FORMS WITH O-ORTHOGONAL LIE ALGEBRAS

BY FRANK SERVEDIO

A form P of degree r is a homogeneous polynomial in $k[Y_1, \ldots, Y_n]$ on k^n , k a field; Y_i are the coordinate functions on k^n . Let V(n, r) denote the k-vector space of forms of degree r. $M_n(k) = \operatorname{End}_k(k^n)$ has canonical Lie algebra structure with [A, B] = AB - BA and it acts as a k-Lie Algebra of kderivations of degree 0 on $k[Y_1, \ldots, Y_n]$ defined by setting $D(A)Y = Y \circ (-A)$ for $A \in \operatorname{End}_k(k^n)$, $Y \in V(n, 1) = \operatorname{Hom}_k(k^n, k)$ and extending as a k-derivation. Define the orthogonal Lie Algebra, LO(P), of P by LO(P) = $\{A \in \operatorname{End}_k(k^n) \mid D(A)P = 0\}$.

THEOREM: If $r \ge 3$, then $\{P \in V(n, r) \mid LO(P) = 0\}$ is Zariski open dense in V(n, r).

Proof: The proof uses the diagram below. Let d(n, r) = dimension V(n, r); $d(n, r) = {\binom{n+r-1}{r}}$. For $r \ge 3$, $d(n, r) \ge n^2$. Let Grass $(\text{End}_k(V(n, r));$ $d(n, r)^2 - d(n, r))$ be the Grassman variety of $d(n, r)^2 - d(n, r)$ dimensional subspaces of $\text{End}_k(V(n, r))$; denote it simply by Grass¹. Grass is a projective variety. Isograss = $\{W \in \text{Grass} \mid W = \{C \in \text{End}_k(V(n, r)) \mid CP = 0\}$ for some $P \ne 0$ in $V(n, r)\}$; Isograss is a closed subvariety of Grass. Let $\mathfrak{G} = \{W \in$ Grass $\mid W \cap D(\text{End}_k(k^n)) = \{0\}\}$; the fact that $d(n, r) \ge n^2$ implies that \mathfrak{G} is a Zariski open dense subset of Grass. Let $\mathbb{P}(V(n, r))$ denote the projective variety associated to V(n, r); $\mathbb{P}(V(n, r)) = \{kP \mid P \ne 0, P \in V(n, r)\}$. We have an isomorphism of projective varieties

$$\mathbb{P}\left(V(n,r)\right) \xrightarrow{1} \text{Isograss}$$

 $kP \mapsto \{C \in End_k(V(n, r)) \mid CP = 0\}$ and a diagram of inclusions

$$\mathbb{P} (V(n, r)) \xrightarrow{i} \text{ Isograss} \xrightarrow{closed} \text{ Grass}$$

$$\xrightarrow{\text{open finclusion}} \text{ open finclusion} \xrightarrow{open finclusion} \text{ open finclusion} \xrightarrow{open finclusion} (\mathfrak{G})$$

$$i^{-1}(\mathfrak{G} \cap \text{ Isograss}) \xrightarrow{} \mathfrak{G} \cap \text{ Isograss} \xrightarrow{closed} \mathfrak{G}$$

with $\mathfrak{G} \cap \text{Isograss}$ easily shown non-empty. $LO(P) = \{0\}$ if and only if $kP \in i^{-1}(\mathfrak{G} \cap \text{Isograss})$. Clearly, the set of such P is Zariski open, dense, in V(n, r).

Received by the editors March 18, 1977 and in revised form, March 30, 1977.

F. SERVEDIO

This theorem has the following nice corollary for orthogonal groups. GL(n, k) acts on V(n, r) by $\lambda(g)P = P \circ g^{-1}$ as a polynomial function for all $P \in V(n, r)$, $g \in GL(n, k)$. The orthogonal group of P is defined as $O(P) = \{g \in GL(n, k) \mid \lambda(g)P = P\}$, a linear algebraic group defined over k. If k is algebraically closed and of characteristic p with p = 0 or p > r = degree P, then LO(P) is isomorphic to the Lie Algebra of O(P), since λ is a separable morphism². Hence O(P) is finite if and only if $LO(P) = \{0\}$.

COROLLARY: Let $r \ge 3$, let k be an algebraically closed field of characteristic O or p greater than r. Then $\{P \in V(n, r) \mid O(P) \text{ is finite}\}$ is Zariski open dense and GL(n, k) invariant.

Proof. The result follows from the theorem and the remarks above. The $\lambda GL(n, k)$ -invariance of $\{P \in V(n, r) \mid O(P) \text{ is finite}\}$ follows from the identity

$$O(\lambda(g)P) = gO(P)g^{-1}.$$

Alternatively, the morphism *i* and the inclusions in the proof of the theorem are compatible with the action of GL(n, k) on $\mathbb{P}(V(n, r))$ and on Grass via λ and the composite of λ with the adjoint representation of $GL(\text{End}_k(k^n))$.

REFERENCES

1. F. Hirzebruch, Topological Methods in Algebraic Geometry; Grundlehren Math. Wiss., B. 131, Springer, New York 1966.

2. A. Borel, Linear Algebraic Groups; W. A. Benjamin, Inc., New York 1969.

DEPT. OF MATHEMATICS WILLIAM PATTERSON COLLEGE WAYNE, NEW JERSEY 07470

126