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Non-modal linear stability analysis results are presented for hypersonic flow over an
elliptic cone with an aspect ratio of two at zero angle of attack, completing earlier
modal instability analysis of flow around the same geometry. The theoretical framework to
perform transient growth analysis of compressible flows on a generalized two-dimensional
frame of reference is developed for the first time and is then applied to solve the
initial-value problem governing non-modal linear instability on planes perpendicular to
the cone axis, taken at successive streamwise locations along the elliptic cone. Parameter
ranges examined here are chosen so as to model flight of the Hypersonic International
Flight Research Experimentation 5 (HIFiRE-5) test geometry at altitudes of 21 km and
33 km, corresponding to Mach numbers 7.45 and 8.05 and unit Reynolds numbers Re′ =
1.07 × 107 and 1.89 × 106, respectively. Results obtained indicate that the significance
of the non-modal growth for laminar–turbulent transition increases with increasing flight
altitude (decreasing Reynolds number). At a given set of flow parameters, transient growth
is stronger in the vicinity of the tip of the cone and in azimuthal locations away from
both of the minor (centreline) and major (attachment line) axes of the cone. Linear
optimal disturbances calculated at conditions of maximal transient growth are found to
peak in the crossflow region of the elliptic cone. These structures are elongated along
the streamwise spatial direction, while being periodic along the spanwise direction with
periodicity lengths of the same order of magnitude as the well-known structures identified
as crossflow vortices in both experiments and simulations.
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1. Introduction

Non-modal linear stability theory, based on solution of the initial-value problem in which
the linearized Navier–Stokes equations can be recast, has elucidated laminar–turbulent
transition paths in a number of shear flows in which linear modal theory, based on solution
of the eigenvalue problem, has failed to predict transition (Trefethen et al. 1993; Schmid
& Henningson 1994; Tumin & Reshotko 2001; Tempelmann, Hanifi & Henningson
2010). To date, the majority of transient growth studies have been performed in a local
incompressible analysis framework, considering flows a basic state that is homogeneous in
two spatial directions; Schmid & Henningson (2001) and Schmid (2007) provide extensive
reviews of early work in this steadily growing field. Comparatively less transient growth
analyses have addressed compressible flow, the first such effort being the work of Hanifi,
Schmid & Henningson (1996), who demonstrated the potential of the flat plate boundary
layer to sustain algebraic energy growth of streamwise-aligned perturbations at conditions
subcritical to exponential amplification of Tollmien–Schlichting or crossflow disturbances.
More recently, Tumin & Reshotko (2003) relaxed the parallel flow assumption and
found that the optimal disturbances also correspond to steady counter-rotating streamwise
vortices. Zuccher, Tumin & Reshotko (2006) and Zuccher et al. (2007) analysed the flow
past a sphere and a sharp cone, and found that flow divergence has significant effects
on the transient growth phenomenon. Moreover, Tempelmann, Hanifi & Henningson
(2012) investigated the importance of the transient growth in crossflow-dominated
three-dimensional compressible boundary layers.

In the framework of global linear stability theory (Theofilis 2011), transient growth
analyses have also commenced in the incompressible limit and demonstrated the potential
of laminar flow separation to sustain levels of algebraic energy growth sufficiently high
to bypass the linear modal instability laminar–turbulent transition scenario (Sherwin &
Blackburn 2005; Blackburn, Barkley & Sherwin 2008). In the wake of the circular cylinder
(Abdessemed et al. 2009a), in a cascade of low-pressure turbine blades (Abdessemed,
Sherwin & Theofilis 2009b; Sharma et al. 2011) and in massively separated flow over
stalled aerofoils (He et al. 2017), the three-dimensional stationary global eigenmode
discovered by Theofilis, Hein & Dallmann (2000) to underpin self-excitation of steady
nominally two-dimensional laminar separation bubbles has been identified to co-exist with
the well-known amplified Kelvin–Helmholtz eigenmode that develops at the shear layer of
a laminar separation bubble (Dovgal, Kozlov & Michalke 1994). It was further shown that
linear optimal disturbances in all of these flows evolve into travelling Kelvin–Helmholtz
instabilities in the limit of an asymptotically large time horizon, thus providing a physical
link between results of the initial-value and eigenvalue problems. Paredes, Choudhari & Li
(2017, 2018), in their study of the blunt-body paradox associated with leeward transition
over a hypersonic spherical forebody, have discussed the important effect of the choice
of an appropriate energy norm in their analysis, and highlighted the need to investigate
further the optimal-growth criterion underlying the Reshotko & Tumin (2004) correlation.

Flow over an elliptic cone studied herein arises from the HIFiRE hypersonic flight
test programme, led by the Air Force Research Laboratory and the Australian Defence
Science and Technology Organization (Dolvin 2008). The aim of this effort has been
to demonstrate technologies that are critical to the design of next-generation hypersonic
aerospace systems, including boundary layer laminar–turbulent transition, prediction and
control. The first configuration in the programme, HIFiRE-1, used a 7◦ half-angle cone
to obtain in-flight transitional and turbulent boundary layer heating data on axisymmetric
configurations. The design of this experiment, the associated pre-flight effort and actual
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flight data, as well as transitional analysis, have been discussed in detail in Kimmel et al.
(2007, 2011), Kimmel (2008), Adamczak et al. (2011), Stanfield, Kimmel & Adamczak
(2012) and Li et al. (2011), further elaborating on the overview of earlier transition research
on circular base cones (Schneider 2004).

On the other hand, another configuration in the program, HIFiRE-5, was designed
specifically to provide transition data in an essentially three-dimensional boundary layer.
This platform consists of a blunt-nosed elliptic cone of 2 : 1 aspect ratio and 0.86 m in
length, mounted on an Orion booster (Kimmel et al. 2010). The specific aspect ratio
was chosen since it presents significant crossflow and second-mode instabilities that are
expected to be the dominant instability mechanisms in three-dimensional boundary layers
at hypersonic speeds. The minor axis of the cross-section is defined as the centreline, while
the major axis is referred to as the attachment line. The blunted tip consists of a 2.5 mm
radius circular arc that is tangent to the cone rays inscribed in the minor axis, while it
retains a 2 : 1 elliptical cross-section to the tip.

Several efforts spanning two decades have contributed to understanding hypersonic
transition on elliptic cones. From an experimental point of view, Holden (1998) obtained
schlieren images of hypersonic flow over a 4 : 1 aspect ratio elliptic cone at angles of attack
from 0◦ to 5◦, and reported that the transition front moves towards the base of the cone
with increasing angle of attack. Schmisseur, Schneider & Collicott (1998, 1999) measured
the boundary layer response to a laser-generated localized free stream disturbance on the
same 4 : 1 aspect ratio elliptic cone in a Mach 4 quiet tunnel at unit Reynolds number
4.5 × 106 m−1. At these conditions, the undisturbed flow field was shown to be practically
laminar in its entirety. The surface measurements also indicated that the boundary layer
response to disturbance is concentrated near the centreline. Kimmel, Poggie & Schwoerke
(1999) investigated the influence of base laminar crossflow on transition in the hypersonic
boundary layer over a sharp-nosed 2 : 1 aspect ratio elliptic cone employing schlieren
imaging and surface oil flow visualization. Unlike hypersonic flow over planar and
axisymmetric bodies, the transition front was found not to be driven by second mode
instability. They found that the transition front was non-uniform, with the earliest signs of
boundary layer transition being recorded in the vicinity of the centreline. Huntley & Smits
(2000) studied in detail centreline boundary layer transition on a sharp-nosed 4 : 1 aspect
ratio elliptic cone at Mach number 8 using CO2-enhanced filtered Rayleigh scattering. In
line with the results of Kimmel et al. (1999), and despite the different cone aspect ratio,
these authors also found transition to occur in the vicinity of the centreline, and presented
for the first time detailed results of the early stages of transition in this region. Juliano
& Schneider (2010) performed experiments in the Boeing/AFOSR Mach-6 Quiet Tunnel
(BAM6QT) facility with an aspect ratio 2 elliptic cone, and showed that the dominant
mechanisms leading to transition are streamwise-aligned structures, identified as crossflow
vortices between the centreline and the attachment line region. In the experiments of
Borg, Kimmel & Stanfield (2012), it was found that selective choice of spacing between
roughness elements introduced can excite wavelengths that would have been stable in the
unperturbed boundary layer. Heat flux and boundary layer transition were measured by
Juliano, Borg & Schneider (2015) in the BAM6QT facility, where two different transitional
modes were found, the first along the centreline and the second at the crossflow region.
Moreover, these authors showed that both transitional modes were delayed when tunnel
noise level was reduced, and conversely, the transition front moved forward when altitude
was increased. Flight testing of the HIFiRE-5 commenced in 2012, although in that
first flight the highest Mach number achieved in flight was 3 instead of the targeted 7
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(Kimmel et al. 2013). Analysis of the flight data obtained revealed a transition pattern
consistent with previous numerical and experimental studies, namely the presence of early
transition at the centreline of the vehicle. Subsequently, Juliano, Adamczak & Kimmel
(2014) performed a full analysis of the flight data during the supersonic descent phase, and
reported two distinct boundary layer transition mechanisms: the first caused transition at
the centreline, while the second was related to transition at the leading edge and grows
rapidly over a small range of free stream unit Reynolds numbers. The second flight test,
called HIFiRE-5b, was performed in 2016 and was fully successful, reaching its target
Mach number 7.5 and apogee ∼300 km; details and analysis of the flight can be found in
Kimmel et al. (2017, 2018) and Borg & Kimmel (2018).

From a theoretical point of view, early work employing the parabolized Navier–Stokes
equation was performed by Lyttle & Reed (1995), who analysed flow on an elliptic cone at
zero angle of attack and different cross-sections, and reported the existence of crossflow
for all geometries investigated, but no crossflow transition in the range of parameters
examined. The first inviscid linear global instability analysis was performed by Theofilis
(2000, 2002), who addressed supersonic and hypersonic flow over elliptic cones of
different aspect ratios by solving the two-dimensional Rayleigh equation on a body-fitted
coordinate system, and discovered distinct families of hydrodynamic and acoustic
instabilities. Choudhari et al. (2009) solved the corresponding two-dimensional viscous
eigenvalue problem on a rectangle containing the main basic flow features around the
centreline, for in-flight and wind tunnel conditions. The steady laminar three-dimensional
base flows were calculated using a variety of structured and unstructured codes
(Cheatwood & Gnoffo 1996; Nompelis, Drayna & Candler 2005; Baurle et al. 2020),
while the main result of the eigenvalue problem solution was identification of unstable
centreline global modes at all flow conditions examined. Paredes & Theofilis (2015)
and Paredes et al. (2016) also solved the two-dimensional eigenvalue problem on a
body-fitted elliptic coordinate system that extended from the centreline to the attachment
line of an elliptic cone at zero angle of attack. They interrogated flow instability at
21.8 km and 33 km altitudes, at Mach numbers 7.45 and 7, and unit Reynolds numbers
1.015 × 107 m−1 and 1.89 × 106 m−1, respectively. They reported the existence of four
classes of linear modal disturbances: symmetric and antisymmetric centreline instabilities
associated with the shear layer formed due to the lift-up effect at the centreline region,
as seen in the analysis of Choudhari et al. (2009), alongside high-frequency attachment
line modes, oblique second (Mack) modes and crossflow instabilities in the boundary
layer between the centreline and attachment line. Large-scale numerical simulation of
the HIFiRE-5 elliptic cone model was performed by Dinzl & Candler (2017) at the
conditions of the Borg et al. (2012) experiment. These authors reported a Reynolds number
dependence in the dominant stationary crossflow wavelength, with higher Reynolds
numbers supporting instabilities corresponding to smaller wavelengths. Furthermore,
streamwise-aligned structures were identified as streaks in agreement with experimental
results, and the formation of streamwise-aligned structures was attributed to the strong
interaction between the streamwise velocity and the wall. On the other hand, Moyes et al.
(2018) employed nonlinear parabolized stability equations (PSE) and linear spatial (modal)
two-dimensional instability analysis, and demonstrated that coupling nonlinear PSE and
global linear instability equations can provide a framework capable of predicting transition
onset in flows with stationary crossflow as the dominant mechanism. Tufts et al. (2018a)
summarized work performed up to that point, and discussed the strengths and weaknesses
of using computation, ground tests and flight tests to predict laminar–turbulent transition
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over the HIFiRE-5 elliptic cone geometry. Very recently, Shi, Zhu & Lee (2020) developed
an engineering model for transition prediction, based on new wind-tunnel experiments and
flight data correlations. The proposed model is shown to agree well with the HIFiRE-5b
flight data and with Purdue University wind tunnel test data (Juliano & Schneider 2010).
However, in the crossflow region closer to the centreline, disagreements were observed
between the experimental results of these authors when compared with flight testing data.
Since classical linear stability analysis (Paredes et al. 2016; Moyes et al. 2018) predicts
slow growth of disturbances in that region, no explanation of these differences could be
provided on the basis of linear modal analysis. Finally, Choudhari, Li & Paredes (2020)
extended the analysis of the HIFiRE-5b flight experiment using local theory (Tufts, Gosse
& Kimmel 2018b) to study the linear stability of the boundary layer flow near the centreline
of the elliptic cone, and found an N-factor that peaks close to the value that correlates with
Mack mode transition in the HIFiRE-1 circular cone experiment.

The present work aims to fill the knowledge gap regarding linear non-modal instability
on an aspect ratio 2 elliptic cone, and complements earlier modal analysis of the same
problem discussed by Paredes & Theofilis (2015) and Paredes et al. (2016). The base
flow model and analysis parameters used are unit Reynolds numbers Re′ = 1.89 × 10−6

and 1.07 × 10−7 m−1, at Mach numbers Ma = 8.05 and 7.45, corresponding to altitudes
between the highest, 33 km, and the lowest, 21 km, in cruise flight at zero angle of attack.
By contrast to Paredes et al. (2016), the initial-value problem is solved over time horizons
sufficiently long for the modal analysis results to be recovered, and the magnitude of
transient energy growth is documented. Some guidance for the choice of parameters
in the present transient growth analysis has been provided by the local analysis results
of Quintanilha et al. (2018), who addressed the potential of one-dimensional base flow
profiles, at various streamwise stations and all azimuthal locations, from the centreline
to the attachment line, to sustain transient growth. The present work constructs the
firm theoretical foundation for two-dimensional transient growth to be performed on the
geometry at hand, thus relaxing the approximation of azimuthal base flow homogeneity
used by Quintanilha et al. (2018).

The theoretical framework to perform non-modal linear instability analysis on arbitrary
two-dimensional compressible flows with two inhomogeneous spatial directions is
introduced in § 2. The coordinate transformation to apply the theory to the elliptic cone
problem at hand, as well as the numerical implementation of the non-modal analysis
framework in the massively parallel global instability analysis code LiGHT, are discussed
in § 3; validations of the code are presented in § 4.2. The main body of results obtained
is shown in §§ 4.3.1 and 4.3.2, respectively discussing one- and two-dimensional theory
results on linear optimal initial conditions, optimal perturbations at conditions of maximal
transient energy growth and the asymptotic behaviour of transient linear perturbations in
the large time horizon limit. In addition, comparison of the transient growth results with
experimental flow visualization is addressed. A summary of the findings and conclusions
is furnished in § 5.

2. Non-modal linear stability theory

The present work addresses linear instability on the aspect ratio 2 elliptic cone model of the
HIFiRE-5 test geometry from the point of view of numerical solution of the initial-value
problem (IVP) in which the linearized Navier–Stokes equations (LNSE) may be recast.
Results of the eigenvalue problem (EVP) solved by Paredes et al. (2016) are recovered in
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the limit of large time horizons and serve to validate the present time-dependent analysis
methodology; key theoretical points are discussed next.

2.1. The initial-value problem
Any unsteady three-dimensional flow quantity q(x, t) = (u, v, w, T, p)T(x, t) is
decomposed into a steady laminar base flow q̄(x), upon which an unsteady
small-amplitude disturbance, q̃(x, t), is superposed, i.e.

q(x, t) = q̄(x) + ε q̃(x, t), with ε � 1, (2.1)

where x = (ξ, η, ζ ) gives the three spatial directions in a curvilinear coordinate system.
Substituting this decomposition into the dimensionless compressible Navier–Stokes
equations gives rise to the LNSE (e.g. Hanifi et al. 1996; Choudhari et al. 2009; Paredes
et al. 2016). These equations can be written as an IVP in the form

∂ q̃
∂t

= Lq̃, (2.2)

where q̃(ξ, η, ζ, t) = (ũ, ṽ, w̃, T̃, P̃)T is the vector containing the disturbance functions of
velocity, temperature and pressure, and L contains the base flow, its spatial derivatives and
the Reynolds (Re) and Mach (Ma) numbers as control parameters.

The exact solution of the IVP is written with the aid of the matrix exponential (Moller
& van Loan 1978, 2003):

q̂(t) = q̂(0) eLt. (2.3)

If this matrix were normal, then its eigenvalue spectrum could be used to simplify this
expression. However, L of the LNSE is (highly) non-normal leading to a non-trivial
behaviour at early times, which arises on account of the near-parallel nature of certain
eigenvectors (Schmid & Henningson 2001) in the eigenspectra.

2.2. Quantitative description of transient energy growth
Linear non-modal instability is defined through algebraic growth or decay of disturbance
energy, scaled to unity at time t = 0, over a prescribed time interval 0 ≤ t ≤ τ (Luchini
1996; Corbett & Bottaro 2001; Schmid & Henningson 2001; Schmid 2007; Luchini &
Bottaro 2014). Optimizing algebraic growth within a given time horizon, τ , over all
permissible initial conditions permits us to define a quantitative measure of transient
energy growth through the gain function G(τ ), defined as the maximum energy
amplification:

G(τ ) = max
q̃0

E(q̃(τ ))

E(q̃0)
, (2.4)

where E( ˜q(τ )) is the energy of the disturbance at a given time, τ , the latter being
a parameter in the analysis. Substituting (2.3) into the above definition of energy
amplification gives

G(τ ) = max
q̃0

‖q̃(τ )‖2
E

‖q̃0‖2
E

= max
q̃0

‖exp(τLq̃0)‖2
E

‖q̃0‖2
E

= ‖exp(τL)‖2
E. (2.5)

The norm of the matrix exponential represents the largest amplification of energy that
any infinitesimal initial disturbance can experience within a given time interval, and will
be defined shortly.
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As discussed by Moller & van Loan (1978), irrespective of the spatial discretization
approach employed, the large condition number of the matrix discretizing the linear
operator makes exact computation of the matrix exponential challenging. Here, an
eigenvalue decomposition of the numerical linear operator L is used to approximate the
matrix exponential by

‖exp(τL)‖2
E = ‖exp(τVΛV−1)‖2

E = ‖V exp(τΛ)V−1‖2
E, (2.6)

where Λ and V are matrices containing the eigenvalues and the corresponding normalized
eigenvectors of L, respectively. Note that up to this point, no approximations regarding
the shape of the disturbances or their temporal behaviour have been introduced. While the
formalism is identical in both one- and two-dimensional non-modal analysis, calculation
of the matrix exponential in the present analysis context has required inclusion of a rather
large number of eigenmodes, as will be seen in § 4.2.

2.3. Definition of the energy norm
Equation (2.4) requires the definition of an inner product and its associated norm. These
quantities constitute the fundamental measure of time-dependent transient perturbation
behaviour. Mathematically, the inner product and an associated norm can be written as

〈q̃i, q̃j〉 =
∫ ∞

0

∫ ∞

0
q̃H

i Mq̃jJ dη dζ, 2E = 〈q̃, q̃〉 = ‖q̃‖2
E, (2.7a,b)

where J is the Jacobian of the coordinate transformation. As pointed out by Hanifi et al.
(1996), the energy density of a disturbance is a natural and physically meaningful measure
of its size in the context of an incompressible flow. However, no obvious choice exists
when dealing with compressible flows. Chu (1965) provided a discussion of this energy
norm and the possibility of using different q̃ vectors to approximate it, while Hanifi et al.
(1996) re-derived in a non-modal analysis context the compressible energy norm proposed
by Mack (1969) in the context of modal linear instability, requiring pressure work to be
conservative. The energy norm definition proposed by Hanifi et al. (1996) can be adapted
to our q̃ vector using the ideal gas law

M = diag
(

ρ̄, ρ̄, ρ̄,
ρ̄

T̄

(
1

γ (γ − 1)M2 − 1
)

,
1

ρ̄γ M2

)
, (2.8)

and will be used in the present analysis. In one-dimensional transient growth analysis,
the base flow quantities and amplitude functions are taken as one-dimensional functions
of the wall-normal spatial coordinate. In the two-dimensional analysis, they are taken as
functions of the plane on which the EVP is solved; the latter is discussed in some detail
next.

2.4. Computation of transient energy growth
In order to address non-modal linear one- and two-dimensional instability on the elliptic
cone, the linearized governing equations (2.2) are written for an expansion of the vector
quantities q̃ that is inhomogeneous in the spanwise, ζ , and wall-normal, η, spatial
directions, while it is treated as homogeneous along the streamwise, ξ , spatial direction.
Explicitly, the ansatz employed is

q̃(ξ, η, ζ, t) = q̂(η, ζ ) ei(αξ−ωt), (2.9)
where α is a real wavenumber along the ξ direction, associated with a streamwise
periodicity length Lξ = 2π/α. In a temporal analysis framework, ω is a complex
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eigenvalue, where the flow is classified as linearly unstable if the imaginary part of one or
more values of ω is positive. Substituting (2.9) into (2.2) results in the following complex
non-symmetric generalized EVP

Aq̂ = ωBq̂, (2.10)

where the operators A and B can be written explicitly to give

(
Ai

j
∂2

∂η2 + Bi
j

∂2

∂ζ 2 + Ci
j

∂2

∂η ∂ζ
+ Di

j
∂

∂η
+ E i

j
∂

∂ζ
+ F i

j

)
q̂j = ωGi

jq̂j. (2.11)

Here, A, B, C, D, E, F and G are 5 × 5 matrices, and the superscript i = (1, 2, 3, 4, 5)

corresponds to the linearized equations of motion, 1 referring to the momentum equation
in ξ , 2 to the momentum equation in η, 3 to the momentum equation in ζ , 4 to the
energy, and 5 to the continuity equation. The subscript j = (1, 2, 3, 4, 5) ≡ (û, v̂, ŵ, T̂, p̂)

corresponds to the five disturbances variables. The non-zero elements can be found in
Paredes (2014) and Quintanilha (2021). It is also noted that the linear operator L defined
in (2.2) is a shorthand notation for

L = B−1A. (2.12)

Equation (2.11) is the tensor form of the global linear stability equations in a generalized
frame of reference. As shown in a number of studies in the incompressible limit (e.g.
Alizard & Robinet 2007; Theofilis 2017), the global linear stability equations and the linear
PSE lead to identical results when initialized with consistent inflow boundary conditions
for the flow perturbations.

In direct analogy to the analysis of Hanifi et al. (1996), we restrict attention to the space
spanned by the first N (non-orthogonal) eigenfunctions of (2.10) and express the state
vector q̃ in terms of the basis

q̃ =
N∑

k=1

Kk(τ ) q̂k, (2.13)

where

Kk(τ ) = Kk(0) exp(−iωkτ) (2.14)

are time-dependent expansion coefficients. Thus the eigenvalues represent the linear
evolution operator projected onto the space spanned by the first N eigenvectors. Restricting
the transient growth analysis to this space and applying the scalar product and the energy
norm defined previously, leads to

G(τ ) = G(α, Re, M, τ ) = max
q̃0

‖q̃(τ )‖2
E

‖q̃(0)‖2
E

= ‖exp(−iτB−1A)‖2
E = ‖FΛF−1‖2

2, (2.15)

where

Λ = diag(exp(−iτω1), exp(−iτω2), . . . , exp(−iτωN)), F = FHF, (2.16a,b)

and Fij is defined as the scalar product presented in (2.7a,b). The maximum gain is thus
obtained as the square of the largest singular value (e.g. Taira et al. 2017).
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2.5. Computation of linear optimal disturbances
In non-normal systems exhibiting algebraic energy growth, it is interesting to compute the
initial condition that maximizes energy amplification at early times, Gopt ≡ G(τopt). This
initial condition can be different for different times, and the resulting curve G(t) can be
seen as the envelope of the energy evolution of individual initial conditions. In order to
determine the initial condition that leads to maximum amplification at a given time, τopt,
a singular value decomposition (SVD) of the expression in (2.15) can be performed:

CV = UΣ, (2.17)

where C = FΛF−1, V and U are unitary matrices with orthonormalized columns,
and Σ is a diagonal matrix consisting of the singular values ordered in size, i.e.
σ1 ≥ σ2 ≥ · · · ≥ σN . The dominant singular value is equivalent to the energy norm of
exp(−τωk). Thus extracting the principal column vectors of V and U leads to

Cv1 = σ1u1. (2.18)

As pointed out by Schmid & Henningson (1994), this equation can be interpreted as a
mapping C of an input vector v1 onto an output vector u1 stretched by a factor of the
largest singular value; see also the related discussion by Taira et al. (2017). Therefore, the
optimal initial condition can be obtained from the principal right singular value vector.
Finally, to recover the initial expansion coefficients of (2.13), which give the optimal
disturbances associated with a particular amplification, it is necessary to write v1 in the
basis {q̂1, . . . , q̂N} as

v1 = FK0. (2.19)

In summary, the computational steps required to recover the optimal initial condition are
an SVD of the matrix exponential evaluated at different times τ . Following closely the
nomenclature adopted by Hanifi et al. (1996), two different symbols will be used in the
following discussion. We use

Gmax = max[G(t ≥ 0)] (2.20)

to define the maximum value obtained by G(t) over the whole time interval. A formula
for approximating this value will be discussed later when comparing the EVP and IVP
solutions. For this case, tmax can be defined as the time at which this maximum is achieved.
However, if we consider only the initial short time before the modal growth takes place,
then we can define the optimal initial growth as

Gopt = G(τ = τopt), (2.21)

where τopt is the time at which the largest transient growth is obtained.

3. Numerical implementation

The transformation of the physical (x, y, z) to the computational (ξ, η, ζ ) coordinate
system is performed using the elliptic confocal transformation discussed by Theofilis
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(2000) and Paredes et al. (2016):

x = ξ, y = cξ sinh(η0 + η) sin ζ, z = cξ cosh(η0 + η) cos ζ, (3.1a–c)

where c sets the half-angle of the cone minor axis, θ = 7◦, via

c = tan θ

sinh η0
, (3.2)

and

η0 = tanh−1 1
AR

, (3.3)

is a parameter controlling the aspect ratio (AR) of the elliptic cone, here set as 2.
The two transformed spatial directions η and ζ are appropriately discretized using
Chebyshev–Gauss–Lobatto (CGL) spectral collocation points:

ηj = ζj = cos
jπ
N

, j = 0, 1, . . . , N. (3.4)

The mapping used to resolve gradients inside the boundary layer is

ηj = l
1 − ηj

1 + s + ηj
, s = 2l, l = ηh

1 − 2ηh
, (3.5)

where s is a scaling function, l is a parameter depending on the wall-normal extent of
the domain, and ηh is the location in the domain below which half of the points are to
be clustered, allowing control over the density of points near the wall. In the subsequent
analysis, an ηh value of 0.4 was employed. Along the spanwise direction, a linear mapping
is used to capture the modes that exist along the crossflow region.

3.1. Domains studied
In the following analysis, the symmetries of the problem present because of zero angles
of attack and yaw are exploited in order to reduce the computational cost of numerical
solution of the IVP. One quarter of the physical space (0 ≤ ζ ≤ π/2) is discretized.
Moreover, to guarantee convergence and correct capturing of the structure of the different
modes, the domain analysed is divided in two parts, as shown schematically in figure 1.
The first domain accounts for the centreline (ζ = π/2) and the crossflow region (π/2 <

ζ ≤ π/4), whereas in the second domain, flow instability in the vicinity of the attachment
line of the cone (ζ = 0) is analysed.

3.2. Boundary conditions
The boundary conditions to complement the elliptic eigenvalue and singular value
problems are the following. For the first domain, in the azimuthal direction ζ , symmetric
or antisymmetric boundary conditions are imposed at the centreline (ζ = π/2, west
boundary) and suffice to capture all instabilities present in the flow. At the opposite
(east) boundary, linear extrapolation is imposed on all amplitude functions, allowing
perturbations to exit the domain with minimal distortion. In the second domain,
an analogous procedure is followed, namely symmetric and antisymmetric boundary
conditions are imposed at the attachment line (ζ = 0), and linear extrapolation can
be imposed at the opposite boundary. Along the wall-normal direction, the boundary
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Figure 1. Example of the two domains used to perform the global stability analysis. The first domain is
covering the centreline and the crossflow region (π/2 ≤ ζ ≤ π/4), whereas the second domain accounts for
the region close to the attachment line (ζ = 0).

conditions are the same for both domains: at the wall (η = 0, south) boundary, no-slip
conditions are imposed on the perturbation velocity components. A homogeneous
Dirichlet boundary condition is imposed for the perturbation temperature, and the gradient
of the pressure amplitude function is required to be zero at the wall. The location of
the top (north) boundary extends up to just before the shock. In order not to have any
spurious influence arising from the shock, all perturbations are forced to decay through
the imposition of a sponge region in both domains. This can be achieved by decreasing
artificially the local Reynolds number by a smooth function (Meliga, Gallaire & Chomaz
2012; Paredes et al. 2016), such that homogeneous Dirichlet boundary conditions can be
imposed at this boundary.

3.3. The LiGHT code
The linear global instability for hypersonic transition (LiGHT) code is an in-house Fortran
code written in generalized coordinates and a suite of subroutines for the massively parallel
solution of multi-dimensional complex non-symmetric EVPs and SVD problems arising
in linear fluid flow instability (Quintanilha et al. 2017; Quintanilha, Theofilis & Hanifi
2019; Cerulus et al. 2020; Quintanilha, Cerulus & Theofilis 2020; Theofilis 2020; Cerulus,
Quintanilha & Theofilis 2021; Quintanilha 2021). In the high supersonic and hypersonic
regimes, these EVPs result in dense matrices. The ScaLAPACK library (Blackford et al.
1996), available as part of vendor-optimized libraries on most modern supercomputers,
is used to perform a full distributed LU-decomposition. This procedure is required
by the shift-and-invert strategy, which promotes physically interesting eigenmodes and
suppresses spurious eigenmodes, combined with the Arnoldi algorithm (Arnoldi 1951;
Saad 1980). The distribution of the matrices, the iterative generation of Krylov subspaces,
the computation of the Ritz vectors and the SVD are all performed by linear algebra
operations distributed over the available processors, in either real or complex arithmetic.
The computation of the Ritz values, which represents a negligible part of the overall
computing effort, is performed serially in a post-processing step. The number of
eigenvalues delivered is determined by the Krylov subspace dimension (m), a free
parameter in the analysis, whose limit is the leading dimension of matrices A and B. By
contrast to numerical solutions of typical two-dimensional EVPs, the subspace dimension
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Altitude (km) U∞ (m s−1) T∞ (K) ρ∞ (Kg m−3) Re′ (m−1) Ma

21 2207.1 218.45 0.0658 1.07 × 107 7.45
33 2452.1 230.97 0.0115 1.89 × 106 8.05

Table 1. Flow conditions for both altitudes analysed in this paper.

required for numerical convergence of the SVD was found to be of O(103), as will be
discussed in detail in § 4.2. Extensive use of the shift-and-invert strategy for the EVP
(Theofilis 2003) has also been made in the context of the present IVP computations.

4. Results

4.1. Base flow configuration
The HIFiRE-5 geometry is modelled by a blunt-nosed elliptic cone of 2 : 1 aspect ratio
and 0.86 m in length. The nose tip cross-section in the centreline of the model describes
a circular arc with 2.5 mm radius, tangent to the cone ray describing the minor axis, and
retaining a 2 : 1 elliptical cross-section to the tip. Flight flow conditions were calculated for
two different altitudes, 21 km and 33 km, and for both, table 1 presents the corresponding
free stream velocity U∞, temperature T∞, and density ρ∞, as well as the unit Reynolds
number Re′, and the Mach number Ma. At 21 km, the unit Reynolds number is one order
of magnitude larger than at 33 km, due to the decrease of the density with increasing
altitude; this difference will be seen to have an important qualitative effect on the results
obtained in what follows. The wall temperature is defined using a prescribed temperature
based on heat conduction analysis of an estimated trajectory for the vehicle. The wall
temperature near the nose is approximately 650 K, whereas the wall temperature over the
rest of the surface varies between 460 K and 500 K. As discussed by Paredes et al. (2016),
the ratio between the wall temperature and the corresponding adiabatic wall temperature is
Twall/Tadiabatic < 0.3, resulting in a cold surface temperature over most of the cone surface
downstream of the nose. In this case, no dissociation reactions were expected to influence
the results. The steady laminar flow solution is the same as used by Paredes et al. (2016),
and has been calculated using the second-order US3D non-equilibrium solver with shock
capturing algorithm. Chemistry interactions were not considered due to the relatively low
hypersonic Mach number; a detailed description of the base flow computation can be found
in Gosse, Kimmel & Johnson (2010, 2013). The base flow was computed prior to the
successful HIFiRE-5b flight test, which achieved Mach numbers between 7.7 and 7.9. The
in-flight free stream unit Reynolds number increased from about 2.5 × 106 m−1 to over
2.3 × 107 m−1. The ratio between the wall temperature and the stagnation temperature was
approximately 0.14 at flight conditions (Kimmel et al. 2017, 2018), i.e. Twall/Tadiabatic ≈
0.16.

Figure 2(a) shows contours of Mach number at the 33 km altitude and streamwise
location x∗ = 0.36 m from the tip of the elliptic cone. In this figure, it is possible to see
the emergence of a bulge region at the centreline, ζ = π/2, due to three-dimensionality of
the flow. The boundary layer near the surface is deflected from the leading edge towards
the centreline, producing a lift-up of low-momentum boundary layer fluid, generating
this mushroom-like structure, which was first seen in the experiments of Huntley &
Smits (2000) and all subsequent experimental and numerical work. Figure 2(b) shows
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Figure 2. Mach number contours of the base flow at 33 km altitude and x∗ = 0.36 m. (a) Two-dimensional
base flow used in the global stability analysis; (b) one-dimensional base flow used in the local stability

analysis.

one-dimensional base flow profiles extracted at three spanwise locations, z∗ = 0.00, 0.02
and 0.04 m, normal to the elliptic cone wall. In what follows, these profiles have been used
to perform local transient growth analysis, the results of which have guided the subsequent
transient growth analyses.

4.2. Verification of the global stability analysis
Before discussing novel non-modal analysis results, the EVP solved by Paredes et al.
(2016) is revisited. This was found to be necessary not only as verification of the results
obtained herein, which used an altogether different numerical strategy for the solution
of the EVP and SVD problems compared with Paredes et al. (2016) but also, equally
importantly, in order to assess numerical parameters used to access a large part of the
eigenspectra besides the leading members, an aspect that was found to be essential for the
convergence of non-modal analysis results.

Figure 3 shows the energy gain over non-dimensional time for the three different grids
at 21 km altitude and 33 km altitude. Here, it can be seen that the results with 1712

nodes at the lower altitude, and 912 nodes at the higher altitude, are identical with those
corresponding to the more refined grids, 1812 at 21 km and 1012 at 33 km, respectively.

More importantly, the ability of the present SVD implementation to recover the most
unstable eigenvalue/growth rate delivered by solution of the EVP has also been examined.
The value of Gmax can be estimated from the slope of the energy curve in the linear part
of the semi-log plot that is given by the growth rate of the most unstable eigenvalue:

Gmax ≈ e2ωit∞ . (4.1)

The values obtained are ωi = 0.0061 for the 21 km altitude and ωi = 0.0036 for the 33 km
altitude. At the highest resolution at which the SVD has been solved, excellent agreement
is observed between the results of the IVP and EVP at both altitudes. This agreement is
shown graphically in figure 3, where the dashed line corresponding to the EVP result and
the respective G(t) curves become parallel.
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Figure 3. Comparison of the energy growth G(t) for the three different grids analysed. The energy growth
curves were obtained at (a) 21 km and (b) 33 km altitude, with α = 0.11 and at x∗ = 0.36 m. The dashed line
represents the slope of the most unstable eigenvalue calculated from the EVP analysis.

4.2.1. Centreline instabilities
To further verify the EVP results delivered by the LiGHT code, colour contours of the
streamwise velocity magnitude of the most unstable centreline mode are presented in
figure 4 for both symmetric and antisymmetric centreline boundary conditions. The black
isolines correspond to contours of the associated base flow varying from 0 to 0.9 in 0.1
steps. The conditions chosen are the same as the conditions reported in Paredes et al.
(2016), namely 21 km altitude and streamwise position x∗ = 0.52 m from the elliptic
cone tip. The latter authors performed a spatial global analysis, while in this paper a
temporal framework is employed. Nevertheless, good agreement is seen when comparing
the temporal eigenvalues ωS,CL = 0.11 + i0.0064 and ωA,CL = 0.10 + i0.0061 obtained in
the present analysis with the spatial analysis results of Paredes et al. (2016) that reported
similar spatial growth rates for the corresponding most unstable disturbance frequencies.
The dimensional frequency of the most unstable symmetric and antisymmetric modes
reported from the spatial analysis are F = 230 and 220 kHz, respectively, whereas the
temporal modes obtained herein are F = 200 and 190 kHz. The amplitude function of the
leading centreline symmetric mode obtained in the present temporal analysis is shown in
figure 4(a), and that for the antisymmetric mode in figure 4(b); respectively, they are seen
to peak at the symmetry line and in the immediate vicinity of the centreline. As already
pointed out by Paredes et al. (2016), this feature is not observed in the lower Reynolds
number behaviour near the centreline where the modes peak away from the symmetric
plane at z = 0.

4.2.2. Attachment line instabilities
As a final verification of the present implementation, the attachment line modes reported
by Paredes et al. (2016) are recovered on the rightmost part of the mesh shown in figure 1.
Figure 5 presents the streamwise velocity magnitude of the most amplified symmetric and
antisymmetric attachment line modes at x∗ = 0.52 m. The respective temporal eigenvalues
are ωS,AL = 1.05 + i0.015 and ωA,AL = 1.04 + i0.014. As in the comparison of centreline
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Figure 4. Streamwise velocity magnitude ‖û‖ of the leading symmetric (a) and antisymmetric (b) centreline
modes at x∗ = 0.52 m. The black lines are isocontours of the base flow (ū = 0 : (0.1) : 0.9).

mode instabilities, an iteration on the wavenumber parameter has revealed that the most
unstable mode has a non-dimensional α = 1.18 for both symmetric and antisymmetric
modes, corresponding to a dimensional wavelength of 1.2 mm. The non-dimensional
frequency is close to unity, corresponding to the high-frequency results of ≈ 1700 kHz
shown by Paredes et al. (2016) for both modes. The amplitude functions are concentrated
inside the boundary layer. Qualitatively, the mode shapes of these attachment line modes
are analogous to those of the centreline modes, namely, all components but the azimuthal
peaks at the attachment line symmetry plane if symmetric boundary conditions are used,
and the opposite if antisymmetric boundary conditions are imposed at the symmetry plane.

4.3. Non-modal linear stability analysis of the centreline flow

4.3.1. Local transient growth analysis
Local transient growth stability analysis has been performed at two streamwise locations
in the crossflow region ζ = π/3 and 2π/5, namely x∗ = 0.42 m and x∗ = 0.62 m, at both
the 21 km and 33 km altitudes. Results of systematic analysis considering a wide range
of streamwise and spanwise locations were reported by Quintanilha et al. (2017); in all of
these results, the time integration was sufficiently long in order for the correct transient
behaviour to manifest itself and recover the infinite-time exponential growth corresponding
to the most unstable eigenvalue. Further analyses are shown in figure 6, where contour
plots of the maximum energy gain as a function of streamwise (α) and spanwise (β)
wavenumber are shown. The modal growth of energy is blanked out in white in the
contour plots, and only the regions where no modal stability exists are shown. At the 21 km
altitude, shown in figures 6(a) and 6(b), exponential growth of energy at asymptotically
large times is obtained for two- and three-dimensional waves having α ≈ 0.7 and α ≈ 0.5.
Moreover, exponential growth of crossflow disturbances, α = 0, β /= 0, are also present
at the location chosen for the analysis. On the other hand, the values outside the modal
growth region indicate that there may be combinations of parameters with potential to
sustain transient energy growth.

This scenario changes when local non-modal analysis is performed at the same
streamwise locations but at the higher 33 km altitude. Figures 6(c) and 6(d) indicate that
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Figure 5. Streamwise velocity magnitude ‖û‖ of the leading symmetric (a) and antisymmetric (b) attachment
line modes at x∗ = 0.52 m. The black lines are isocontours of the base flow (ū = 0 and 0.9).

at early times in the linear growth of perturbations, non-modal transient energy growth is
present and associated with disturbances that are aligned with the streamwise direction,
α = 0, β /= 0. The footprint of the modal scenario is not seen in figure 6(c), where only
transient growth mechanisms are relevant. In figure 6(d), similar to the 21 km altitude,
modal growth takes place in the form of two- and three-dimensional waves as well as
crossflow disturbances.

The strong assumption of streamwise and spanwise homogeneity that underlies local
linear theory prevents us drawing conclusions regarding whether linear instability will
follow a modal or non-modal growth scenario at this altitude. Motivation is thus provided
to relax the assumption of homogeneity along the spanwise direction and examine transient
growth of the two-dimensional base flows defined on planes normal to the elliptic cone
axis, thus taking into account the cone curvature; this analysis will be presented in the
next subsection.

4.3.2. Non-modal linear stability analysis of streamwise-aligned perturbations
The IVP detailed in § 2 is solved in a global analysis context, in which time is preset as a
parameter. Transient growth analysis is performed at the two altitudes and the conditions
presented in table 1. At each altitude, temporal two-dimensional transient growth analysis
is performed on base flows defined on planes normal to the cone axis at four streamwise
locations, x∗ = 0.36 m, 0.42 m, 0.52 m and 0.62 m. Homogeneity is assumed along the
streamwise direction x, and guided by the results of the local analysis, results are first
obtained for α = 0; in a boundary layer context, this choice corresponds to the study of
streaks. The domain in which non-modal stability analysis is performed has been reduced
to include the centreline and the crossflow regions, π/4 ≤ ζ ≤ π/2. As will be discussed
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Figure 6. Contours of energy gain G(t) varying streamwise α and spanwise β wavenumbers: (a,b) 21 km
altitude; (c,d) 33 km altitude.

in what follows, the region in the vicinity of the attachment line was found not to contribute
to non-modal growth and has been treated separately; further numerical details have been
presented in § 3. In the present transient growth analysis, results with symmetric and
antisymmetric boundary conditions were found to be identical qualitatively, with their
optimal condition peaking in the crossflow region, far away from the influence of the
centreline.

Figure 7 shows transient growth of energy G(t) as a function of non-dimensional time
at the streamwise locations x∗ = 0.36 m, 0.42 m, 0.52 m and 0.62 m. In each of the plots,
the transient growth of energy is shown at the two altitudes examined. The streamwise
wavenumber analysed is α = 0, corresponding to structures aligned with the streamwise
direction, that were found to sustain transient growth in the preceding local analysis. At
all four locations, two qualitatively different behaviours of G(t) are documented in these
figures: at early times, energy grows algebraically up to levels of O(103) before decaying;
at longer times, modal growth overtakes the early non-modal behaviour. Moreover, the
energy gain at short time, Gopt, is always larger at the 33 km altitude than the energy gain
found at 21 km.

The dependence of the maximum value reached by G(t) as function of the local
Reynolds number Rex during the stage of algebraic growth is plotted in figure 8 for both
altitudes examined. Several significant observations may be made in these results. First, as
could already be seen in the results of figure 7, at the higher altitude the maximum value
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Figure 7. Comparison of transient growth at 21 km and 33 km altitudes with α = 0 at streamwise locations
(a) x∗ = 0.36 m, (b) x∗ = 0.42 m, (c) x∗ = 0.52 m, and (d) x∗ = 0.62 m.

reached by G is larger: the value reached at x∗ = 0.72 m at altitude 33 km is ∼1.6 × 104,
which corresponds to an equivalent N-factor (Paredes et al. 2019)

NTG = 1
2 ln Gopt ≈ 4.8. (4.2)

Such N-factor values are typically associated with laminar–turbulent transition of
stationary crossflow vortices in the incompressible regime (Bippes 1999) and are certainly
considered sufficiently high to lead the laminar flow to transition. In the present analysis,
algebraically-growing perturbations are demonstrated to also reach NTG ≈ 5 through the
alternative non-modal linear instability mechanism that potentially can be responsible for
transition; we will return to the question of the associated structures, quantified as linear
optimal perturbations, in what follows. Second, at the 21 km altitude, significant transient
energy growth is also found, corresponding to an N-factor of ≈ 4.4. At this altitude,
a quadratic dependence of Gmax on Rex is found. However, at the higher altitude, this
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Figure 8. Best fit of the gain function at t = topt as a function of Rex: (a) 21 km altitude quadratic fit; (b)
33 km altitude quartic fit.

dependence is found to be closer to quartic,

Gopt ∼ Re4
x, (4.3)

as can be seen in the curve fit of the 33 km results shown in figure 8(b). These results offer
strong indications that the non-modal laminar–turbulent transition scenario increases in
significance as the flow altitude increases and the Reynolds number decreases. Ultimately,
in all cases studied so far, after an initial algebraic growth, the energy gain curve
grows exponentially at the same rate as the most unstable eigenvalue predicted by the
modal theory. In this respect, the relative significance of the two linear laminar–turbulent
transition scenarios will be determined by the level of environmental perturbations
triggering either the modal or non-modal path to transition. When these perturbations
are vanishingly small, modal growth, as first described by Paredes & Theofilis (2015)
and Paredes et al. (2016), may prevail; however, when such perturbations are found at
sufficiently large, though still linear, initial amplitudes, the N−factor values documented
herein are capable of leading flow to transition through transient growth mechanisms that
bypass the modal scenario.

In what follows, an in-depth non-modal analysis of flow is presented at the highest
altitude (33 km) and α = 0, which was seen in local analysis to correspond to maximum
transient energy growth. The linear optimal initial conditions and the structures obtained
at t = topt, corresponding to maximum transient energy gain, are plotted as colour
contours of the real part of the perturbation density, ρ̂, in figure 9, and the streamwise
perturbation velocity component, û, in figure 10. Other perturbation quantities are not
shown, for brevity, since they also show the exact same qualitative behaviour as the density
and streamwise perturbation velocity components. Both figures show three columns,
corresponding from left to right to t = 0, t = topt and t → ∞, and five rows, corresponding
from upper to lower to x∗ = 0.36 m, 0.42 m, 0.52 m, 0.62 m and 0.72 m. The time t = topt
is the same time at which the results of table 2 and figure 8 have been presented. Both
ρ̂( y, z) and û( y, z) amplitude functions reveal a consistent picture of linear disturbance
physics. The linear optimal initial condition corresponds to a structure located in the
crossflow region on the cone in the proximity of the centreline. At the linear optimal
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x∗ (m) 0.36 0.42 0.52 0.62 0.72

21 km Rex × 10−6 3.85 4.49 5.56 6.63 7.70
Gopt 305 640 1550 3450 6180
topt 450 750 1200 1800 2200

33 km Rex × 10−6 0.68 0.79 0.98 1.17 1.36
Gopt 603 1010 2230 5330 15600
topt 350 550 1000 1800 3800

Table 2. Relationship between G(topt) and the different axial locations and respective Rex values along the
elliptic cone model for both 21 km and 33 km altitudes.

time, topt, this structure remains qualitatively at the same location, though it changes its
magnitude. However, as t → ∞, this transiently-amplifying streamwise-aligned (owing
to α = 0) structure moves toward the centreline of the cone. The structure prevailing at
asymptotically large times is indeed that recovered as the most unstable eigenvalue of
modal analysis (Paredes et al. 2016). However, as the quantification of Gopt in (4.3) has
indicated, it is likely that the two mechanisms may compete, and the answer concerning
which one will prevail may well depend on the level of environmental perturbations. In
this context, comparisons with the ground-based experiments of Borg et al. (2012), which
clearly documented streamwise-aligned structures in the flow, are in order here.

4.3.3. Qualitative comparisons with ground-based experiments
While quantitative comparisons with experimental results cannot be made on account of
the differences in flow conditions and wall-to-adiabatic temperature ratio, some qualitative
features of the results obtained herein are discussed in this section. One of the most
striking features observed in experiments has been the elongated structures seen in the
BAM6QT experiments of Borg et al. (2012). These experiments used a 38.1 % scale model
of the HIFiRE-5 elliptic cone with Mach number Ma = 6 and unit Reynolds number
Re′ = 8.1 × 106 m−1. Figure 11(a) shows the top view of the elliptic cone model. In earlier
linear modal stability works, Choudhari et al. (2009) and Li et al. (2012) reported the
existence of stationary crossflow modes that were roughly aligned with the streamlines.
For example, Li et al. (2012) found that stationary crossflow modes start to grow near the
leading edge and could reach an N-factor of about 9 near the end of the model at the same
conditions as in the Borg et al. (2012) experiments. More recently, Tufts et al. (2018b)
also performed a modal analysis of crossflow disturbances at the flight conditions of the
HIFiRE-5b experiment, and found a good correlation between the measured locations of
transition and an N-factor of 10 over the area between the leading edge and the centreline.

Figure 11(b) presents a three-dimensional reconstruction of the flow in the streamwise
direction using the five streamwise locations analysed previously. At each one of these
locations, the structures corresponding to the maximum value of G(t) are interpolated
to create the three-dimensional perturbation flow field. Note that the amplitude of the
structures decays with increasing distance from the centreline. Further, the time at
which the maximum value of G(t) is reached at each of these five planes is different.
For these reasons, the weakest structures that are encountered far from the centreline
appear to vanish further downstream. Nevertheless, all structures in the three-dimensional
reconstruction shown in figure 11(b) are aligned along the streamwise direction and, as
such, they are analogous qualitatively with the crossflow disturbances documented in
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Figure 9. Real part of perturbation density ρ̂r with α = 0. The first column (a–e) corresponds to the optimal
initial condition t = 0; the middle column ( f –j) corresponds to the associated optimal perturbation t = topt; and
the right column (k–o) corresponds to the long time behaviour t → ∞. Each row corresponds to a different
streamwise location along the elliptic cone surface, namely x∗ = 0.36 m (a, f,k), x∗ = 0.42 m (b,g,l), x∗ =
0.52 m (c,h,m), x∗ = 0.62 m (d,i,n) and x∗ = 0.72 m (e,j,o). The black isolines correspond to contours of the
steady base flow (ū = 0 and 0.95).

the experiment of Borg et al. (2012). This confirms the findings of our earlier work
(Quintanilha et al. 2018) based on the local stability theory, in which the existence
of algebraically-growing streamwise-aligned structures on the elliptic cone surface was
documented. These crossflow-like disturbances are found here as well to be transiently
more amplified than the modally unstable centreline structures. Such a conversion of
linear optimal perturbations to crossflow modes has been seen in both incompressible
and compressible boundary layers (Tempelmann et al. 2010, 2012). On the elliptic
cone, the streamwise-aligned structures are concentrated in the close proximity of the
centreline vortex and quickly decay towards the leading edge. Calculation of steady
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Figure 10. Real part of streamwise perturbation ûr with α = 0. The first column (a–e) corresponds to the
optimal initial condition t = 0; the middle column ( f –j) corresponds to the associated optimal perturbation
t = topt; and the right column (k–o) corresponds to the long time behaviour t → ∞. Each row corresponds to a
different streamwise location along the elliptic cone surface, namely x∗ = 0.36 m (a, f,k), x∗ = 0.42 m (b,g,l),
x∗ = 0.52 m (c,h,m), x∗ = 0.62 m (d,i,n) and x∗ = 0.72 m (e,j,o). The black isolines correspond to contours of
the steady base flow (ū = 0 and 0.95).

laminar basic states was reported to be challenging on account of vortices developing
as the resolution was increased in the direct numerical simulations of Dinzl & Candler
(2017). Other configurations in which strong transient growth affects the convergence of
laminar solutions have also been reported in the literature (e.g. Alves et al. 2019; Cerulus
et al. 2020).

During the recent HIFiRE-5b flight test, transition was measured for Rex > 3.5 × 106

for free stream Mach number 7.8 (Kimmel et al. 2019), and the transition front was found
to correlate with stationary crossflow modal amplification (Tufts et al. 2018b). Therefore,
the boundary layer can be assumed to remain laminar over the vehicle during flight at
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Figure 11. Top view of the elliptic cone model. (a) Oil flow visualization of experimental crossflow modes
reported by Borg et al. (2012) at Ma = 6 and Re′ = 8.1 × 106m−1. (b) Three-dimensional reconstruction of the
linear optimal streamwise velocity component calculated at 33 km altitude, Ma = 8.05, Re′ = 1.89 × 106m−1

and α = 0.

the present 33 km altitude conditions. This indicates that the transient growth reported
here was not the dominant source of transition. However, a different excitation spectrum
(larger free stream disturbances or wall roughness) might lead to transient-growth-induced
transition. Thus the present analysis may be more relevant to noisy wind tunnel testing
where transition has been measured at Mach 6 for Rex < 1.5 × 106 (Kimmel et al. 2019).

4.3.4. Non-modal analysis of streamwise periodic perturbations
Solutions of the IVP (2.2) have also been obtained at non-zero streamwise wavenumber
parameters; of these, representative results obtained at α = 0.2, corresponding to a
non-dimensional wavelength 2π/0.2 = 31.4 – the dimensional values being 6.8 mm
at 21 km altitude and 16.1 mm at 33 km altitude – are discussed in what follows.
Results in figure 12 exhibit the same qualitative behaviour seen at α = 0, namely that
a non-negligible initial growth of energy is present, followed by exponential growth or
decay of the signal according to modal theory. However, the optimal gain obtained at all
parameters examined is Gopt = O(102), one order of magnitude smaller than the maximum
gain obtained in the case of streamwise-aligned structures, α = 0.

Interestingly, while at all x∗ ≥ 0.4 m the ultimate behaviour of the G(t) curve is one of
modal growth, at x∗ = 0.36 m it can be seen that the IVP solution at 21 km and 25 km
yields qualitatively different results at asymptotically large times compared to the altitudes
of 28 km and 33 km: while at the lower two altitudes modal instability governs the large
time behaviour of the solution, at the higher two altitudes the flow is modally stable, and
only the transient energy growth may account for linear instability and laminar–turbulent
transition. In other words, at 21 km altitude the flow is modally unstable featuring the
largest amplification rate. As altitude is increased and the density and Reynolds number
decrease, the modal amplification rate also decreases, the flow being modally near-neutral
at 28 km, while at the highest altitude of 33 km, all modal perturbations with α = 0.2 are
damped. This phenomenon is rather short-lived (it occurs only up to x∗ = 0.36 m) and
takes place within a small window. Further downstream, the modal growth dominates
all the way until the end of the model surface. As mentioned before, this result is
representative of others obtained at different wavenumbers, the quantitative difference
being the altitude at which the respective wavenumber becomes modally stable. This
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Figure 12. Comparison of energy gain between 21 km and 33 km altitudes with α = 0.2 for different
streamwise positions: (a) x∗ = 0.36 m, (b) x∗ = 0.42 m, (c) x∗ = 0.52 m, and (d) x∗ = 0.62 m.

finding highlights the importance of performing not only a modal analysis but a full
non-modal analysis to interrogate the flow over the HIFiRE-5 elliptic cone model.

Figures 13 and 14 show the initial linear optimal conditions for the density and
the streamwise velocity û, respectively, at non-dimensional wavenumber α = 0.2,
corresponding to a streamwise wavelength of Lx = 16.1 mm. Overall, results analogous
to those at α = 0 are obtained: the initial and optimal disturbances at t = 0 and t = topt,
respectively, are found to peak in the crossflow region of the cone, while at asymptotically
large times, the peak of the perturbations has moved to the cone centreline and can be
related to the structures recovered from the solution of the EVP. While the α = 0 and
α /= 0 results are qualitatively identical at all α values examined, the major quantitative
difference of the present results from those discussed in § 4.3.2 is in the level of maximum
transient energy gain attained. The value of Gmax of the streamwise-aligned structures at
any streamwise position along the cone is between two and three orders of magnitude
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Figure 13. Real part of perturbation density ρ̂r with α = 0.2 (Lx = 16.1 mm). The first column (a–d)
corresponds to the optimal initial condition t = 0; the middle column (e–h) corresponds to the associated
optimal perturbation t = topt; and the right column (i–l) corresponds to the long time behaviour t → ∞. Each
row corresponds to a different streamwise location along the elliptic cone surface, namely x∗ = 0.36 m (a,e,i),
x∗ = 0.42 m (b, f , j), x∗ = 0.52 m (c,g,k) and x∗ = 0.62 m (d,h,l). The black isolines correspond to contours of
the steady base flow (ū = 0 and 0.95).

larger than that corresponding to any α /= 0 structure. Consequently, non-modal transition
on the elliptic cone is expected to be associated with streamwise-aligned structures.

4.4. Non-modal stability analysis of the attachment line
Results shown in the previous subsections have been obtained on the domain shown on
the left of figure 1; in this subsection, non-modal instability analysis is performed on the
rightmost of the domains shown in the same figure, which includes the attachment line
and an appreciable part of the surface of the elliptic cone.

Figure 15(a) presents energy gain curves at 33 km altitude and at a single location x∗ =
0.52 m. The streamwise wavenumber α is investigated in the range 0–2, corresponding
to streamwise periodicity lengths of 16.1 mm to 1.6 mm, respectively. At this altitude, it
can be seen that transient energy growth is present over a wide range of wavenumbers,
either side of α = 1.1. The level of Gopt attained is comparable to that seen for streamwise
periodic disturbances in the crossflow region of the cone, and typically one to two orders
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ûr (t = topt) ûr (t → ∞)
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Figure 14. Real part of streamwise perturbation ûr with α = 0.2 (Lx = 16.1 mm). The first column (a–d)
corresponds to the optimal initial condition t = 0; the middle column (e–h) corresponds to the associated
optimal perturbation t = topt; and the right column (i–l) corresponds to the long time behaviour t → ∞. Each
row corresponds to a different streamwise location along the elliptic cone surface, namely x∗ = 0.36 m (a,e,i),
x∗ = 0.42 m (b,f ,j), x∗ = 0.52 m (c,g,k) and x∗ = 0.62 m (d,h,l). The black isolines correspond to contours of
the steady base flow (ū = 0 and 0.95).

of magnitude lower than that corresponding to the spanwise-periodic streamwise-aligned
structures discussed in § 4.3.2; ultimately, as time increases past the respective linear
optimal value, the asymptotic dependence of the curves is governed by the respective
damped or near-neutral eigenvalues. On the other hand, the gain curve at α = 1.1, as well
as at nearby values of this wavenumber parameter not shown here for brevity, is seen to
lock on modal dependence early on, the slope of the G(t) curve being identical with that
predicted by modal analysis.

The maximum transient energy gain found along the attachment line in the present
hypersonic flow is substantially smaller than that reported by Obrist & Schmid (2003)
on the swept Hiemenz model of the attachment line in the incompressible limit. It may be
conjectured that this is due to either or both of flow compressibility and surface curvature
in the vicinity of the cone major axis, curvature having been found to have a stabilizing
effect on this class of flows by Lin & Malik (1997) also in the incompressible regime.
However, verification of this conjecture is beyond the scope of the present analysis and
will be undertaken in a separate study.
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Figure 15. (a) Gain G(t) calculated via SVD (solid lines) compared with the slope of the most unstable
eigenvalue calculated via the EVP analysis (dashed lines) at x∗ = 0.52 m and 33 km altitude. (b) The associated
ωi vs α curve showing the modally unstable region.

5. Summary and conclusions

Linear transient growth analysis is presented on the aspect ratio 2 elliptic cone modelling
the HIFiRE-5 geometry in hypersonic flow at Mach numbers between 7.45 and 8.05
(unit Reynolds number between 1.07 × 107 and 1.89 × 106) corresponding to flight
altitudes 21 km and 33 km, respectively. Solutions to the IVP are obtained by solving
the SVD of the matrices discretizing the EVP. Convergence of the IVP results was
found to require eigenspectra comprising an orders of magnitude larger number of
modes than the corresponding modal analysis. A novel massively parallel solver for
complex non-symmetric generalized EVPs in generalized coordinates was developed for
the numerical work. Validation was performed by recovering, as leading members of
the eigenspectra used in the reconstruction of the solution to the IVP, modal stability
analysis results known from the earlier analysis of Paredes et al. (2016). For reasons of
numerical feasibility, the vicinity of the centreline and the crossflow region have been
analysed separately from the attachment line region, so that numerical convergence could
be ensured and the underlying physical phenomena could be adequately captured in both
of these domains.

Guided by solutions to the local transient growth problem, which indicated
that streamwise-aligned linear perturbations exhibit the highest energy gain, the
two-dimensional IVP has been solved at streamwise stations 0.36 m ≤ x∗ ≤ 0.62 m
along the cone, for a priori unknown time horizons, until the slope of the energy
gain curve locked onto the corresponding modal analysis result. In the centreline and
crossflow region, substantially larger, Gopt = O(104), transient energy growth is obtained
for streamwise-aligned, α = 0, perturbations at both extreme altitudes at the two flight
altitudes, compared to Gopt = O(102) obtained for wave-like, α /= 0, perturbations. The
linear optimal disturbances identified in the present analysis at α = 0 peak in the region of
crossflow and vanish towards the attachment line. They take the form of a finite number of
isolated elongated structures aligned with the streamwise direction. In the vicinity of the
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attachment line, the solution to the IVP reveals modal growth around discrete streamwise
wavenumber values and feeble algebraic energy growth between these wavenumbers.

A counter-intuitive and relevant result of the present analysis is associated with
the variation of the maximum transient energy gain with flight altitude: at any given
streamwise location on the cone, Gopt increases monotonically with increasing altitude and
decreasing Reynolds number. At the lowest altitude (relatively modest) algebraic/transient
energy growth is followed by exponential/modal growth of perturbations at all parameters
examined; in other words, the linear instability of the flow is governed by the analysis of
the modal scenario discussed by Paredes et al. (2016). By contrast, at 33 km, transient
growth is on occasion followed by modal/exponential decay of the perturbations in
question, implying that as the flight altitude increases, transient growth becomes the
only physical linear instability mechanism leading the hypersonic boundary layer flow
to laminar–turbulent transition. By contrast to the quadratic dependence of the maximum
energy gain on the local Reynolds number at the lower altitude/higher Reynolds number,
a quartic dependence Gopt ∼ Re4

x was found in the highest altitude case, indicating that
laminar–turbulent transition of hypersonic boundary layer flow may arise from non-modal
mechanisms, which presently remain unexplored for the majority of flows of interest.
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