(r, V), is defined to be: 

rn(t,V)-n(0,V)^t 

/ dt + w(o, V) log r. 

Similarly we can define the functions n(r,zo, V), N(r,zo, V) defined with respect to the 

disk {z:\z- Zo\ < r}. 

3. Geometric characterization of interpolating varieties for A0. In this section, 

we give purely geometric conditions necessary and sufficient for a given multiplicity 

variety to be interpolating for A®. 

THEOREM 3.1. Let V = {(zk,mk)}
<^=l be a multiplicity variety. Then V is an inter­

polating variety for A® if and only if 

(3.1) N(r, V) = o(p(r)) asr-^oo 

and 

(3.2) N(\zk\,zk,V) = o(p(zkj) as * - > oo. 

PROOF. Necessary conditions: Let 

Ap,n = {fe A(C) : [ [ / l u := sup \f(z)\e~^(z) < oo} 
zee 

for n e N. Then A°p — f\eN^/v? endowed with the natural projective limit topology is a 
nuclear Fréchet space. More precisely, let's consider the product space 

11 Aptn — Apj X Ap^ X • • • X Apfn X • • • 

and the projections gm,n'APtn >—»• AAm, whenever m < n. Let £ be the subspace of 

LUeN^A" w n o s e elements (fn) satisfy the relation/w = gm,n(fn), whenever m < n, that 

is, E — {(/",/, . . . , / , • • • ) : / ^ ^ } - We know that £ = l i m g ^ A ^ ) is the projective 

limit of the family {APjn, « e N } with respect to the mappings gm,n (see e.g. [S] for basic 
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properties of projective limit topology). The topology r of E is the projective topology 
on E with respect to the family {Ap,n, rn, </>„}, where rn denotes the topology of A p n , and 
cj)n the restriction to E of the projection of IlneN Ap,n onto APtfl. Thus for any (f)EE and 
/ — 0« ((/"))» a T neighborhood base of if) is given by all the intersections f]neH 4>~](Un), 
where Un is any neighborhood off with respect to rn and / / is any finite subset of N. 
Clearly, E is complete as a projective limit of complete locally convex spaces and is 
metrizable as a subset of a product of countable family of metrizable topological vector 
spaces (cf. [S]). In the same way we set 

Ap,n(V) = (a = {«it,/} *eN : IMUoo := sup 5 ] K / l )e"«p(z*) < oo . 
I ()</<-, keN \ /=0 / J 

ThenAj(V) = a e N^P.n (V) .Le t 

£(V) = { ( û , a , . . . , f l , . . . ) : « € A j ( V ) } . 

The topology cr of £(V) is the projective topology on E(V) with respect to the family 
{APin(V), on, gn},where on denotes the topology of AAn(V), and qn the restriction to E(V) 
of the projection of rineN AA„(V) ontoApn(V). Thus for any (a) G £(V) and a = g n ( (a) ) , 
a a neighborhood base of (a) is given by all the intersections f]neI q^x(yn), where Vn is 
any neighborhood of a with respect to an and / is any finite subset of N. Also, E(V) is 
complete and metrizable. Now consider the map ip: E \—> E(V) given by 

¥>((0) = ((/*,/) keN ) 
0</<m^ 

withfkj — t-jr^ = 0*,/. Here we have used the fact that <p(E) C E(V). In fact by Cauchy's 
formula, for a n y / G A®, e > 0, there exists a Ac > 0 so that 

and so that for any &: 

mk-\ ,mk-\ 1 x 
D I/*,/1 < ( E ^7 A eexp(e max p(z)) < 2Ae exp(e max p(z)J. 
/=0 V /=0 Z J \z-zk\=2 |z-Zjt|=2 

This implies that (fk4) <E A°p(V) in view of (2.4). That is, <p(E) C E(V). Obviously <p 
is linear and surjective since V is an interpolating variety for A®. It is also obvious that 
(f is continuous. Thus, by Banach's homomorphism theorem ([H, p. 294]), ^ is a strict 
morphism and maps every neighborhood of 0 in E onto a neighborhood of 0 in E(V) ([H, 
p. 106]). For any fixed n G N, let 

Un = the unit ball of Ap,„ = {/ e A(C) : |[/||n,oo = sup \f{z)\e~**z) < 1}. 
zee 

Then 
^ 1 ( ^ ) = { 0 r , / , . . . , / , . . . ) : / e A ^ a n d | [ / | | n , o o < l } 
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is a neighborhood of 0 in E. By the above argument <£ (</>„"* (£4)) contains a neighbor­
hood of 0 in E(V) and so contains an open set of the form f|me/ q~l(Vm), where Vm is a 
neighborhood of 0 with respect to on and / is a finite subset of N. It is readily seen that 
there exist a / „ E N and Sn > 0 such that 99 (0"1 (£/„)) contains the set 

(a,a,...,a,...):a = (akJ) G A°(V),sup £ |aw|)«—**> < «„ . 

This implies that there exist entire functions^^ G AQ
p(k G N) with ||/n,*||w,oo < 1 satisfy­

ing the following property: 

(3. 3) (fnJt)u = 0, i G N, 0 < / < rm - 1, except that (fcj)*. ,m*-l 

Also there exist entire functions gn^k G A°p(k G N) with ||g„ |̂|«,oo < 1 satisfying the 
following property: 

(3.4) (gnM)u = 0, i G N, 0 < / < mi - 1 except that ( g ^ o = « « e ^ . 

Define 

(3.5) Fn(z) = £fe ~ *)M*7 := £ KM-
k=\ e'npKZk) k=\ 

Recall that log(l + |z|2) = o(p(z)). For any m G N, there is a Dm > 0 such that for 
z e C , |z| < Dme™p{z). Thus, in view of the fact that |^| |n > 0o < 1, ||g/i,*lkoo < 1, we 
deduce that 

Av(z) 
\Kiz)\ < (\z\ + \zk\y 

ipizk) 

(3'6) < (Z)^^)+A^^))4^-
<D'ne»p{z)e-»p(Zk). 

where D'n is a constant depending on n. Let A, # > 0 be two integers such that p(2z) < 
Ap(z) + ^ (cf (2.3)). Denote, for & fixed, dk = inf^jlzy — z*|}, ê  = min{l,*4}, and 
#* = {̂  • |z — ZA:| < ek}. For the integer N := 2A(Jn + l), similar to the proof of (3.3), one 
can obtain entire functions fNtk E Ap(k € N) with |[/)v,£||yv,oo < 1 satisfying the following 
property: 

(3.7) (/W,*);,/ = 0, i G N, 0 < / < rm - 1 except that (fa*)*,m*-i = ftv-

f 
Set Ĝ VÂ: = , d„-i. Then on z — z* = 1 and so in \z ~ zA < 1, by the maximum 
modulus theorem, 

\GNM < t max \fNJt(z)\ < max e**z\ 
\z-Zk\=\ \z-zk\=l 
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We then have \GN,k(z)\ < e"eNp{Zk) for \z — zk\ < 1 (we can assume that |z*| > 1). Let 

GN,k(z) ~ GN,k(Zk) 
HNAz) •• 

2eu eN^Zk' 

Then in \z - zk\ < 1, \HN,k(z)\ < 1 and HNM(zk) = 0. By the Schwarz lemma ([BG]) and 
noting that ZjJ ^ k is a zero of GN^k(z), we know that if |zy — z*| < 1, then in view of 
(3.7), 

k/-^l > l#«(z/)| fi A /„ \ 
2 ^ N eN'Uk) 

-8^e N e N p{Zk). 

This implies that 

Now, by assuming that SN < 1, we deduce that for some integer ko > 0, 

1 ^ 1 

- ^ V / e~^^p(Zk) dxdy 

e-JU^p^ dxdy := D" < +oo 4_ 

ft 
<C e N gAUn + D'n I I 

by the property (2.1) of p. Combining this fact with (3.6), we see that the series (3.5) 
is uniformly convergent in compact sets and so Fn(z) is an entire function. Moreover 
\Fn(z)\ < D'nD'^z\ {Fn\mk = 61 and V C Z(Fn) := {z : Fn(z) = 0} by (3.4) and 
(3.5). Apply now Jensen's formula (see e.g. [BG]) to deduce that 

lo g\(Fn)k,mk\+N(\zkl\zklZ(Fn)) = 1- £*log\Fn(zk + \zk\e
i9)\dO, 

and so, 

N(\zkl\zklV)<N(\zkl\zk\,Z(Fn)) 

< -2 \og8n + log max \Fn(z)\ 

< -2 log Sn + log D'n + log D"n + -p(2Zk) 
n 

< -2 log 6n + log D'n + log D"n + —pizt) + —. 

This implies that A^(|zt|, \ik\, V) — o[p(zk)) as k —• oo. Finally, noting that V c Z(F„), 
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we conclude that, again by Jensen's formula, 

1 
N(r9V)<N(r9—) 

1 /-27T 
= —jJ\og\Fn{rJ9)\dÔ + log 

/f(0) 

/*'>«)) 
< logmax|F„(z)| + log 

\z\=r 

where t := «(0, j - ) . Again by the fact that \Fn(z)\ < D'nD'^p{z\ it follows that N(r, V) = 

°{p(z)), as r —•» oo. This completes the proof of the necessity. 
Sufficient conditions: Recall \haXp{er) is a convex function of r and/?(r) is also in­

creasing (see Definition 2.1). By [BMT, 1.7 and 1.8], for any continuous and increasing 
function u{r), if o;(r) satisfies (2.1) and (2.3) and uj(er) is convex, then for any function 
g: [0, oo) —•> [0, oo) satisfying g(r) = 6>(^(r)) as r —> oo, there exists an increasing func­
tion q(r): [0, oo) —+ [0, oo) such that #(r) also satisfies (2.1) and (2.3) and q(er) is convex, 
and moreover g(r) = o(q(r)}, q(r) = o(oj(r)} as r —+ oo. Therefore by this result, we 
deduce from (3.1) and (3.2) that: 

(3.8) 

and 

(3.9) 

N(r,V) = o(q(rj), 

N(\zk\,zk,V) = o(q(\zk\j), 

where q(r): [0, oo) —» [0, oo) is a function which satisfies (2.1) and (2.3). Moreover, q(er) 
is convex and q(r) = o(p(r?) as r —•> oo. By the fact that/ o w is subharmonic iff is 
convex increasing and u is subharmonic [BG, 4.4.18], we deduce that q(\z\) — q(eln^) 
is subharmonic. This shows that q{r) is also a weight. Using Theorem 4.1 in [BL1], (3.8) 
and (3.9) imply that there are two functions F € Aq and G E Aq such that 

(3.10) 

and 

(3.11) 

V = Z(F, G):={zeC: F{z) = G(z) = 0} 

Jk,mk > e 0 exp(-Qfo)) . 

for some eo, C > 0 and V is interpolating for Aq. Now the sufficiency can be finished by 
using the fact that V is also interpolating for Aq>, where q' > q is any bigger weight or 
by the following direct argument. In fact, by [BT, Corollary 2], (3.10) and (3.11) imply 
that for some e, c > 0, each zk E V is contained in a bounded component S* of 

Sq(F,G,,e,c) :={zeC: \F(z)\ + |G(z)| < eexp(-c</(z))}, 
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whose diameter is at most one and no two distinct points of V lie in the same component 
of Sq(F, G, ; e, c). For any a = {ak /} ke^ G Aj}( V), we may then define an analytic 

0</<m*-l 

function A: Sq(F, G; e, c) i—• C by: 

xM= \^XaKl{z-zk)\ îîzeSk\ 
K) | 0 , ifzGS^(F,G;€,c)\UGNSfe. 

For each z G S*, m G N, since \z — zk\ < 1 we deduce that 

m*—1 m^ — 1 

\x(z)\ < Y, \<*k,i\\z-Zk\ < E K/l <Ame-p(zk) <Ame 
/=o /=o 

ÎAKZ) 

by the definition of AJJ(V) and the property (2.3), where M and Am are two positive con­
stants and Am depends only on m. From this, we can easily verify that for V n ^ N : 

sup{|Â(z)|é>-^(z) : z G ^(F,G;e,c)} < oo. 

Therefore A satisfies all the hypothesis of Proposition 2 in [MT]. Consequently there 
exist A G Ap, ei, ci, withO < e\ < e, ci > c and w,i; analytic in Sq(F,G, ;e,c), such that 
forallzG5^(F,G,;ei,ci), 

A(z) = A(z) + wF+vG. 

and thus for & G N, 0 < / < mk — 1, Â ,/ = Xkj = a*,/. 
The proof of Theorem 3.1 is thus complete. • 

REMARK 3.2. From the proof of the sufficiency of Theorem 3.1, we see that any 
interpolating variety for A® is also interpolating for Aq, where q is some weight satisfying 
that q{r) — 6>(/?(r)), and thus for Ap. 

REMARK 3.3. Thanks to Dr. A. Russakovskii, we have become aware of [GR] where 
they studied functions of fixed type. Their result,though related, does not apply either Ap 

ovA°p. 

4. Analytic characterization of interpolating varieties for A®. As a corollary of 
the last section, we give in this section the following analytic conditions necessary and 
sufficient for V to be interpolating for A®. 

THEOREM 4.1. Let V = {(zk, ntk)} be a multiplicity variety. Then V is an interpolat­
ing variety for A® if and only if there exists an entire function f G AjJ such that V C Z(f) 
and as k —• oo, 

(4.1) [ / U r 1 <exp(o{/?(z*)}). 

PROOF. Necessary conditions: If V is an interpolating variety for A ,̂ then by Theo­
rem 3.1, (3.1), (3.2) hold. By the proof of the sufficiency of Theorem 3.1, we know that 
there is a / G A ^ C A°p so that V C Z(f) and (4.1) holds (see (3.10) and (3.11)). 
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Sufficient conditions: By the fact that V C Z(/), we have that 

N(r, V) < NU - ) 

1 £*log\f(nw)\dO + log 
2n 

< log max \f(z)\ +log 

- l 

t\ 

f{t)(0) 

/W(0)| 
1 

- o(p(r)) 

since/ G A®, where t — rc(0, j). By (4.1), we have that 

N(\zk\,zk,V)<N(\zklzk,j) 

rllT 

= T - r log iffo+i^i^)i ^+log —-
2TT JO \fkmk | 

< log max \f(z)\ + <9(/7fo)) 

= o(p(2^)) + 6>(pfo0) = o(/?fo)). 

Therefore (3.1), (3.2) are satisfied. It follows then that V is an interpolating variety for 
AQ

p by Theorem 3.1. • 
As we said in Remark 3.2, any interpolating variety for A® is also interpolating for 

Ap. But the converse is not true. The interesting variety Z? := {m + in}mne^, the lattice 
in C, gives such an example. Note that Z2 is the zero set of the Weierstrass function a, 
which is the analogue of the function sin TTZ for the lattice. It is easy to check that Z2 

satisfies that ̂ (r, Z2) < Ar2 and for zk G Z2, N(\zk\,zk, Z2) < A(|z*|2), where A > 0 is a 
constant. Thus by Theorem 4.1 in [BL1] (cf. the proof of the sufficiency of Theorem 3.1), 
Z2 is an interpolating variety for AQ, where g(z) := |z|2. However, Z2 does not satisfy 
(3.1). Thus Z2 is too "dense" to be interpolating for A°Q. It becomes natural to ask when a 
sub variety V = {zk} with zk —* oo of Z2 is interpolating for A .̂ The answer is provided 
by the following 

PROPOSITION 4.2. Let V — {zk} be a subvariety of Z2. Then V is an interpolating 
variety for AQ if and only if as r —• oo, 

(4.2) n(r, V) = o{g(r)}. 

To prove the theorem, we need the following crucial lemma which is implicit in the 
proof of Theorem 4.1 in our paper [BL1]. 

LEMMA 4.3. Let V be a multiplicity variety satisfying 

N(r, V) = 0{q(r)} 
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for a weight q(z). Then there exists another variety V* such that 

(4.3) VDV* = 0, 

(4.4) ^ : = V U V , = Z(G) := {z : G(z) = 0} 

for an entire function G £ Aq, 

(4.5) n(r,V) = 0(n(2r,V)), 

and 

(4.6) W(|zt|,Zt,V„)<An(B|3l|,V) 

for some constants A, Z? > 0. 

PROOF OF PROPOSITION 4.2. The necessary condition follows from Theorem 3.1. 
We next prove the sufficiency. First, it is easy to check that (4.2) is equivalent to 

(4.7) N(r, V) = oir2). 

Thus, by [BMT,1.7 and 1.8], we deduce that there exists a weight q(r) with q(r) = oir2) 
such that N(r, V) — o{q(r)} as r —• oo (cf. the proof of (3.8)). By Lemma 4.3, there 
exist a variety V* and an entire function G 6 Aq satisfying (4.3)-(4.6). There is no loss 
of generality to assume that G(0) = 1. For any 0 < e < 1 and r > 0, set 

R(z) = {-(r+rt)rn(:+re)(;rak)> 
a{a2 "-an k=l (r + re)1 - akz 

where a\, a2,..., an are the zeros of G(z) in \z\ < r + re, and 

5(z) - G(z)/R(z). 

Recall that if a function/(z) is regular in \z\ < R without zeros and/(0) = 1 then 
log \f(z)\ > —^— \ogM(RJ) (\z\ <r<R\ 

K — r 

where M(R,f) := maxj.j==/?{[/>(z)|}(see [Le, p. 19]). Applying this result to S(z) in \z\ < 
r + re, we have that in |z| < r + ^re, 

2(r+^re) f (r+re)n 
-2 ( r+^re ) f 

log \S(z)\ > , i \ log M(r + re, G) - log 
r + re — (r + ^re) { 

8 
> logM(r + re,G). 

2 ' w v |#1<32 ' * ' an\ J 

Since G G Aq C A ,̂ there is a constant C > 0 such that 

logM(r + re,G) < Ce2g(r). 
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We then have that 
\ogS(z)>-^Cer2. 

Next using the well known Cartan's theorem [Le], we have 

l , 

£>-«.! >(?)" 
for any z outside a union of circles with the sum of radii < \re. Therefore for such z in 
{\z\ < r+ \re}, we have 

( r+ref (r+rc)n ( re y 

(r + ref 2n(r + re)2n \8eJ { \6e(r + re) 

Also by (4.5) and (4.2), 

n = n{r + re, V) = 0{n(2r, V)} = oir2). 

We thus deduce that for large r, 

and so 

(4.8) log|G(z)| > f-8Ce + elog —-£ -)r2 := -g^r2 

V 16^(1 +e) ; 

outside a union of circles with the sum of radii <\re. Here g(e) > 0 is defined obviously 
from the above equation. Therefore for any large k, (4.8) holds for r — \zk\ and |z| < 
\z\\ + WkV outside a family of excluded circles with the sum of radii < \\zi\e. Hence, 
one can get a pk(0 < pk < e\zk\) such that on \z — zk\ = Pk, (4.8) holds for r = \zk\. 
Applying Jensen's formula to G and in view of (4.3) and (4.4), we have 

1 r27r 

2?r JO 

>-g(e)\zk\
2-N(Pk,zk,h 

log \G\zk)\ = -i- tj log \G(zk + p,e*)</0 - N(pk, zk, V) 
Z7T ^0 

But 

N(pk,zk, V) < N(pk, zk, V) + N(pk, Zk, V*)\ 

N(pk,zk,V) = Jo dt + n(0,zk,V)\ogpk 

< ^ y <fr + log p^ 

1 2 1 ! ^ * 2, ,2 * , , | 

= 2 ^ " 2 + g ^ - 2€ '^ ' ~ 2 + g ' ^ ' ; 
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and by (4.6) and (4.2), 

N(pk,zk, V.) < An(B\Zkl V) = o{\zk\
2}. 

We thus obtain that 

log \G\zk)\ > -g(e)\Zk\
2 - ^e2\zk\

2 + X- - log \zk\ - o{\zk\
2}. 

Since g(e) —> 0 as e —> 0, we finally have that 

logiG'fa)!^-^^!2}. 

This together with (4.7) yields that Z2 is an interpolating variety for A°Q by Theorem 4.1. • 
If we replace Z2 by an arbitrary interpolating variety V for Ap, the analogue of Propo­

sition 4.2 might not hold. The obvious obstruction is on the separation between distinct 
points in V. To be interpolating for Ap, there must be constants 6 > 0, c > 0 such that for 
distinct points z, w G V, \z — w\ > 6 exp(—cp(z)), while the separation condition for A°p 

is that for any e > 0, there is a e\ such that \z — w\ > t\ exp(—ep(z)). Therefore the latter 
needs a stronger restriction than the former. It is not clear to us at this moment whether 
or not Proposition 4.2 with the extra hypothesis on the separation still remains true for 
any variety which is interpolating for Ap. 

5. An application of interpolation theory for A®. As an application of Theo­
rem 3.1 and Theorem 4.1, we have the following 

THEOREM 5.1. Let V = {Xn}
(^] be a sequence of non-zero complex numbers con­

verging to infinity and satisfying that for some a > 0: 

i 

(5.1) — ^ 0 
An 

as n —> oo, and for some c > 0 and any n, k £ N, 

(5.2) |An-A*| a >c\n-k\. 

Then there exists an entire function F(z) vanishing at z = \n and satisfying that for all 
e > 0 

(5.3) \F(rei9)\ = 0{ér") 

as r —> oo and 

(5-4) whr*^ 
as n —> oo. 

We see that from (5.3) and (5.4) or from the following proof, V = {Xn}^L\ is also an 
interpolating variety for A^ with/?(z) = \z\a. 
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REMARK 5.2. Letting a = 1 in Theorem 5.1, one obtains the classical Polya-
Levinson density theorem([L]), which is very useful to study problems such as ana­
lytic continuation and domains of holomorphy for Dirichlet series E^i*3 ane~XnZ with 
Fabry gap f- —> 0. One actually only needs the fact that V is an interpolating variety(c/ 
[BKS]). When ^ —» D > 0 instead of (5.1), the detailed proof was given in [L]. The 
essential point used in [L] is that in the case D > 0, the zeroes of the proposed function 
by him F\(z) = n"=i°(l — fi) are along an asymptotic direction, i.e., satisfy conditions 
(1.1) and (1.2). However, the conditions (1.1) and (1.2) are consequences of the limit 
Y —• D when D ^ 0 but not when D = 0. It was pointed out by one of us [V] in his 
thesis that the same proof for the case D — 0 in [L] breaks down without these two con­
ditions. By modifying Levinson's idea, he also gave another completely different, but 
rather lengthy, proof for the special case a = 1 of Theorem 5.1, constructing explicitly 
an entire function/ satisfying (5.3), and (5.4) for every zero off. 

PROOF OF THEOREM 5.1. Foranye >0 ,by (5.1),n < eA£ for large n. Thus for any 
t > 0 large, n(t, V) = #{n : \Xn\ < t] < eta. Thus 

N(r, V) = / -^—^ -^—^ dt + rc(0, V) log r < -era + log r. 
Jo t a 

This implies that 

(5.5) N(r, V) = o(ra). 

Also by (5.2), we have 

N(lXkl A t , y) = ^ n(r,A t,V)-n(0,A t,V) ^ + ^ ^ y) ^ ^ 
Jo t 

s 

= E log 
| A f c - ~h\ 

+ log|A* 

= log 
s 

n 
|A* 

"Â^Î 
+ log|A* 

<T l ^ r r (f i**iy 5 

TT 
1 

. + log|A*|, 
=i |*„-ifc|5 

where s = n(\Xk\, A ,̂ V) — TZ(0, A*, V) = n(|A^|, A ,̂ V) — 1 since |A^ — A^|a > c for 
kv ^k and the A*/s are the points of V in {z : |z — Xk\ < |A*|, z =£ Xk}. Obviously in the 
product Ui=\ ]k~n a t m o s t two terms \kv — k\ can be equal. Let [x] denote the integral 
part of x. Then we deduce that 

ni*,-*i>([^-D]')2< 
since there are at least [ ^ ] consecutive integers \kv — k\ occurring in the product. Thus 
we have that 

tf(|A*|,At,V)< l o g l f ^ l l- r)+log|A*| . 
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By using Stirling's formula in the form n\ > enlnn n for [j(s — 1)]!, we obtain 

W ( N , A , , V ) < l o g ( ( ^ l ^ -= l n *)+ log |A* | 

(5.6) 3 1 lAl 
= ( - + log — )s + s log —~ + log |A*|. 

'3 , 1 \ . |A. 
; — )s +s l o g ­
ea J s 

Let 0 < e < e~{, then for k » 1 we have that 

(5.7) s < n(|A*|, A,, VO < K2|A,|, V) < e\Xk\
a. 

The only term of (5.6) that needs estimation is the middle one. Let 

G(x) = x\og L-^, 0 < x < e\Xk\
a. 

x» 
Then, in this range, we have 

G / W - l o g | A , | - - l o g x ~ -
a a 

> l o g | A * | - - l o g ( £ | A i t |
a ) - -

a a 

= - ( l o g - - l ) > - ( l o g ^ - l ) = 0 

so that G is increasing and 

G(x)<-e\og(-)\\k\
a. 

^ ( | A , | , A , , V ) < ( - + l o g - V ) e | A , r 4 - l e l o g ( - ) | A , r + log|A, 
Va Câ ' oc \e / 

Thus, by (5.6) and (5.7), we deduce that 

3 , ±\ t% 1/y 1 
i 

Co 

It follows that 
N(\\k\,\k,V) = o{\\k\

a] 

as /c —> oo. This together with (5.5) yields, by Theorem 3.1, that V is an interpolating 
variety for A? ,a. We conclude the proof by using Theorem 4.1. • 
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