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Abstract

We introduce support varieties for rational representations of a linear algebraic group
G of exponential type over an algebraically closed field k of characteristic p > 0. These
varieties are closed subspaces of the space V (G) of all 1-parameter subgroups of G.
The functor M 7→ V (G)M satisfies many of the standard properties of support varieties
satisfied by finite groups and other finite group schemes. Furthermore, there is a close
relationship between V (G)M and the family of support varieties Vr(G)M obtained by
restricting the G action to Frobenius kernels G(r) ⊂ G. These support varieties seem
particularly appropriate for the investigation of infinite-dimensional rationalG-modules.

Introduction

The purpose of this paper is to formulate a suitable theory of support varieties for rational
representations for a natural class of linear algebraic groups G which includes the classical
simple groups. We work over an algebraically closed field k of characteristic p > 0, so that
we consider modular representations of G: actions of G on k-vector spaces. Our criteria for
‘suitability’ include: (i) a description which reflects the structure of G; (ii) a theory that applies
to all rational representations M of G; (iii) expected properties for direct sums, tensor products,
extensions, and Frobenius twists; and (iv) a structure V (G)M which incorporates the information
of the support variety of the rational representation M of G when restricted to any Frobenius
kernel G(r) ⊂ G. Our formulation is an extension of the approach of Bendel, Suslin, and the
present author [SFB97b]; we employ 1-parameter subgroups rather than traditional methods of
cohomology (e.g. [Car83]) or the more recent methods of π-points (e.g. [FP07]). The reader is
referred to [Fri13] for a brief history of support varieties, beginning with the fundamental work
of Quillen [Qui71a, Qui71b]. For brevity, we usually use ‘rational G-module’ to refer to a rational
representation of G.

We remind the reader that support varieties (for representations of a finite group, a restricted
Lie algebra, or the infinitesimal kernel of a linear algebraic group) give some measure of the local
projectivity of the representation with respect to p-nilpotent actions. Support varieties have their
origins in the formulation of the complexity (rate of growth) of projective resolutions and they
reflect properties of extensions rather than structures of irreducibles. Refined support varieties
have been introduced by the present author and Pevtsova [FP10] in order to capture further
information about representations of finite group schemes. We extend these invariants to rational
representations of linear algebraic groups of exponential type.

The existence of an appropriate theory of support varieties for rational representations is
not evident. For example, the rational cohomology of G with coefficients in k usually vanishes in
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positive degrees for simple algebraic groups over k so that the familiar cohomological methods
do not apply. Indeed, projective resolutions of rational representations typically do not exist,
and injective representations are typically infinite-dimensional. In fact, we have no direct
cohomological interpretation of our invariants for a linear algebraic group G, other than their
relationship with invariants for the Frobenius kernels G(r) of G. Furthermore, the formulation of
local projectivity for rational G-modules appears unpromising at first for there does not appear
to be a good space of p-nilpotent operators on which to test local projectivity. Another obstacle
which arises in formulating a theory of support varieties for rational G-modules is that invariants
for the infinitesimal kernels G(r) of a linear algebraic group G do not ‘match up’ with respect to
either the natural projections G(r+1)→ G(r) or the natural embeddings G(r)→ G(r+1).

Our formulation of the support variety V (G)M (Definition 4.4) of a rational G-module M is
as a subset of V (G), the set of all 1-parameter subgroups of G given the induced topology as a
natural subset of the inverse limit of the k-rational points of schemes of infinitesimal 1-parameter
subgroups of G; for M finite-dimensional, V (G)M is closed in V (G). This formulation (essentially
unique, as observed in Remark 1.7) entails the definition of the p-nilpotent action of G on M
at a 1-parameter subgroup Ga → G of G. See Definition 2.9. A somewhat confusing twist of
indexing is required to enable compatibility of this formulation with that for the support variety
of M restricted to Frobenius kernels G(r) ⊂ G of G.

Extending the work of Pevtsova and the present author in [FP10] for finite group schemes,
we introduce for each j > 0 the ‘non-maximal j-rank varieties’ V j(G)M for a finite-dimensional
rational G-module M which detect further information about M given in terms of the locus of
Jordan types. See Definition 4.10. The key ingredient of this refinement is the well-definedness
of maximal Jordan types for a finite group scheme proven in [FPS07].

The linear algebraic groups for which we construct a theory of support varieties are those
with a structure of exponential type as formulated in Definition 1.6. The work of Sobaje shows
that a reductive group G has such a structure provided that p > h(G), the Coxeter number of
G (see [Sob13b]). Other examples of such groups are simple groups of classical type, parabolic
subgroups of such groups, and unipotent radicals of these parabolic subgroups [SFB97a].

Basic properties satisfied by M 7→ V (G)M are given in Theorem 3.10. These include the
expected behavior with respect to direct sums, tensor products, and Frobenius twists of rational
G-modules. If M is finite-dimensional, then V (G)M ⊂ V (G) is a closed, G-stable subset;
moreover, for M finite-dimensional, V (G)M is determined by the restriction of M to G(r) for r
sufficiently large (depending upon M).

For a given finite-dimensional rational G-module M , the computation of the support variety
of M reduces to a computation of the support variety of M as a G(r)-module for r sufficiently
large depending upon M (see Theorem 4.6). The ‘Jantzen conjecture’ (proved in [NPV02, Ost98])
enables some computations in Proposition 5.1. Examples 5.3 and 5.4 are explicit computations
of certain V (G)M and V j(G)M .

In the final section of this paper, we consider natural examples of infinite-dimensional rational
G-modules. In Proposition 6.2, we show that if G admits a structure of exponential type and L
is an injective rational G-module, then the support variety V (G)L is trivial. This, together with
general properties of our support varieties, leads to various examples given at the end of § 6.

Throughout this paper, we consider affine group schemes of finite type over an algebraically
closed field k of characteristic p > 0. We use the terminology ‘linear algebraic group’ to mean
a reduced, irreducible group scheme of finite type over k which admits a closed embedding into
some general linear group GLn over k. We refer the reader to [Jan87, SFB97a, SFB97b] for some
general background we require.
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1. 1-parameter subgroups

In this first section, we begin by recalling a few facts about (infinitesimal) 1-parameter subgroups
Ga → G of G, where Ga is the additive group. We explore the special case G = Ga, recalling a
concrete description of all 1-parameter subgroups of Ga. This example of G = Ga will serve as a
guide for much more general G, those of exponential type. The analogous form of 1-parameter
subgroups for classical groups motivates our formulation in Definition 1.6 of a linear algebraic
group with a structure of exponential type. These are the algebraic groups for which we construct
support varieties. We conclude this section with a determination of the effect of pre-composition
and post-composition with the Frobenius morphism.

For any group scheme G of finite type over k and r > 0, we denote by F r : G→ G(r) the rth
Frobenius morphism, where G(r) is the base change of G along the prth power map φ : k → k
(see [FS97, § 1]); we denote by G(r) the rth Frobenius kernel of G:

G(r) ≡ ker{F r : G→ G(r)}.

When G is defined over Fpr (i.e. G = Spec k×SpecFpr G0 for some group scheme G0 defined over

Fpr), then we shall use the natural identification of G(r) with G.

Definition 1.1. Let G be a connected group scheme of finite type over k.
For any r > 0, we denote by Vr(G) the affine scheme (cf. [SFB97a])

Vr(G) ≡ Homgrp/k(Ga(r), G)

of homomorphisms of group schemes over k from the rth Frobenius kernel of the additive group to
G. Such a homomorphism will be called an infinitesimal 1-parameter subgroup of G (of height r).
The set of k-points of the scheme Vr(G), Vr(G)(k), is endowed with the Zariski topology.

We denote by V (G) the topological subspace

V (G) ≡ Homgrp/k(Ga, G) ⊂ lim
←−
r

Vr(G)(k) (1.1.1)

of 1-parameter subgroups of G viewed as a subspace of lim
←−r Vr(G)(k) endowed with the inverse

limit topology. Thus, the topology on V (G) is the weakest topology making each projection map
prr : V (G)→ Vr(G)(k) continuous, where prr is defined by sending ψ : Ga→ G to its restriction
to Ga(r).

Before giving examples, we mention some useful properties of Vr(G).

Proposition 1.2. Let G be a linear algebraic group and G ⊂ GLn a closed embedding:

(1) Vr(G) ' Homgrp(Ga(r), G(r));

(2) G(r) = G ∩GLn(r);

(3) Vr(G) = V (G) ∩ Vr(GLn);

(4) G acts (via conjugation) on each of the schemes Vr(G) and G(k) acts (via conjugation) on
the space V (G).

Proof. Assertion (1) follows from the observation that any map of group schemes Ga(r) → G
factors uniquely through the closed embedding ir : G(r)→ G.

Assertion (2) can be found in [Jan87, I.9.4], and assertion (3) follows immediately from (1)
and (2).

Assertion (4) is easily verified by viewing the action of G on Vr(G) as a functorial action of
G(A) on (Vr(G))(A) as A ranges overs finitely generated commutative k-algebras. 2
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Our first example is G = Ga, the additive group. Throughout this paper, the special case
G = Ga will serve as our ‘test case’ for new constructions.

Example 1.3. We denote by

σa ≡
∑
s>0

asF
s : Ga→ Ga

the 1-parameter subgroup of Ga given by a finite sequence a = (a0, . . . , as, . . .) ∈ A∞ (i.e. as = 0
for s � 0) of elements of k. Here, F s : Ga → Ga is the sth iterate of the Frobenius morphism
given by the psth power map k[T ]→ k[T ], T 7→ T p

s
. Thus, the map on coordinate algebras σ∗a

is given by T 7→
∑

s>0 asT
ps . In the special case that a has the single non-zero term a0 = b, the

1-parameter subgroup σa : Ga→ Ga is just multiplication by b and will be denoted σb. For any
r > 0, there is a natural isomorphism of schemes [SFB97a, 1.10]

Ar ∼→ Vr(Ga), a 7→ σa ◦ ir =

(r−1∑
s>0

asF
s

)
◦ ir : Ga(r)→ Ga→ Ga.

For a p-nilpotent, n× n matrix A with entries in k, we denote by

expA : Ga→ SLn ⊂ GLn

the 1-parameter subgroup given by the functor on commutative k-algebras R sending r ∈ R to the
matrix

∑p−1
s=0 r

sAs/(s!). Let gln denote the (restricted) Lie algebra of GLn and let Np(gln) ⊂ gln
denote the closed subvariety p-nilpotent matrices. We denote by

Cr(Np(gln)) ⊂ (Np(gln))×r (1.3.1)

the variety of r-tuples (A0, . . . , Ar−1) of p-nilpotent, pair-wise commuting n×n matrices. We let
C∞(Np(gln)) denote the colimit (i.e. union) of the Cr(Np(gln)), so that a point of C∞(Np(gln))
is a finite sequence (A0, . . . , As, . . .) (i.e. As = 0 for s� 0) of p-nilpotent, pair-wise commuting
n× n matrices.

Example 1.3 has the following analogue for G = GLn.

Example 1.4. For any A = (A0, A1, . . . , ) ∈ C∞(Np(gln)), we denote by

expA ≡
∏
s>0

(expAs ◦ F
s) : Ga→ GLn

the indicated 1-parameter subgroup of GLn. For any r > 0,

A 7→ expA ◦ ir : Ga(r)→ Ga→ GLn (1.4.1)

determines a natural isomorphism [SFB97a, 1.4]

Cr(Np(gln))
∼
→ Vr(GLn).

As we discuss in the next example, Example 1.4 extends to linear algebraic groups G with an
embedding of exponential type G ⊂ GLN . We recall that simple algebraic groups of classical
type with their natural embeddings into linear groups are embeddings of exponential type
[SFB97a, 1.8]. A particularly simple class of examples of embeddings of exponential type are
the embeddings of root subgroups Ga ⊂ G of a reductive group G as in Example 2.10.
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Example 1.5. A closed embedding j : G ⊂ GLN of algebraic groups is said to be of exponential
type (as in [SFB97a]) if for all commutative k algebras A and all p-nilpotent x ∈ g ⊗ A the
exponential map

exp(dj)(x) : Ga(A)→ GLN (A)

factors through j : G(A)→ GLN (A). Here, g is the Lie algebra of G. This condition is equivalent
to the condition that the exponential map for GLN restricts to determine a map of k-schemes

E : Np(g)×Ga→ G.

For such j : G ⊂ GLN of exponential type, Equation (1.4.1) restricts to isomorphisms

Cr(Np(g))
∼
→ Vr(G), B 7→ expB ◦ ir =

r−1∏
s=0

(expBs ◦ F
s) ◦ ir : Ga(r)→ Ga→ G.

We formulate a class of linear algebraic groups G more general than those admitting a closed
embedding of exponential type. These are the algebraic groups G for which we construct our
theory of support varieties.

Definition 1.6. Let G be a linear algebraic group with Lie algebra g. A structure of exponential
type on G is a morphism of k-schemes

E : Np(g)×Ga→ G, (B, s) 7→ EB(s) (1.6.1)

such that the following statements hold.

(1) For each B ∈ Np(g)(k), EB : Ga→ G is a 1-parameter subgroup.

(2) For any pair of commuting p-nilpotent elements B,B′ ∈ g, the maps EB, EB′ : Ga → G
commute.

(3) For any commutative k-algebra A, any α ∈ A, and any s ∈ Ga(A), Eα·B(s) = EB(α · s).
(4) Every 1-parameter subgroup ψ : Ga→ G of G is of the form

EB ≡
r−1∏
s=0

(EBs ◦ F s) (1.6.2)

for some r > 0, some B ∈ Cr(Np(g)); furthermore, Cr(Np(g)) → Vr(G), B 7→ EB ◦ ir is an
isomorphism for each r > 0.

Condition (2) of Definition 1.6 is equivalent to the condition that the map EB • EB′ : Ga →

G×G factors as a map of group schemes through the diagonal map diag : Ga→ Ga ×Ga.
Observe that the condition on G that it should admit a structure of exponential type

implies that every infinitesimal 1-parameter subgroup Ga(r) → G admits a natural lifting to
a 1-parameter subgroup Ga → G. Furthermore, if ψ : Ga → G satisfies the condition that ψ∗

applied to each element of some set of generators of k[G] is a polynomial in k[Ga] = k[T ] of
degree < pr, then ψ = EB for some B ∈ Cr(Np(g)).

Remark 1.7. If G admits a structure of exponential type, then this structure is essentially unique.
Namely, by Definition 1.6(4), a structure E : Np(g)×Ga→ G of exponential type determines

a ‘p-nilpotent Springer isomorphism’ Np(g)
∼
→ Up(G) sending B 7→ EB(1). If E ′ is another

structure of exponential type on G, then there is a unique automorphism φE,E ′ : Np(g)→ Np(g)
relating the p-nilpotent Springer isomorphisms associated to E , E ′. Moreover, φE,E ′ determines
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an automorphism ΦE,E ′ : V (G)→ V (G) using (1.6.2). As is readily verified, the support variety
V (G)M ⊂ V (G) of a rational G-module M as defined in Definition 4.4 with respect to E has
image under ΦE,E ′ the support variety of M with respect to E ′.
Example 1.8. As shown by Sobaje in [Sob13b, 4.2], if G is reductive with p > h, and if PSLp is
not a factor of [G,G], then G can be given a structure of exponential type by defining E to be
the exponential map constructed by Seitz in [Sei00, 5.3] on a Borel subgroup and extending to
a G-equivariant map using work of Carlson, Lin and Nakano [CLN08] and McNinch [McN05].
Moreover, if G is such a reductive group and if H ⊂ G is a parabolic subgroup or the unipotent
radical in a parabolic subgroup and if h = Lie(H), then the restriction of E to Np(h) provides H
with a structure of exponential type.

Recent work of Sobaje suggests that any reductive group G can be given a structure of
exponential type provided that p is very good for G.

We provide here the evident definition of a map of linear algebraic groups equipped with
structures of exponential type. A natural example of such a map is a closed embedding G ⊂ GLN
of exponential type as in Example 1.5. If G,G′ are provided with structures E , E ′ of exponential
type, then the inclusion 1×e : G→ G×G′ (sending g ∈ G to (g, e) ∈ G×G′) and the projection
pr1 : G×G′→ G are maps of exponential type.

Definition 1.9. Let G,G′ be linear algebraic groups equipped with structures of exponential
type E , E ′. Then a homomorphism of algebraic groups f : G → G′ is said to be a map of
exponential type if the following square commutes.

Np(g)×Ga
E //

df×id

��

G

f

��
Np(g′)×Ga

E ′ // G′

(1.9.1)

The following Example 1.10 includes parabolic subgroups of reductive groups (which are
semi-direct products of their unipotent radicals and Levi quotients).

Example 1.10. Let G be a linear algebraic group equipped with a structure of exponential type
and assume that G can be written as the semi-direct product G ' H oK; H ⊂ G is a reduced,
closed subgroup and π : G → K admits a splitting s : K → G. If both H, s(K) ⊂ G are
embeddings of exponential type, then π : G→ G/K is also a map of exponential type.

We conclude this section by making explicit the actions on V (G) of pre-composition and
post-composition with the Frobenius morphism.

Proposition 1.11. Let G be a linear algebraic group equipped with a structure of exponential
type. Then pre-composition with the Frobenius morphism induces the self-map

(− ◦ F ) : V (G)→ V (G), EB 7→ EB◦F

where (B0, B1, . . .) ◦ F = (0, B0, B1 . . .).
Furthermore, if G ↪→ GLn is an embedding of exponential type defined over Fp, then post-

composition with the Frobenius morphism induces the self-map

(F ◦ −) : V (G)→ V (G), expB 7→ expF (B)

where F (B0, B1, . . .) = (0, B
(1)
0 , B

(1)
1 , . . .). Here, B(1) is the n×n-matrix obtained by raising each

entry of B to the pth power.
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Proof. The identification of (− ◦ F ) is immediate from the definition of EB.
Assume now that G ↪→ GLn is an embedding of exponential type defined over Fp. In

particular, G is defined over Fp so that we may view the Frobenius morphism as a self-map
F : G → G which thus induces (F ◦ −) : V (G) → V (G) which in turn is identified as the
restriction of F : V (GLn)→ V (GLn).

We verify that
F ◦ (expB ◦F s) = expB(1) ◦F s+1

by establishing this equality as an equality of functors on commutative k-algebra A: for any
a ∈ A,

F ((expB ◦F s)(a)) = (1 +B · aps +B2 · a2ps/2 + · · ·+Bp−1 · a(p−1)ps/(p− 1)!)(1)

equals

(expB(1) ◦F s+1)(a) = 1 +B(1) · aps+1
+ (B(1))2 · a2ps+1

/2 + · · ·+ (B(1))p−1 · a(p−1)ps+1
/(p− 1)!.

Consequently,

F ◦ expB ◦F s ≡ F ◦
(∏
s>0

expBs ◦F
s

)
=
∏
s>0

exp
B

(1)
s
◦F s+1 ≡ expF (B) . 2

Corollary 1.12. As in Proposition 1.11, let G be a linear algebraic group equipped with
a structure of exponential type. Then EB ∈ pr−1

r ({0}) if and only if B = B′ ◦ F r for some
B′ ∈ C∞(Np(g)).

2. Action on rational modules at 1-parameter subgroups

In this section, we begin our consideration of rational G-modules and the role 1-parameter
subgroups of G play in determining their structure. Much of this section is directed to presenting
and justifying the formulation of the action of G on a rational G-module at a 1-parameter group
(Definition 2.9) for G a linear algebraic group of exponential type. Because this definition might
seem somewhat opaque at first, we treat first the case that G = Ga. One important observation
is Proposition 2.6 which asserts that for a given rational G-module M there is some integer r
independent of the choice of 1-parameter subgroup of G such that this action only depends upon
the first r terms of the sequence defining a 1-parameter subgroup. We conclude this section with
a brief investigation of the ‘group algebra’ of the linear group GLn.

We shall find it convenient to have at hand various equivalent formulations of the structure
of a rational G-module as discussed in Proposition 2.2. Such a structure determines the structure
given in (2.2.5) of a module over the ‘group algebra’ kG ofG (also referred to as the ‘hyperalgebra’
of G as in [CPS80] or the ‘algebra of distributions’ at the identify of G and denoted Dist(G) as
in [Jan87]).

We begin by recalling the definition of kG.

Definition 2.1. Let G be a connected affine group scheme of finite type over k. Denote by
kG(r) the finite-dimensional k-algebra defined as the k-linear dual of k[G(r)] whose product is
determined by the coproduct structure on k[G]. The group algebra kG of G is the k-algebra

kG ≡ lim−→
r

kG(r).
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Proposition 2.2. Let G be a connected affine group scheme of finite type over k and M a
k-vector space. The following structures on M are equivalent.

(1) The structure

∆M : M →M ⊗ k[G] (2.2.1)

of a comodule for the coordinate algebra k[G] of G.

(2) The structure of functorial (with respect to commutative k-algebras A) A-linear group
actions

ΘM,A : G(A)× (M ⊗A)→ (M ⊗A). (2.2.2)

(3) The structure of a k[G]-linear group action:

Θk[G] : G(k[G])× (M ⊗ k[G])→ (M ⊗ k[G]). (2.2.3)

(4) For M finite-dimensional, equipped with a basis {m1, . . . ,mn}, the structure of a map

ρM : G→ GLn (2.2.4)

of group schemes (over k).

The vector space M equipped with one of the equivalent structures listed above is said to be
a rational representation of G, or (more briefly) a rational G-module. Such a structure determines
a locally finite kG-structure on M given by

kG⊗M →M, (φ ∈ kG,m ∈M) 7→
∑
i

φ(fi)mi where ∆M (m) =
∑
i

mi ⊗ fi. (2.2.5)

Proof. Given the coproduct ∆M as in (2.2.1), the functorial pairings ΘM,A (2.2.2) are given by

(x : k[G]→ A,m⊗ 1) 7→ (idM ⊗ x)(∆(m)). (2.2.6)

The pairing Θk[G] of (2.2.3) is a special case of (2.2.2) with A = k[G]. On the other hand, the
pairing Θk[G] of (2.2.3) determines the pairing (2.2.1) by

(∆M )(m) = Θk[G](id×m⊗ 1) ∈M ⊗ k[G].

In particular, the structures of (2.2.1), (2.2.2), and (2.2.3) are equivalent.
The comodule structure on M given by (2.2.1) determines the kG-action on M as made

explicit in (2.2.5). This kG-action on M must be locally finite, since the image under ∆M of any
finite-dimensional subspace of M is necessarily a finite-dimensional subspace of M⊗k[G]. For M
finite-dimensional equipped with a basis {m1, . . . ,mn}, the adjoints of the pairings (2.2.2) are
functorial (with respect to A) group homomorphisms G(A)→ AutA(M ⊗ A) ' GLn(A) which
is equivalent to the structure ρM : G→ GLn of (2.2.4).

To complete the proof of the proposition, it suffices to assume that M is finite-dimensional
and show that the structure ρM : G→ GLn of (2.2.4) determines the coproduct ∆M of (2.2.1).
We do this by identifying M as a vector space with Vn (the defining rational GLn-module) and
taking ∆M to be the composition (1⊗ ρM )∗ ◦∆Vn : Vn→ Vn ⊗ k[GLn]→ Vn ⊗ k[G]. 2

For the example G = Ga, we proceed to identify explicitly the multiplication by elements of
kGa on a rational Ga-module M .
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Example 2.3. The group algebra kGa is given as

kGa ≡ k[u0, . . . , ui, . . .]/(u
p
i ) ⊂ k[T ]∗

where ui applied to f ∈ k[Ga] = k[T ] reads off the coefficient of T p
i
. Here (upi ) denotes the ideal

of k[u0, . . . , ui, . . .] generated by {up0, . . . , u
p
i . . .}. On group algebras, we have

ir∗ : kGa(r) = k[u0, . . . , ur−1]/(upi ) ⊂ k[u0, . . . , un, . . .]/(u
p
i ) = kGa,

F∗ : kGa→ kGa, F∗(ui) = ui−1 if i > 0, F∗(u0) = 0. (2.3.1)

Let ∆M : M → M ⊗ k[T ] be the defining coaction of a rational Ga-module M . For m ∈ M
and any vj = (uj00 · · ·u

jr−1

r−1 )/(j0! · · · jr−1!) ∈ kGa (with j =
∑r−1

`=0 j`p
`, 0 6 j` < p), the action of

vj ∈ kGa = k[u0, . . . , ui, . . .]/(u
p
i ) on M is given by

∆M (m) =
∑
j>0

vj(m)⊗ T j . (2.3.2)

Here, the sum is finite for each m ∈ M . If M is finite-dimensional, then vj(m) is non-zero only
for finitely many values of j as m ranges over a basis for M ; thus, us acts trivially on M for s
sufficiently large. The image of each us in Endk(M) is p-nilpotent, and the us pairwise commute;
thus, the vj are also p-nilpotent and pairwise commute.

The structure Θk[T ] : Ga(k[T ])× (M ⊗ k[T ])→ (M ⊗ k[T ]) of (2.2.3) is given by

Θk[T ](T,m⊗ 1) =
∑
j>0

vj(m)⊗ T j . (2.3.3)

For a kGa(r)-module M , there is a natural choice of p-nilpotent operator on M associated
to a (infinitesimal) 1-parameter subgroup µ : Ga(r) → Ga (see Definition 3.1). After much
experimentation, we have identified the following choice of p-nilpotent operator for a rational
Ga-module M and a 1-parameter subgroup σa : Ga→ Ga. This definition leads to Definition 2.9
formulated for G a linear algebraic group equipped with a structure of exponential type. We
shall see in Proposition 3.8 how the action given in Definition 2.4 is related to the action at
infinitesimal 1-parameter subgroups Ga(r)→ Ga as first considered in [SFB97b].

Definition 2.4. Let M be a rational module for the additive group Ga and σa : Ga→ Ga be a
1-parameter subgroup given by the (finite) sequence a = (a0, . . . , as, . . . ). The (nilpotent) action
of Ga on M at σa : Ga→ Ga is defined to be the action of∑

s>0

(σas)∗(us) =
∑
s>0

ap
s

s us ∈ kGa. (2.4.1)

The equality (σb)∗(us) = bp
s
us is confusing at first glance. The reader can check this as

follows: σb : Ga → Ga induces σ∗b : k[T ]→ k[T ], T 7→ b · T . Thus, σ∗b (T
ps) = bp

s · T ps , so that
reading off the coefficient of T p

s
in the polynomial σ∗b (f(T )) is the same operation as reading off

bp
s

times the coefficient of T p
s

in the polynomial f(T ).

Remark 2.5. The action of Ga on M at σa is not given by the action on σ∗a(M) of some naturally
chosen element of kGa. Indeed, there does not seem to be a reasonable choice of φ ∈ kGa which
would yield (σa)∗(φ) as a suitable alternative to

∑
s>0 a

ps
s us.
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As we observed in Example 2.3, the action of Ga on a finite-dimensional rational Ga-module
M involves only finitely many us ∈ kGa. In other words, if M is finite-dimensional, then there
exists some r such that the action of us on M is trivial for all s > r. We next verify a similar
statement for finite-dimensional rational G modules whenever G is equipped with a structure
of exponential type. In the terminology of Definition 4.5, this proposition verifies that every
finite-dimensional rational G-module has bounded ‘exponential degree’.

Proposition 2.6. Let G be a linear algebraic group equipped with a structure of exponential
type and let M be a finite-dimensional rational G-module. Then there exists an integer r such
that (EB)∗(us) acts trivially on M for all s > r, all B ∈ Np(g).

Proof. Let E : Np(g) × Ga → G be the map giving G the structure of exponential type and
consider the composition

E∗ ◦∆M : M →M ⊗ k[G]→M ⊗ k[Np(g)]⊗ k[T ].

We choose r such that the image of the composition lies in the subspace M ⊗k[Np(g)]⊗k[T ]<pr ,
where k[T ]<pr is the subspace of k[T ] of polynomials of degree < pr. Then for any B ∈ Np(g)(k)
(i.e. any k-point of Np(g)), composition with evaluation at B determines

E∗B = evB ◦ E∗ ◦∆M : M →M ⊗ k[T ]<pr .

Since the action of (EB)∗(us) is given by composing E∗B with the linear map 1⊗us : M⊗k[T ]→M
(i.e. with evaluation at T p

s
), the proposition follows. 2

Example 2.7. Let M be a finite-dimensional polynomial GLn module of degree d (see [Gre80]);
thus, the comodule structure for M has the form

∆M : M →M ⊗ k[Mn]d ⊂M ⊗ k[GLn]

where k[Mn]d is the coalgebra of algebraic functions of degree d on Mn ' An2
. The map exp :

Ga ×Np(gln)→ GLn extends to a map

exp : Ga ×Mn→Mn, (s,A) 7→
(

1 + sA+ · · ·+ sp−1

(p− 1)!
Ap−1

)
whose map on coordinate algebras exp∗ : k[Mn]→ k[Mn] ⊗ k[T ] sends Xi,j to a polynomial in
T (with coefficients in k[Mn]) of degree less than p.

Consequently, the composition

exp∗ ◦∆M : M →M ⊗ k[Mn]d→M ⊗ k[Mn]⊗ k[T ]

when evaluated at any A ∈ Mn has image contained in M ⊗ k[T ]6(p−1)d. Thus, the action of
(expA)∗(vj) on M (given by the composition of evA ◦ exp∗ ◦∆M with reading off the coefficient
of T j) is trivial provided that j > (p− 1)d. This explicit bound for the vanishing of (expA)∗(ur)
(namely, for all r such that pr > (p − 1)d) is stronger than the bound (5.0.2) given in a more
general context at the beginning of § 5. The action of the product [(expA)∗(vj))] · [(expA)∗(vj′))]
is computed by applying 1⊗ vj ⊗ vj′ to the image of ∆T ◦ exp∗A ◦∆M : M → M ⊗ k[T ]⊗ k[T ].
This enables us to conclude that the action of (expA)∗(vj) on M has (p− 1)th power equal to 0
if j > d. In particular, if r satisfies pr > d (but not necessarily satisfies pr > (p− 1)d), then the
action of (expA)∗(ur) has (p− 1)th power 0.
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We require the following proposition to justify our definition in Definition 2.9 of the action
of G on M at a 1-parameter subgroup EB : Ga→ G.

Proposition 2.8. Let G be a linear algebraic group equipped with a structure of exponential
type and let M be a finite-dimensional rational G-module. For any pair B1, B2 of commuting
elements of Np(g) and any pair φ1, φ2 : k[Ga]→ k of p-nilpotent elements of kGa, (EB1)∗(φ1),
(EB2)∗(φ2) are commuting, p-nilpotent elements of kG.

Proof. Since (EBi)∗ : kGa→ kG is an algebra homomorphism, (EBi)∗(φi) is p-nilpotent whenever
φ is p-nilpotent.

Consider the commutative diagram

Ga ×Ga

EB1
×EB2 //

τ

��

G×G • //

τ

��

G

Ga ×Ga

EB2
×EB1 // G×G

•
<<

(2.8.1)

where τ is the interchange involution of G×G and • is the multiplication map of G. Composing
the (commutative) diagram of functions induced by (2.8.1) with the (commuting) functionals
φ1, φ2 yields the following commutative diagram.

k[G]
∆ //

∆

%%

k[G]⊗ k[G]
E∗B2
×E∗B1 //

τ∗

��

k[T ]× k[T ]
φ2⊗φ1//

τ∗

��

k

k[G]⊗ k[G]
E∗B1
×E∗B2 // k[T ]× k[T ]

φ1⊗φ2

::

(2.8.2)

The asserted commutativity is the statement of the equality of upper horizontal composition of
(2.8.2) and the composition involving the lower horizontal map. 2

Propositions 2.6 and 2.8 enable us to conclude that
∑

s>0(EBs)∗(us) is a well-defined
p-nilpotent operator whenever B = (B0, . . . , Bs, . . .) ∈ C∞(Np(g)).

Definition 2.9. Let M be a rational module for the linear algebraic group G provided with a
structure of exponential type. The (p-nilpotent) action of G on M at EB : Ga→ G is defined to
be the action of ∑

s>0

(EBs)∗(us) ∈ kG (2.9.1)

on M for any B ∈ C∞(Np(g)).

Example 2.10. Fix some i 6= j, 1 6 i, j 6 N , and let ψi,j : Ga → GLN be the root subgroup
given by the map (ψi,j)

∗ : k[GLN ]→ k[T ] with (ψi,j)∗(Xs,s) = 1 and (ψi,j)∗(Xs,t) = δi,sδj,t · T
for s 6= t. Thus, dψi,j : ga→ glN sends b to the the N ×N matrix whose only non-zero entry is b
in the (i, j)-position. Then ψi,j is an embedding of exponential type and one readily checks that

(ψi,j)∗

(∑
s>0

(σas)∗(us)

)
=
∑
s>0

(exp(dψi,j)(as))∗(us) ∈ kGLN

for any a ∈ A∞.
Consequently, if M is a rational GLN module and σa : Ga→ Ga is a 1-parameter subgroup,

then the action of Ga on ψ∗i,j(M) at σa as defined in Definition 2.4 equals the action of GLN on
M at ψi,j ◦ σa : Ga→ GLN as defined in Definition 2.9.
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We have the following functoriality extending Example 2.10.

Proposition 2.11. Let G,G′ be linear algebraic groups of exponential type and let f : G→ G′

be a map of exponential type. Then for any B ∈ C∞(Np(g)),

f∗

(∑
s>0

(EBs)∗(us)
)

=
∑
s>0

(E ′(df)∗(Bs)
)∗(us). (2.11.1)

In this situation, for any rational G′ module M and any 1-parameter subgroup EB : Ga→ G,
the action of G on f∗(M) at EB : Ga → G equals the action of G′ on M at f ◦ EB = E ′(df)∗(B) :

Ga→ G′.

Proof. The equality (2.11.1) follows from the equality

E ′(df)∗(B) = f ◦ EB : Ga→ G′ (2.11.2)

which follows from (1.9.1). Equality (2.11.2) tells us that the action of G′ on M at f ◦ EB is the
action of

∑
s>0(E ′(df)∗(Bs)

)∗(us). On the other hand, the action of any φ ∈ kG on f∗M is the action

of f∗(φ) on M essentially by the definition of f∗M . This establishes the second statement. 2

Let k⊗φM denote the base change of M along the pth power map φ : k→ k. The Frobenius
twist M (1) of a rational representation M of G is the k vector space k ⊗φ M with its natural
G(1)-structure; restricting along the Frobenius morphism G → G(1) provides M (1) with the
structure of a rationalG-module. IfG is defined over Fp, then we employ the natural identification
of G(1) with G so that the Frobenius morphism becomes an endomorphism F : G→ G; moreover,
the action of G(1) on M (1) can be naturally identified with the pull-back along F : G → G of
the given action of G on M ; we identify this pull-back of M along F with the rational G-module
M (1). The reader can find an exposition of such Frobenius structures in [FS97].

As a companion to Proposition 2.11, we have the following additional functoriality of our
actions. The reader should observe that the Frobenius morphism F : G→ G is far from a map
of exponential type; indeed, dF : g→ g is the 0-map.

Proposition 2.12. Let i : G ↪→ GLn be an embedding of exponential type defined over Fp and
let F : G→ G be the Frobenius endomorphism. Let M be a rational G-module.

(1) For any B = (B0, B1, . . .) ∈ C∞(Np(g)),

F∗

(∑
s>0

(expBs)∗(us)

)
=
∑
s>1

(exp
(B

(1)
s )

)∗(us−1). (2.12.1)

(2) For any rational G-module M with Frobenius twist M (1) = F ∗(M), the action of G
(identified with G(1)) on M (1) at expB equals the action of G on M at F ◦ expB.

Consequently, the action of G on M (1) at expB is given by
∑

s>1(exp
(B

(1)
s )

)∗(us−1).

Proof. The equality F ◦ (expB) = expB(1) ◦F was established in the proof of Proposition 1.11.
This leads to the equalities

F∗((expBs)∗(us)) = (exp
B

(1)
s
◦F )∗(us) = (exp

B
(1)
s

)∗(us−1)

which yields (2.12.1) thanks to (2.3.1).
Once we identify the rational G-module M (1) with the pullback of M along F : G→ G, then

the action of G on M (1) at expB is post-composition with the Frobenius morphism applied to
the action of G on M . Thus, assertion (2) follows from Proposition 2.11. 2
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3. Invariants for rational Ga-modules

In this section, we use the action of Ga on a rational Ga-module at 1-parameter subgroups

σa : Ga → Ga (as introduced in Definition 2.4) to define invariants of rational Ga-modules.

Considering the special case G = Ga is a good guide to § 4 in which we consider invariants

for rational G-modules for G a linear algebraic group of exponential type. The simplest and

perhaps most useful invariant is the support variety V (Ga)M of a finite-dimensional rational

Ga-module M as defined in Definition 3.9. Theorem 3.10 presents some of the basic properties of

M 7→ V (Ga)M . This support variety admits the refinement given in Definition 3.15, properties

of which are presented in Theorem 3.16.

Most of the properties of V (Ga)M are derived from corresponding properties for the support

varieties for M restricted to the Frobenius kernels Ga(r) ⊂ Ga. Thus, a key (and confusing)

comparison is made in Proposition 3.8 between the ‘linearization’ of actions at infinitesimal

1-parameter subgroups of Ga obtained by ‘twisting by λ’ the restrictions of a given 1-parameter

subgroup σa : Ga→ Ga and the action at σa as defined in Definition 2.4.

Unlike the rest of this section which concerns the special case G = Ga, we recall the following

definition of the (nilpotent) action at an infinitesimal 1-parameter subgroup µ : Ga(r) → G for

any affine group scheme (see, for example, [SFB97b]); in § 4, we shall refer back to this action in

the case that G is a linear algebraic group of exponential type.

If V is a k vector space of dimension n and φ is a k-linear endomorphism of V , then we

employ the notation

JT(φ, V ) =

p∑
i=1

ci[i],
∑
i

ci · i = n

for the Jordan type of φ : V → V , indicating that the canonical Jordan form of φ consists of ci
blocks of size i.

Definition 3.1. Let G be an affine algebraic group scheme, µ : Ga(r) → G be an infinitesimal

1-parameter subgroup of G, and M be a kG(r)-module (e.g. the restriction of a rational

G-module). Then the action of G(r) on M at µ is defined to be the action of µ∗(ur−1) ∈ kG(r)

on M , where ur−1 ∈ kGa(r) is the functional k[T ]/T p
r
→ k which sends f(T ) to its coefficient

of T p
r−1

.

The Jordan type of a finite-dimensional G(r)-module M at µ : Ga(r) → G, JTG(r),M (µ), is

defined to be the Jordan type of the p-nilpotent operator µ∗(ur−1) on M ,

JTG(r),M (µ) ≡ JT(µ∗(ur−1),M).

The support variety (or rank variety) of a G(r)-module M is defined to be the conical,

(reduced) subvariety Vr(G(r))M ⊂ Vr(G(r)) = Vr(G) consisting of those µ : Ga(r) → Ga(r) with

the property that (µ∗(ur−1))∗(M) is not free as (k[ur−1]/upr−1)-module; if M is finite-dimensional,

then Vr(G(r))M ⊂ Vr(G) is closed [SFB97b, 6.1].

We now restrict to the special case that our linear algebraic group G equals Ga and refer

the reader to our initial discussion of rational Ga-modules in Example 2.3. Before we begin to

introduce invariants for rational Ga-modules using 1-parameter subgroups σa : Ga → Ga, we

describe in the following proposition how to realize rational Ga-modules through 1-parameter

subgroups.
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Proposition 3.2. Let V be a vector space over k of dimension n.

(1) Once a basis {v1, . . . , vn} for V is chosen, then a rational Ga-module structure on V is
equivalent to a 1-parameter subgroup expA =

∑
s>0 expAs ◦F

s : Ga→ GLn. In this equivalence,
the rational Ga-module is identified with exp∗A(V ), the pull-back via expA of the defining
representation of GLn.

(2) Granted this choice of basis for V , a kGa-module structure on V is specified by requiring
us ∈ kGa to act as (expA)∗(us) on V . Here, one views (expA)∗(us) ∈ kGLn as acting upon the
defining n-dimensional vector space V for GLn.

(3) Given a Ga(r)-module structure on V for some r > 0, there is a natural extension of this
structure to a structure of a rational Ga-module on V of degree less than pr in the sense of
Definition 3.7.

Proof. The first assertion is that of Proposition 2.2(4). The second assertion follows from the
observation that the action of us on exp∗A(V ) equals the action of (expA)∗(us) on V , together
with the identification of kGa given in Example 2.3.

To extend a Ga(r)-structure on V to a rational Ga-module structure, we use the evident
splitting of group algebras kGa = k[u0, . . . , ur−1]/(upi ) → k[u0, . . . , un, . . .]/(u

p
i ) = kGa which

sends us ∈ kGa to 0 if s > r and to us for s < r.
Alternatively, given a k[Ga(r)]-comodule structure ∆V : V → V ⊗ k[Ga(r)], we construct a

k[Ga]-comodule structure on V as follows. Denote by τr : k[Ga(r)] = k[T ]/T p
r
→ k[T ] = k[Ga]

the map of coalgebras defined by sending f(T ) ∈ k[T ]/T p
r

to the unique polynomial f(T ) of
degree < pr whose reduction modulo (T p

r
) equals f(T ). Then

τr ◦∆V : V → V ⊗ k[Ga(r)]→ V ⊗ k[Ga]

is an extension of ∆V to a Ga-comodule structure on V . 2

One simple corollary of Proposition 3.2 is the following.

Corollary 3.3. The category of finite-dimensional rational Ga-modules is wild.

Proof. The group algebra kGa(r) is isomorphic as an algebra to kE, where E is an elementary
abelian p-group of rank r. Thus, the category of finite-dimensional kGa(r)-modules is isomorphic
to the category of finite-dimensional kE-modules. The latter is well known to be wild if r > 2
with p odd, r > 3 for p = 2. Proposition 3.2(3) now implies that the category of finite-dimensional
Ga-modules is wild. 2

Our goal is to investigate a given finite-dimensional rational Ga-module M in terms of its
behavior along 1-parameter subgroups σa : Ga→ Ga. We first recall the following identification
of the ‘linearization of the action’ of the restriction along an infinitesimal 1-parameter subgroup
of Ga.

Proposition 3.4 (Suslin–Friedlander–Bendel [SFB97b, 6.5]). Consider the infinitesimal 1-
parameter subgroup σa : Ga(r)→ Ga given by the r-tuple (a0, . . . , ar−1) ∈ Ar as in Example 1.3.
Then

σa∗(ur−1) =
r−1∑
i=0

ap
i

r−1−iui + higher-order terms, (3.4.1)

where the higher-order terms in (3.4) are those which are not linear in the {ui}.
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We point out that non-linear terms do occur in (3.4.1) for r > 2: as observed in [SFB97b,
6.5], σa : Ga(3)→ Ga has the property that the expression for σa∗(u2) is a sum of terms including

non-zero multiples of ui0u
p−i
1 for each i, 1 6 i < p associated to reading off the coefficients of tp

2

in the expressions for σ∗a(t
i).

The ‘reversal’ of indices of the coefficients occurring in (3.4.1) when compared with the action
of (2.4.1) suggests the introduction of the following operation on sequences.

Definition 3.5. We consider the morphism

λr : A∞→ Ar(k), (a0, . . . , ar−1, ar, . . .) 7→ (ar−1, ar−2, . . . , a0);

we also let λr denote the associated map λr : V (Ga) → Vr(Ga)(k) sending σa : Ga → Ga to
σλ(a) : Ga→ Ga.

For each c > 0 we consider the morphisms

λr+c,r : Vr+c(Ga)→ Vr(Ga), σa 7→ σλr(a).

For any a = (a0, . . . , ar+c−1) ∈ Ar+c, c > 0, we set qr+c,r(a) = (ac, . . . , ar+c−1) and consider
the morphisms

qr+c,r : Vr+c(Ga)→ Vr(Ga), σa 7→ σqrc,r(a).

Remark 3.6. For any r > 0, c > 0, we have the following commutative diagram

V (Ga)

prr+c

��

= // V (Ga)

prr

��
Vr+c(Ga)(k)

λr+c,r+c
��

prr+c,r// Vr(Ga)(k)

λr,r
��

Vr+c(Ga)(k) qr+c,r
// Vr(Ga)(k)

(3.6.1)

the composition of whose left vertical arrows is λr+c and the composition of whose right vertical
arrows is λr. Consequently, the space V (Ga) which maps into the inverse limit of {prr+c,r :
Vr+c(Ga)(k)→ Vr(Ga)(k)} through maps prr : V (Ga)→ Vr(Ga)(k) can also be identified as a
subspace (with the subspace topology) of the inverse limit of {qr+c,r : Vr+c(Ga)(k)→ Vr(Ga)(k)}
through maps λr : V (Ga)→ Vr(Ga)(k).

Moreover, we observe that

prr = λr+c,r ◦ λr+c : V (Ga)→ Vr(Ga)(k) (3.6.2)

and that λr,r is an involution.

Definition 3.7. A rational Ga-module M is said to have degree less than pr if the coaction
∆M : M →M ⊗ k[T ] satisfies the condition that ∆M (M) ⊂M ⊗ k[T ]<pr .

In particular, any finite-dimensional rational Ga-module M has degree less than pr for
sufficiently large r.

Since (generalized) support varieties are determined by the linearizations of p-nilpotent
operators (in the sense of [FPS07, 1.13]), the following proposition demonstrates a promising
connection between actions at 1-parameter subgroups and infinitesimal 1-parameter subgroups.

Proposition 3.8. Let M be a rational Ga-module of degree < pr. Then for any a ∈ A∞, the
action of Ga on M at σa : Ga → Ga (see (2.4.1)) equals the linearization of the action of Ga(r)

on M at σλr(a) : Ga(r)→ Ga.
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In other words, for b = (b0, . . . , br−1) = λr(a), the action of
∑

s>0 a
ps
s us on M equals the

action of
∑r−1

i=0 b
pi

r−1−iui, which is the sum of the linear terms of σb∗(ur−1) as in (3.4.1).

Proof. Recall that ur ∈ k[T ]∗ sends a polynomial p(T ) to the coefficient of T p
r

of p(T ). By
(2.2.6), the action of us on M is given by sending m ∈ M to (idM ⊗ us)(∆M (m)). Thus, for r
chosen sufficiently large as in the statement of the proposition, the action of ur on M is trivial.

Consequently, the action of
∑

s>0 a
ps
s us on M equals the action of

∑r−1
s=0 a

ps
s us on M .

Unravelling the definition of λr(−), we easily see that
∑r−1

s=0 a
ps
s us =

∑r−1
i=0 b

pi

r−1−iui, thereby
proving the proposition. 2

The following definition of support varieties for finite-dimensional rational Ga-modules will
serve as our model in the next section for the definition of support varieties for more general
linear algebraic groups.

Definition 3.9. Let M be a rational Ga-module. We define the support variety of M as the
subset V (Ga)M ⊂ V (Ga) with the subspace topology consisting of those 1-parameter subgroups
σa : Ga→ Ga at which the action (in the sense of Definition 2.9) is not free; in other words, the
action of M of

∑
s>0(σas)∗(us) ∈ kGa is not free.

If M is finite-dimensional, then V (Ga)M ⊂ V (Ga) consists of those 1-parameter subgroups
σa at which the Jordan type of M at σa (in the sense of Definition 3.12 below) has some block
of size less than p.

We provide a list of good properties forM 7→ V (Ga)M , using the analogues of these properties
established for infinitesimal group schemes (see [SFB97b]). For the first property, we require that
M has degree less than pr for some r > 0, for the second we require the stronger condition that
M be finite-dimensional (also required in the case of rational modules for infinitesimal group
schemes), and for the remaining properties we place no condition on M .

Theorem 3.10. Let M be a rational Ga-module:

(1) if M has degree less than pr, then V (Ga)M = λ−1
r (Vr(Ga)M (k)) (which equals pr−1

r (λr,r
(Vr(Ga)M (k))));

(2) if M is finite-dimensional, then V (Ga)M ⊂ V (Ga) is closed;

(3) V (Ga)M⊕N = V (Ga)M ∪ V (Ga)N ;

(4) V (Ga)M⊗N = V (Ga)M ∩ V (Ga)N ;

(5) if 0→ M1 → M2 → M3 → 0 is a short exact sequence of rational Ga-modules, then the
support variety V (Ga)Mi of one of the Mi’s is contained in the union of the support varieties
of the other two;

(6) V (Ga)M(1) = {σ(a0,a1,...) ∈ V (Ga) : σ(ap1,a
p
2,...)
∈ V (Ga)M};

(7) for any r > 0, the restriction of M to kGa(r) is injective (equivalently, projective) if and only
if the intersection of V (Ga)M with the subset {σa : as = 0, s > r} ⊂ V (Ga) equals {σ0}.

Proof. Comparing Definitions 3.1 and 3.9, we see that to prove property (1) it suffices to compare
the actions of σλr(a),∗(ur−1) and of

∑
s>0(σas)∗(us). Thus, property (1) for M finite-dimensional

is a consequence of Proposition 3.8 and [FPS07, 2.7], which compares maximal Jordan types
for finite-dimensional modules pulled-back via a flat map and its linearization. For M infinite-
dimensional, we use the finite-dimensional case just proved together with [FP10, 4.6] which
asserts that comparing projectivity pulled back along two π-points for all finite-dimensional
representations suffices to compare projectivity of pull-backs for arbitrary representations.
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Property (2) follows from property (1), the fact that Vr(Ga)M is closed in Vr(G) whenever
M is finite-dimensional, and the defining property of the topology on V (Ga).

Properties (3), (4), and (5) are readily checked by checking at one σa ∈ V (Ga) at a time.
Namely, for any σa ∈ V (Ga), we restrict the action of kGa on M to k[u]/up, where k[u]/up→ kGa

is given by sending u to
∑

s>0 a
psus. Thus, the verification at some σa ∈ V (Ga) reduces to the

verification of these properties for k[u]/up-modules, which is essentially trivial.
Property (6) follows from Proposition 2.12 which tells us that the action of σ(a0,a1,...) on M (1)

equals the action of σ(ap1,a
p
2,...)

on M .
For any σa with as = 0 for s > r, Proposition 3.8 tells us that the action of Ga on M at

σa equals the linearization of the action of (σλr(a))∗(ur−1); as shown in [FP10, 4.6] (for possibly
infinite-dimensional modules), one of these actions is free if and only if the other is. Since λr is
an involution on the set of involutions a with as = 0 for s > r, the condition that the action of
(σλr(a))∗(ur−1) on M is free for all a 6= 0 with as = 0 for s > r is equivalent to the condition
that M is injective as a Ga(r)-module. As defined, for example in [FP10, 5.1], the subset of those
σa ∈ V (Ga) at which M is not free is by definition V (Ga)M . Property (7) now follows. 2

As recalled in the proof of Corollary 3.3, the category of G(a(r)-modules is equivalent to the
category of kE-modules where E is the elementary abelian p-group Z/p×r. Since many examples
of support varieties (equivalently, of rank varieties) for elementary abelian p-groups have been
computed, Proposition 3.2(3) together with Theorem 3.10(1) provides many explicit examples.
The following corollary is a simple consequence of one aspect of our knowledge of support varieties
for elementary abelian p-groups.

Corollary 3.11. For any closed and conical subset X ⊂ Vr(Ga(r)) (i.e. zero locus of
homogeneous polynomial equations), there exists some finite-dimensional rational Ga-module
MX such that

V (Ga)MX
= pr−1

r (X) ⊂ V (Ga).

Proof. As in Remark 3.13.1, pr = λr,r ◦ λr : V (Ga)→ Vr(Ga)(k). The construction of Carlson’s
Lζ-modules determines a finite-dimensional Ga(r)-module M such that Vr(Ga(r))M ) = λr,r(X)
(see [SFB97b, 7.5]). Thus, the corollary follows from Proposition 3.2(3) and Theorem 3.10(1). 2

In the definition below, we define the ‘Jordan type’ of a finite-dimensional, rational Ga-
module M at a 1-parameter subgroup σa : Ga → Ga as the Jordan type of the p-nilpotent
operator associated to the action of Ga on M at σa.

Definition 3.12. Let M be a finite-dimensional rational Ga-module, a ∈ A∞, and σa : Ga→Ga.
We define the Jordan type of M at σa by setting

JTGa,M (σa) ≡ JT

(∑
s>0

ap
s

s us,M

)
,

the Jordan type of the action of Ga on M at σa (see Definition 2.4).

We remind the reader of the partial ordering on Jordan types of an endomorphism of an
m-dimensional vector space:

c1[1] + · · ·+ cp[p] 6 b1[1] + · · ·+ bp[p]⇔
p∑
i=j

ci · i 6
p∑
i=j

i · bi, for all j (3.12.1)
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for m =
∑
ci ·i =

∑
bi ·i. We also remind the reader that for any finite-dimensional Ga(r)-module

M there is an infinitesimal 1-parameter subgroup µ : Ga(r)→ Ga(r) at which the Jordan type of
M is ‘strictly maximal’, greater or equal to the Jordan type of M at any infinitesimal 1-parameter
subgroup of Ga(r). This is a reflection of the fact that Vr(Ga) is irreducible.

In the following theorem, we verify for r sufficiently large for a given finite-dimensional
rational Ga-module M that the maximum Jordan type of M as a rational Ga-module equals
the Jordan type of M as a Ga(r)-module. The reader will observe an unavoidable confusion
of notation: if a = (a0, . . . , ar−1, 0, 0, . . .), then JTGa,σa(M) equals JTGa(r),σλr(a)(M) and not
JTGa(r),σprr(a)(M). The compatibility of Jordan types of M restricted to Ga(r) for r � 0 is
achieved thanks to our twisting functions λr.

Theorem 3.13. Let M be a finite-dimensional rational Ga-module of degree less than pr. Let
b = (b0, . . . , br−1) be chosen so that JTGa(r),M (σb) is (strictly) maximal among partitions of
dim(M) occurring as Jordan types of M at (infinitesimal) 1-parameter subgroups of Ga(r).

(1) For any 1-parameter subgroup σa : Ga→ Ga with λr(a) = b,

JTGa,M (σa) = JTGa(r),M (σb). (3.13.1)

In other words, the Jordan type of M at σa as a Ga-module equals the Jordan type of M at σ(b)
as a Ga(r)-module.

(2) The Jordan type JTGa(r),M (σb) equals the maximum among the Jordan types
JTGa,M (σa), a ∈ A∞.

(3) For any c > 0, Vr+c(Ga)M = q−1
r+c,r(Vr(Ga)M ).

Proof. The first statement follows from Proposition 3.8 and [FPS07, 1.13] (see also [FPS07, 2.7]).
Namely, the fundamental result concerning the maximal Jordan type of a k[u1, . . . , ur−1]/(upi )-
module M asserts that if this Jordan type is achieved as the pull-back via some flat map
α : k[t]/tp → k[u1, . . . , ur−1]/(upi ), then it is achieved by the (necessarily, flat) map obtained
by sending t to the linear part of α(t) (i.e. linear in the ui).

The second statement follows from the observation that the choice of r guarantees that the
action of Ga on M at σa equals the action of Ga on M at σprr(a) which in turn equals the
linearization of the action of Ga(r) on M at σλr(a) as seen in Proposition 3.8, together with the
fact that the maximum Jordan type of these linearizations is the maximal Jordan type of M as
a Ga(r)-module.

To prove the last assertion, first observe that σb /∈ Vr+c(Ga)M if and only if the Jordan type
has all blocks of size p. Of course, if the Jordan type has all blocks of size p, then it is necessarily
maximal. For r as in the statement of the proposition (and M of degree less than pr) and any
σa ∈ V (Ga), we have

JTGa,M (σa) = JTGa(r+c),M (λr+c(σa)) = JTGa(r),M (λr(σa))

if any one of those three Jordan types is maximal among the Jordan types JTGa,M (σa), a ∈ A∞.
Thus, the last assertion follows from the observation that qr+i,r ◦ λr+c = λr. 2

In [FP10], the present author and Pevtsova consider invariants for rational modules for
finite group schemes which are finer than support varieties. We develop the extension of these
‘generalized support varieties’ for rational Ga-modules.

The following proposition, essentially found in [FP10, 2.8], is a generalization of the
topological property of Theorem 3.10(2).
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Proposition 3.14. Let M be a finite-dimensional rational Ga-module of dimension n and let
[c] =

∑p
i=0 ci[i] be a partition of n. Then

V 6[c](Ga)M ≡ {σa : JTM (σa) 6 [c]}

is a closed subspace of V (Ga).
More generally, for each j, 0 < j < p, the subset of those σa ∈ V (Ga) such that the rank of

(
∑∞

i=0 a
pi

i ui)
j : M → M is less than some fixed integer c (which is equivalent to the condition

that the rank of (
∑∞

i=0 a
pi

i ui)
j : M →M is at most c− 1) is closed.

Proof. The fact that the second statement implies the first follows from (3.12.1). Namely, for
a p-nilpotent operator u on a vector space M of dimension m, the Jordan type of u equals
c1[1] + · · ·+ cp[p] if and only if the rank of uj equals

∑p
i=j ci · (i− j).

Using Theorem 3.10(1), it suffices to replace V (Ga) by Vr(Ga) = V (Ga(r)) with r chosen so
that ∆M (M) ⊂M ⊗ k[T ]<pr . We consider the k[x0, . . . , xr−1]-linear operator

ΘM : M ⊗ k[x0, . . . , xr−1]→M ⊗ k[x0, . . . , xr−1], m 7→
r−1∑
s=0

us(m)⊗ xpss .

Specializing ΘM at (a0, . . . , ar−1), we obtain ΘM 7→
∑r−1

s=0 a
ps
s us. Applying Nakayama’s lemma

as in [FP11, 4.11] to Ker{Θj
M}, 1 6 j < p, we conclude that the rank of the jth power of the

specialization of ΘM is lower semi-continuous on Ar; thus the subset of those σa ∈ Vr(Ga) such

that the rank of (
∑r−1

s=0 asu
ps
s )j : M → M is less than some fixed integer c is closed; of course,

this is equivalent to this rank being at most c− 1. 2

Using Proposition 3.14, we introduce the (affine) non-maximal j-rank variety V j(Ga)M for
a finite-dimensional rational Ga-module M and an integer j, 1 6 j < p. For G an infinitesimal
group scheme, V j(G)M was defined in [FP10, 4.8].

Definition 3.15. For any finite-dimensional rational Ga-module M and any j, 1 6 j < p, we
define the (affine) non-maximal j-rank variety of M

V j(Ga)M ⊂ V (Ga)

to be the subset of those σa : Ga → Ga such that either a = 0 or the rank of (
∑

s>0 a
ps
s us)

j :
M →M is not maximal.

As in [FP10, 4.8], for any r > 0 and any j, 1 6 j < p, we similarly define

V j(G(a(r))M ⊂ V (Ga(r))

to be the subset of those µa : Ga(r) → Ga(r) such that either a = 0 or the rank of µa∗(u
j
r−1) :

M →M is not maximal.

Various examples of V j(Ga)M are given in [FP10], thanks to Proposition 3.2(3) and the first
statement of the following theorem.

Theorem 3.16. The non-maximal j-rank variety V j(Ga)M of a finite-dimensional rational Ga-
module satisfies the following properties:

(1) if M has degree less than pr, then V j(Ga)M = pr−1
r (λr,r(V

j
r (Ga)M (k)));

(2) V j(Ga)M ⊂ V (Ga) is a proper closed subspace;
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(3) V j(Ga)M is a subspace of V (Ga)M , with equality if and only if the action of Ga at some σa
has all Jordan blocks of size p;

(4) for any r > 0, the restriction of M to kGa(r) is a module of constant j-rank if and only if
the intersection of V j(Ga)M with the subset {σa : a 6= 0, as = 0, s > r} ⊂ V (Ga) is empty.

Proof. As observed in [FP10, 3.5], Theorem 3.13 remains valid if maximal Jordan type is replaced
by maximal j-rank. Modifying the proof of Theorem 3.10(1) by replacing maximal Jordan type
by maximal j-rank gives a proof of property (1).

The containment V j(Ga)M ⊂ V (Ga)M is immediate from the definition of V j(Ga)M , as is
the assertion that V j(Ga)M is necessarily a proper subset of V (Ga). The assertion that V j(Ga)M
is closed in V (Ga) is a restatement of the second assertion of Proposition 3.14. (Property (2)
also follows from property (1) together with the fact that V j(G(a(r))M ⊂ V (G(a(r)) is closed.)

Equality of V j(Ga)M and V (Ga)M occurs if and only if the maximal j-rank occurs exactly
at those σa at which the action of Ga has all blocks of size p. If there is some such σa at which
the action of Ga has all blocks of size p, then the j-rank at some σb equals that at σa if and
only if σb also has all blocks of size p (the j-rank of a matrix with a single Jordan block of size
` 6 p is min{0, ` − j}). On the other hand, if there does not exist some σa at which the action
of Ga has all blocks of size p, then V (Ga)M = V (Ga), whereas it is tautological that the j-rank
is non-maximal on a proper subset of V (Ga).

Finally, to prove property (4), we recall that a Ga(r)-module M is a module of constant
j-rank if and only if V j(Ga(r))M −{0} is empty [FP10]. Thus, this property is proved by a slight
adaption of the proof of Theorem 3.10(7). 2

4. Support varieties for rational G-modules, G a linear algebraic group of
exponential type

In this section, we extend the results of § 3 from the special case G = Ga to linear algebraic
groups G equipped with a structure of exponential type. All simple algebraic groups of classical
type are groups of exponential type; as remarked in Example 1.8, other examples are reductive
algebraic groups, their parabolic subgroups, and the unipotent radicals of parabolic subgroups
subject to a condition on p depending upon the type of G.

The formalism given for G = Ga applies to this more general context with very little change,
and we do not repeat those arguments of § 3 which apply essentially verbatim. What enables
this extension of § 3 is Proposition 4.2, an interpretation of a result of Sobaje. In particular,
Theorems 4.6 and 4.11 extend to rational G-modules the basic Theorems 3.10 and 3.16 for
rational Ga-modules.

We begin with the evident extension of Definition 3.5. We remind the reader that every
1-parameter subgroup Ga→ G is of the form EB if G is provided with a structure of exponential
type.

Definition 4.1. Let G be a linear algebraic group equipped with a structure of exponential
type. For any B ∈ C∞(Nr(g)) and any r > 0, we set Λr(B) = (Br−1, Br−2, . . . , B0) and similarly
define Λr+c,r. We define

Λr : V (G)→ Vr(G)(k), EB 7→ EΛr(B) ◦ ir,
Λr+c,r : Vr+c(G)→ Vr(G), EB ◦ ir+c 7→ EΛr(B) ◦ ir.

The key observation which enables the formalism of § 3 to be extended to rational G-modules
for G equipped with a structure of exponential type is the following proposition, essentially an
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interpretation in our context of [Sob13a, Proposition 2.3]. This can be viewed as a generalization
of Proposition 3.4. We give an overview of Sobaje’s proof which we shall use in the proof of our
refinement in Proposition 4.3.

Proposition 4.2 (Cf. Sobaje [Sob13a, 2.3]). Let G be a linear algebraic group equipped with
a structure of exponential type, g = Lie(G), and r a positive integer. Then for any 1-parameter
subgroup EB : Ga → G and any finite-dimensional kGa(r)-module M , the pullback of M along
the (k-rational) π-point

k[u]/up→ kG(r), u 7→ (EΛr(B))∗(ur−1) (4.2.1)

is projective if and only if the pullback of M along the map of k-algebras

k[u]/up→ kG(r), u 7→
r−1∑
s=0

(EBs)∗(us) (4.2.2)

is projective.

Proof. By Proposition 2.8,
∑r−1

s=0(EBs)∗(us) is a sum of p-nilpotent, pairwise commuting elements
of kG and thus (4.2.2) is well defined.

The proof of [Sob13a, 2.3] applies essentially verbatim. Sobaje’s proof proceeds by factoring
EB as

EB = Φr ◦Ψr : Ga→ G×ra → Ga, Φr = EB0 • · · · • EBr−1 , Ψr = ×r−1
s=0F

s.

Sobaje observes that a simple tensor x0 ⊗ · · · ⊗ xr−1 ∈ k(G×ra ) is sent by Φr∗ to the product
EB0∗(x0) • · · · • EBr−1∗(xr−1). He then verifies that Ψr∗ : kGa → k(G×ra ) sends ur−1 to the sum
of simple tensors of the form us,r−s ≡ 1⊗ · · · 1⊗ us⊗ 1 · · · ⊗ 1 (with us in the r− 1− s position)
plus a sum of terms involving a product of two or more p-nilpotent terms in k(G×ra ).

Thus, Φr∗ sends Ψr∗(ur−1) to the sum
∑r−1

s=0 EBr−s−1∗(us) plus the image under Φr∗ of a
sum of terms involving a product of two or more p-nilpotent elements in k(G×ra ). Consequently,
by [SFB97b, 6.4] applied to the abelian subalgebra of kG generated by the image of Φr∗ , the
restriction of M along (4.2.1) is projective if and only if the restriction of M along (4.2.2) is
projective for any finite-dimensional kG(r)-module M . 2

Recall that a π-point of a finite group scheme G is a left flat map α : K[t]/tp → KG
which factors through the group algebra of some commutative subgroup scheme CK ⊂ GK . In
Proposition 4.2, the map (4.2.1) is a π-point, factor through the group algebra of the image
of the 1-parameter subgroup EB. Using this proposition, we can conclude that (4.2.2) is also a
π-point, thereby allowing us to compare Jordan types using the results of [FPS07].

Proposition 4.3. Let G be a linear algebraic group equipped with a structure of exponential
type, g = Lie(G), and r a positive integer. Then (4.2.2) is a π-point of G(r) equivalent to the
π-point (4.2.1).

Let M a finite-dimensional rational G-module. Let [c] =
∑p

i=1[ci] be a Jordan type maximal
among the Jordan types of M at infinitesimal 1-parameter subgroups µ : Ga(r) → G. Then the
pullback of M along the π-point (4.2.1) has Jordan type [c] if and only if the pullback of M
along the π-point (4.2.2) has Jordan type [c].

Proof. We first consider the special case M = kG(r). Then M is free as a (left) kG(r)-module and
since (4.2.1) is flat, the restriction of M along (4.2.1) is a free k[u]/up-module. By Proposition 4.2,

785

https://doi.org/10.1112/S0010437X14007726 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14007726


E. M. Friedlander

the restriction of M along (4.2.2) is thus also a free k[u]/up-module. Consequently, (4.2.2) is flat.
As observed in the proof of Proposition 4.2,

∑r−1
s=0(EBs)∗(us) lies in Φr∗(kG×ra(r)). The latter is

the group algebra kC of the abelian subgroup scheme of G(r) defined as the image under Φr of

G×ra(r). Thus, (4.2.2) is a π-point.

Now, let M denote an arbitrary finite-dimensional rational G-module. Proposition 4.2
is exactly the statement that the π-points (4.2.1) and (4.2.2) are equivalent. The second
statement of the proposition follows from the first and the independence of the Jordan type
of π-points which are equivalent and for which the Jordan type of M is maximal for one of the
π-points [FPS07, 3.5]. 2

Propositions 4.2 and 4.3 suggest the following extension of Definition 3.9.

Definition 4.4. Let G be a linear algebraic group equipped with a structure of exponential
type and let M be a rational G-module. We define the support variety of M to be the subset
V (G)M ⊂ V (G) consisting of those EB such that M restricted to k[u]/up is not free, where
u =

∑
s>0(EBs)∗(us) ∈ kG (as in (2.9.1)).

For M finite-dimensional, we define the Jordan type of M as a rational G-module at EB by

JTG,M (EB) ≡ JT

(∑
s>0

(EBs)∗(us),M
)
,

the Jordan type of the action of G on M at EB (see Definition 2.9). For such a finite-dimensional
rational G-module M , V (G)M ⊂ V (G) consists of those 1-parameter subgroups EB such that
some block of the Jordan type of M at EB has size less than p.

We proceed to verify that this definition of Jordan type satisfies the ‘same’ list of properties as
that of Theorem 3.10. First, we require the following definition, closely related to the formulation
of p-nilpotent degree given in [Fri11, 2.6].

Definition 4.5 (Cf. [Fri11, 2.5]). Let G be a linear algebraic group equipped with a structure of
exponential type and let M be a rational G-module. Then M is said to have exponential degree
less than pr if (EB)∗(us) acts trivially on M for all s > r, all B ∈ Np(g).

For example, Proposition 2.6 tells us that every finite-dimensional G-module M has
exponential degree less than pr for r sufficiently large.

Theorem 4.6. Let G be a linear algebraic group equipped with a structure of exponential type
and M a rational G-module:

(1) if M has exponential degree < pr, then V (G)M = Λ−1
r (Vr(G)M (k))) (which equals

pr−1
r (Λr,r(Vr(G)M )(k)));

(2) if M is finite-dimensional, then V (G)M ⊂ V (G) is closed;

(3) V (G)M⊕N = V (G)M ∪ V (G)N ;

(4) V (G)M⊗N = V (G)M ∩ V (G)N ;

(5) if 0 → M1 → M2 → M3 → 0 is a short exact sequence of rational G-modules, then the
support variety V (G)Mi of one of the Mi is contained in the union of the support varieties
of the other two;

(6) if G admits an embedding G ↪→ GLN of exponential type defined over Fp, then

V (G)M(1) = {E(B0,B1,B2...) ∈ V (G) : E
(B

(1)
1 ,B

(1)
2 ,...)

∈ V (G)M};
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(7) for any r > 0, the restriction of M to kG(r) is injective (equivalently, projective) if and only
if the intersection of V (G)M with the subset {ψB : Bs = 0, s > r} inside V (G) equals {E0};

(8) V (G)M ⊂ V (G) is a G(k)-stable subset.

Proof. Comparing Definitions 3.1 and 4.3, we see that to prove property (1) it suffices to compare
projectivity of M when restricted along the actions of

∑
s>0(EBs)∗(us) and of (EΛr(B))∗(ur − 1).

Since M is assumed to have exponential degree less than pr, the action of u =
∑

s>0(EBs)∗(us)
on M equals that of

∑r−1
r=0(EBs)∗(us) on M . By [FP10, 4.6], Proposition 4.3 enables us to

extend Proposition 4.2 to arbitrary kGa(r)-modules, thereby providing the required comparison
of projectivity of M .

Property (1) immediately implies that V (G)M ⊂ V (G) is closed if M is finite dimensional
since Vr(G)M ⊂ Vr(G) is closed. As in the proof of Theorem 3.10, properties (3), (4), and (5)
are readily checked by checking at one EB ∈ V (G) at a time.

Corollary 2.12 applies exactly as in the proof of Theorem 3.10 to prove property (6). Similarly
the proof of property (7) of Theorem 3.10 applies with minor notational changes (replacing the
reference to Proposition 3.8 by a reference to Proposition 4.2 extended to modules of infinite
dimension using Proposition 4.3) to prove property (7).

Finally, to verify that V (G)M is G(k)-stable, we observe that for any x ∈ G(k) the rational
G-module Mx is isomorphic to M . Consequently, the action of G at x · EB on M is isomorphic
to the action of G at x · EB on Mx which equals the action of G at EB on M . 2

Remark 4.7. A special case of Theorem 4.6 is the caseG= GLn andM a polynomial GLn-module
homogenous of some degree as in Example 2.7. In particular, Theorem 4.6 provides a theory of
support varieties for modules over the Schur algebra S(n, d) for n > d.

For M finite-dimensional, the proof of Theorem 4.6(1) proves the following statement.

Proposition 4.8. Let G be a linear algebraic group equipped with a structure of exponential
type, M a finite-dimensional rational G-module, and r such that the exponential degree of M is
< pr. Then

JTG,M (EB) = JTG(r),M (Λr(EB)).

Remark 4.9. As observed in [Sob13a, § 3], the condition on the upper bound for the exponential
degree in Theorem 4.6(1) can be weakened using [CLN08, Proposition 8]. Namely, the test for
projectivity along the restriction of (4.2.1) is equivalent to the test for projectivity for the map
u 7→

∑r−1
s=0(EBs)∗(us) provided that the (p− 1)th power of us acts trivially on M for all s > r.

Proposition 4.3 enables us to extend consideration of generalized support varieties for Ga (as
defined in Definition 3.15) to linear algebraic groups equipped with a structure of exponential
type.

Definition 4.10. Let G be a linear algebraic group equipped with a structure of exponential
type. For any j, 1 6 j < r, the non-maximal j-rank variety of a finite-dimensional rational
G-module M

V j(G)M ⊂ V (G)

is defined as the subset consisting of E0 and those 1-parameter subgroups EB : Ga→ G such that
the rank of (

∑
s>0(EBs)∗(us))j : M →M is not maximal.

As in [FP10] and Definition 3.15,

V j(G(r))M ⊂ Vr(G)
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is defined to be the subset of those EB ◦ ir : Ga(r)→ Ga→ G such that either B = 0 or the rank

of (EB ◦ ir)∗(ujr−1) is not maximal.

The following theorem is the extension of Theorem 3.16 to linear algebraic groups equipped

with a structure of exponential type.

Theorem 4.11. Let G be a linear algebraic group equipped with a structure of exponential type

and let M be a finite-dimensional rational G-module with nilpotent exponential degree < pr.

For any j, 1 6 j < pr, the non-maximal j-rank variety V j(G)M of a finite-dimensional rational

G-module satisfies the following properties:

(1) V j(G)M = pr−1
r (Λr,r(V

j
r (G)M (k)));

(2) V j(G)M ⊂ V (G) is a proper, G(k)-stable, closed subspace;

(3) V j(G)M is a subspace of V (G)M , with equality if and only if the action of G at some EB
has all Jordan blocks of size p;

(4) the restriction of M to kG(r) is a module of constant j-rank if and only if the intersection

of V j(G)M with the subset {EB : B 6= 0, Bs = 0, s > r} ⊂ V (G) is empty.

Proof. Exactly as remarked at beginning of the proof of Theorem 3.16(1), Proposition 4.3 remains

valid if the statement is modified by replacing Jordan type with j-rank thanks to [FP10, 3.5].

Thus, the proof of Theorem 4.6 applies essentially verbatim to prove the first assertion by

appealing to this modified version of Proposition 4.3.

The fact that V j(G)M ⊂ V (G) is closed follows from property (1) and the fact proved

in [FP10, 2.8] that V j(G(r))M ⊂ V (G(r)) is closed; the fact that this inclusion is proper is

tautological; the fact that it is G(k)-stable follows exactly as in the proof of Theorem 4.6(2).

Properties (3) and (4) are proved in exactly the same way as Theorem 3.16(3) and (4). 2

5. Finite-dimensional examples

Let G be a simple algebraic group of classical type and assume that p > h, where h is the Coxeter

number of G. Let {α1, . . . α`} be the set of simple roots with respect to some Borel subgroup

B ⊂ G, {ω1, . . . , ω`} be the set of fundamental dominant weights of G, and for each j write

ω∨j = 2ωj/〈αj , αj〉. By [Fri11, 2.7], the condition that all of the high weights µ of M of a rational

G-module satisfy

2
l∑

j=1

〈µ, ω∨j 〉 < p (5.0.1)

implies that ui acts trivially on M for i > 1. Similarly, the condition that every up−1
i acts trivially

on M for i > 1 is implied by the condition that

2
l∑

j=1

〈µ, ω∨j 〉 < p(p− 1). (5.0.2)

For a p-restricted dominant weight µ, we denote by Iµ the subset of the root lattice Π

determined by µ as in [NPV02, 6.2.1]) and denote by uIµ the Lie algebra of the unipotent radical

of the associated parabolic subgroup PIµ .
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Proposition 5.1 (See [Sob13a, 3.1]). Let G be a simple algebraic group of classical type and
assume that p > h. Let µ1, . . . , µm be dominant weights of G, each satisfying (5.0.2). Denote by
M the tensor product of Frobenius twists of induced modules

M ≡ H0(µ0)⊗H0(µ1)(1) ⊗ · · · ⊗Hm(µm)(m).

Then

V (G)M = {B : B
(i)
i ∈ G · uIµi}. (5.1.1)

Proof. If M is a finite-dimensional rational G-module with the property that all high weights
µ of M satisfy (5.0.2), then Theorem 4.6(1) implies that V (G)M = pr−1

1 ((V1(G))(k)). In other
words, V (G)M = {expB : B0 ∈ V1(G)M}.

The ‘Jantzen conjecture’ (see [NPV02, 6.2.1]) determines explicitly V1(G)M ⊂ V (G) for
G = H0(µ) provided p is good for G (which is implied by p > h). Namely, V1(G)M is a single G
orbit, V1(G)M = G ·uIµ . Theorem 4.6(6) then enables us to determine V (G)M for M a Frobenius
twist of H0(µ) with µ satisfying (5.0.2).

Furthermore, Theorem 4.6(4) enables us to compute V (G)M for M a tensor product of the
form H0(µ0) ⊗ H0(µ1)(1) ⊗ · · · ⊗ Hm(µm)(m) provided that each µi satisfies satisfying (5.0.2),
with answer given by (5.1.1). 2

Example 5.2. For polynomial GLn-modules, the bounds for computations given in Proposition 5.1
can be weakened as discussed in Example 2.7; namely, to insure that ur ∈ kGLn acts trivially on
the polynomial GLn-module M of degree d, it suffices to assume that pr > (p − 1)d. Moreover,
to insure that up−1

r acts trivially on M , it suffices to assume that pr > d.

Example 5.3. Consider the polynomial GL2 module k[x, y]pr−1 = Str. Recall that Str is
projective as a GL2(r)-module. By Example 2.7, the action of ur on Str has (p − 1)th power
trivial and the action of ur+i on Str is trivial for i > 0. Applying [CLN08, 4.3], we conclude that
the action of

∑
s>0(expAs)∗(us) on Str is free if some As 6= 0, s < r and that the action is never

free if As = 0 for all s < r. Consequently, V (GL2)Str = pr−1
r ({E0}).

Example 5.4. As in Remark 4.7, we consider a polynomial GLn-module of degree d with (p−1)d <
p2. For such a rational GLn-module M , Example 2.7 tells us that ur ∈ kGLn acts trivially
on M for r > 2. Thus, as in Theorem 4.11(1), V j(GLn)M = pr−1

2 (Λ2,2(V j
2 (GLn)M (k))). The

special case V2(SL2)M for M an irreducible SL2(2)-module is worked out in detail in [FP11, 4.12].
Consequently, this detailed computation leads to an explicit description of V j(GL2)M for M an
irreducible SL2 module of weight d satisfying (p− 1)d < p2 (i.e. d 6 p+ 1).

6. Infinite-dimensional examples

In this section, we show that injective rational G-modules have trivial support variety
(Proposition 6.2) and use this to compute non-trivial support varieties of certain special infinite-
dimensional rational G-modules (Proposition 6.3).

Proposition 6.1. Let G be a linear algebraic group equipped with a structure of exponential
type and I a rational G-module. Then V (G)I = {E0} if and only if Vr(G)I = {E0} for all r > 0
if and only if the restriction of I to each G(r) is injective.

Proof. Using the observation following Definition 1.6 that every infinitesimal 1-parameter
subgroup of G lifts to a some EB : Ga → G, we conclude that Λr : V (G) → Vr(G)(k) is
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surjective. By construction, V (G)→ lim
←−r Vr(G)(k) is an embedding. Therefore, the definition of

V (G)I ⊂ V (G) given in Definition 4.4 implies that V (G)I = {E0} if and only if Vr(G)I = {E0}
for all r > 0. On the other hand, for any G(r)-module M we know that Vr(G)M = 0 if and only
M is injective as a G(r)-module M (cf. [Pev02]). 2

We apply Proposition 6.1 to conclude that the support of an injective rational G-module
(for G of exponential type) is trivial. The argument we present is at least implicit in the work
of Jantzen (cf. [Jan87, 4.10–4.11]) and was provided to us by Pevtsova.

Proposition 6.2. Let G be a linear algebraic group and I an injective rational G-module. Then
for each r > 0, the restriction of I to G(r) is injective.

Consequently, if G has a structure of exponential type and I is an injective, rational G-
module, then

V (G)I = {E0}.

Proof. Any injective rational G-module I is a summand of a direct sum of copies of the injective
module k[G], so that it suffices to assume I = k[G] because direct sums and summands of
injective modules are injective. To prove that the restriction of k[G] to G(r) is injective, it
suffices to prove for all finite-dimensional kG(r)-modules M that ExtnG(r)

(M,k[G]) = 0, n > 0 .

For such finite-dimensional M , this is equivalent to showing that

Hn(G(r),M
# ⊗ k[G]) = Rn((−)G(r))(M# ⊗ k[G]) = 0, n > 0.

Recall that the composition = (−)G(r) ◦ (− ⊗ k[G]) equals IndGG(r)
(−) as functors from (kG(r)-

modules) to (rational G-modules) Since (−⊗ k[G]) is exact, we conclude that

RnIndGG(r)
(−) = Rn(−)G(r) ◦ (−⊗ k[G]), n > 0.

Since G/G(r) is affine, G(r) ⊂ G is exact as in [Jan87, I.5.13]; thus, RnIndGG(r)
(−) = 0, n > 0. We

thereby conclude that Hn(G(r),M
# ⊗ k[G]) = 0 for n > 0 as required.

The second assertion follows immediately from the first and Proposition 6.1. 2

As a consequence of Proposition 6.2, we get the following additional computation.

Example 6.3. Let G ' H o K be an linear algebraic group equipped with a structure of
exponential type as in Example 1.10. Then

V (G)k[K] = V (H),

where k[K] = k[G/H] is given the rational G-module structure obtained as the restriction along
π : G→ K of the natural rational K-structure on k[K].

Proof. Our hypothesis on H ⊂ G implies that every 1-parameter subgroup ψ : Ga→ H is of the
form EB with B ∈ Cr(N (h)) for some r > 0. Moreover, by Example 1.10, π is a map of groups of
exponential type.

Observe that π ◦ EB is the trivial 1-parameter subgroup of G/H if and only if B ∈ Cr(N (g))
maps to 0 in Cr(N (g/h)) if and only if B ∈ Cr(N (h)). In other words, V (H) ⊂ V (G) consists
of those 1-parameter subgroups EB : Ga → G with the property that π ◦ EB : Ga → G/H is
trivial; of course, for each such EB,

∑
s>0(EBs)∗(us) acts trivially on any rational G-module M .

In particular, any such EB does not act freely of k[G/H]. The proposition now follows by applying
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Proposition 6.2 to G/H which tells us that if B maps to a non-zero element C ∈ Cr(N (g/h)),
then the action of

∑
s(ECs)∗(us) on k[G/H] is free; on the other hand, the action of

∑
s(ECs)∗(us)

equals the action of
∑

s(EBs)∗(us) on k[G/H] since the G-action on k[G/H] is that determined
by π : G→ G/H. 2

Example 6.4. As in Example 1.8, let G be a reductive group with PSLp not a factor of [G,G]
and assume that p > h(G). Let P ⊂ G be a parabolic subgroup with unipotent radical U ⊂ P
and Levi factor group π : P → L = P/U . Then

V (P )k[L] = V (U) ⊂ V (P ). (6.4.1)

Here, k[L] is given the structure of a rational P -module determined by extending the usual action
of L on k[L] along the quotient map π : P → L.

Using the tensor product property of Theorem 4.6(4), we obtain the following examples.
These examples are of interest for they suggest a means of realizing various subspaces of V (G)
as the support variety of some (possibly infinite-dimensional) rational G-module M .

Example 6.5. Adopt the hypotheses and notation of Proposition 5.1. Let M̃ be given as

M̃ ≡ H0(µ0)⊗H0(µ1)(1) ⊗ · · · ⊗Hm(µm)(m) ⊗ k[G](m+1).

Then
V (G)M̃ = {B : B

(i)
i ∈ G · uIµi , 0 6 i 6 m;Bj = 0, j > m}.
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