ON POLYNOMIALS WITH REAL ZEROS

Manzoor Ahmad
(received October 31, 1967)

Let

$$
P(x)=c \prod_{j=1}^{n}\left(x-x_{j}\right)
$$

be a polynomial of degree n with real and non-negative zeros $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$. The zeros x_{j} will be said to have extent 1 if

$$
\max _{1 \leq j \leq n} x_{j}=x_{n}=1
$$

Let $\xi_{1} \leq \xi_{2} \leq \cdots \leq \xi_{n-1}$ be the zeros of the derived polynomial $p^{\prime}(x)$. The zeros $\xi_{1}, \xi_{2}, \ldots, \xi_{n-1}$ are real and non-negative, and moreover their extent can be at most equal to the extent of the zeros $x_{1}, x_{2}, \ldots, x_{n}$. The two can indeed be equal. For if the extent of the zeros x_{j} is 1 and 1 is a multiple zero of $p^{\prime}(x)$ then $\xi_{n-1}=1$. However it is not quite clear how small ξ_{n-1} can be if $x_{n}=1$. The extent ξ_{n-1} of the zeros of $p^{\prime}(x)$ is less than 1 only if 1 is not a multiple zero of $p(x)$. So let us suppose that $p(x)$ has a simple zero at $x=1$. Consequently x_{n-1} is the largest zero of $\mathrm{p}(\mathrm{x}) /(\mathrm{x}-1)$ or equivalently the largest zero of $\mathrm{p}(\mathrm{x})$ in $0<\mathrm{x}<1$ and it follows by Rolle's theorem that $p^{\prime}(x)$ has a zero in the interval $\left(x_{n-1}, 1\right)$. Thus the extent ξ_{n-1} of the zeros of $p^{\prime}(x)$ is greater than x_{n-1} and it remains to see how small it can be.

Since $\xi_{\mathrm{n}-1}$ satisfies $\mathrm{x}_{\mathrm{n}-1}<\xi_{\mathrm{n}-1}<\mathrm{x}_{\mathrm{n}}=1$ and

$$
0=\frac{p^{\prime}\left(\xi_{n-1}\right)}{p\left(\xi_{n-1}\right)}=\sum_{j=1}^{n}\left(\xi_{n-1}-x_{j}\right)^{-1}
$$

we see easily that if $x_{n-1}>0$ by decreasing x_{n-1} we might decrease ξ_{n-1}. Thus the minimum extent is attained if

Canad. Math. Bull. vol. 11, no. 2, 1968

$$
x_{1}=\ldots=x_{n-1}=0, \quad x_{n}=1
$$

THEOREM 1. Let $p(x)$ be a polynomial of degree n with real non-negative zeros. If the extent of the zeros of $p(x)$ is 1 then the extent of the zeros of $p^{\prime}(x)$ is at least $(n-1) / n$. The result is sharp.

The problem which we have just considered is closely connected with a question raised by A. Meir and A. Sharma [1] (see also [2], [3]) which is as follows.

Let $0 \leq x_{1} \leq \cdots \leq x_{n} \leq 1$ be the zeros of a polynomial $p(x)$ of degree n, let $x_{n}-x_{1}$ be the span of $p(x)$. How small can the span of $p^{\prime}(x)$ be if $x_{1}=0$ and $x_{n}=1$? From the above calculations it is clear that there is a zero of $p^{\prime}(x)$ in $\left[\frac{(n-1)}{n}, 1\right]$ and another one in $\left[0, \frac{1}{n}\right]$. Thus the span of the zeros of $p^{\prime}(x)$ cannot be smaller than $\frac{n-2}{n}$. This bound can be easily improved. The example

$$
p(x)=x\left(x-\frac{1}{2}\right)^{n-2}
$$

shows that the span of the zeros of $p^{\prime}(x)$ can be as small as $\sqrt{\frac{n-2}{n}}$ which is approximately $1-\frac{1}{n}$ if n is large. It has been conjectured by Meir and Sharma that the polynomial $x\left(x-\frac{1}{2}\right)^{n-2}(x-1)$ is indeed extremal, i.e. if the span of the zeros of $p(x)$ is 1 then the span of the zeros of $p^{\prime}(x)$ cannot be smaller than $\sqrt{1-\frac{2}{n}}$.

From ourearlier argument it is clear that the extremal polynomial for this problem cannot have a multiple zero at any of the points 0 or 1 . So let $p(x)=x(x-1) q(x)$ where $q(0) \neq 0, q(1) \neq 0$. Now let ξ_{n-1} be the largest zero of $p^{\prime}(x)$ and ξ_{1} the smallest. We suppose that n_{1} and n_{2} denote respectively the number of zeros of $q(x)$ in $\left(\frac{1}{2}, 1\right)$ and in $\left(0, \frac{1}{2}\right]$. Since $n_{1}+n_{2}=n-2$ one of the two numbers n_{1}, n_{2} is $\leq(n-2) / 2$. We may suppose that $n_{1} \leq(n-2) / 2$. For otherwise we can consider $p(1-x)$ instead of $p(x)$.

Note that ξ_{n-1} cannot be smaller than the larger of the two roots of the equation

$$
\frac{n_{2}+1}{x}+\frac{2 n_{1}}{2 x-1}=\frac{1}{1-x}
$$

i.e.

$$
\xi_{n-1} \geq \frac{3 n-n_{1}-2+\sqrt{\left(n+n_{1}+2\right)^{2}-8 n}}{4 n}
$$

On the other hand ξ_{1} is at most equal to the smaller of the two roots of the equation

$$
\frac{1}{x}=\frac{2 n_{2}}{1-2 x}+\frac{n_{1}+1}{1-x}
$$

i.e.

$$
\xi_{1} \leq \frac{2 n-n_{1}-\sqrt{4 n^{2}-4 n n_{1}+n_{1}^{2}-8 n}}{4 n}
$$

Hence

$$
\begin{equation*}
\xi_{n-1}-\xi_{1} \geq \frac{n-2+\sqrt{4 n^{2}-4 n n_{1}+n_{1}^{2}-8 n}+\sqrt{\left(n+n_{1}+2\right)^{2}-8 n}}{4 n} \tag{1}
\end{equation*}
$$

The quantity on right hand side of (1) increases as n_{1} increases from 0 to $\frac{(\mathrm{n}-2)}{2}$ and then starts decreasing. Thus

$$
\xi_{\mathrm{n}-1}-\xi_{1}>\frac{1}{2}\left\{1-\frac{2}{\mathrm{n}}+\sqrt{1-\frac{2}{\mathrm{n}}}\right\}
$$

We have therefore proved the following
THEOREM 2. If the span of a polynomial $p(x)$ of degree n is 1 then the span of $p^{\prime}(x)$ cannot be smaller than

$$
\frac{1}{2}\left\{1-\frac{2}{n}+\sqrt{1-\frac{2}{n}}\right\}
$$

The lower bound given by Theorem 2 can be further improved.
I am thankful to Prof. Q.I. Rahman for his encouragement and help.

REFERENCES

1. A. Meir and A. Sharma, Span of derivatives of polynomials. Amer. Math. Monthly 74 (1967) 527-531.
2. A. Meir and A. Sharma, Span of linear combinations of derivatives of polynomials. Duke Math. J. 37 (1967) 123-130.
3. R.M. Robinson, On the span of derivatives of polynomials. Amer. Math. Monthly 71 (1967) 507-508.

University of Montreal

