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A Short Proof of Affability for Certain
Cantor Minimal Z

2-Systems

Hiroki Matui

Abstract. We will show that any extension of a product of two Cantor minimal Z-systems is affable in

the sense of Giordano, Putnam and Skau.

1 Introduction

In this paper, we would like to investigate the orbit structure of certain minimal dy-
namical systems on a Cantor set. Giordano, Putnam and Skau proved that equiv-

alence relations arising from Z-actions are orbit equivalent to AF equivalence rela-
tions [GPS1]. Moreover, they gave the classification for AF equivalence relations. In
a recent paper [GPS3], they continued these investigations and showed that equiva-
lence relations arising from Z

2-actions are again orbit equivalent to AF equivalence

relations under a hypothesis involving the existence of cocycles. An equivalence re-
lation which is orbit equivalent to an AF equivalence relation is said to be affable. A
crucial ingredient of their proof was the absorption theorem [GPS2]. They needed,
however, sufficiently many cocycles in order to construct an AF subequivalence re-

lation to which the absorption theorem can be applied. The aim of this paper is to
show that the existence of cocycles is not necessary for certain Z

2-actions. We will
give a short proof that the associated equivalence relations are orbit equivalent to AF
equivalence relations, thus they are affable.

We recall some terminology which we shall use. Let X be a Cantor set and let R be
an étale equivalence relation on X. We define the R-equivalence class [x]R of x ∈ X

by [x]R = {y ∈ X : (x, y) ∈ R}. The equivalence relation R is said to be minimal,
if [x]R is dense in X for every x ∈ X. Let ϕ : G → Homeo(X) be a free action of a

countable discrete group G, that is, ϕ is a group homomorphism and ϕg(x) 6= x for
all x ∈ X and g ∈ G \ {e}, where e means the identity element. We put

Rϕ = {(x, ϕg(x)) ∈ X × X : x ∈ X, g ∈ G}.

By transferring the product topology on X × G via the bijection (x, g) 7→ (x, ϕg(x)),

we can topologize Rϕ. It is easily verified that Rϕ becomes an étale equivalence rela-
tion. We call (X, ϕ) a Cantor minimal G-system when Rϕ is minimal. In this paper,
we deal with only Cantor minimal Z-systems and Cantor minimal Z

2-systems.

Let (X, ϕ) and (Y, ψ) be two Cantor minimal Z
2-systems. We say that π : (Y, ψ) →

(X, ϕ) is a factor map when π : Y → X is a continuous map and π ◦ ψa
= ϕa ◦ π
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for all a ∈ Z
2. The system (Y, ψ) is called an extension of (X, ϕ). Our main theorem

asserts that Rψ is affable if (X, ϕ) is conjugate to a product of two Cantor minimal

Z-systems. Suppose that (X, ϕ) is conjugate to the product of two Cantor minimal
Z-systems (X1, ϕ1) and (X2, ϕ2). From [GPS1, Theorem 2.3] we can see that Rϕ1

and
Rϕ2

are affable. Since a product of AF equivalence relations is also AF, it is easily
checked that Rϕ is affable. But, it looks impossible to mimic this simple argument

in the case of the extension (Y, ψ), because (Y, ψ) itself is not a product. We will
instead construct a “nice” AF subequivalence relation of Rϕ and apply the absorption
theorem to this relation.

2 Products of Cantor Minimal Z-Systems

Throughout this section, let Bi = (Vi, Ei) be simple properly ordered Bratteli dia-
grams for i = 1, 2. For each i = 1, 2, Vi and Ei can be written as a countable disjoint

union of non-empty finite sets

Vi = Vi,0 ∪Vi,1 ∪Vi,2 ∪ . . . and Ei = Ei,1 ∪ Ei,2 ∪ Ei,3 ∪ . . . ,

with the source map s : Ei,n → Vi,n−1 and the range map r : Ei,n → Vi,n. Without
loss of generality, we may assume that all two vertices in consecutive levels are con-
nected by more than three edges. We write the infinite path space associated with
Bi by Xi for each i = 1, 2. Let pi be the unique maximal infinite path of Xi and let

ϕi ∈ Homeo(Xi) be the Bratteli–Vershik transformation on Xi (see [HPS]). It is well
known that (Xi , ϕi) is a Cantor minimal Z-system.

Set X = X1 × X2. Let ϕ : Z
2 → Homeo(X) be the Z

2-action on X induced by
ϕ1 × id and id×ϕ2. Then (X, ϕ) is a Cantor minimal Z

2-system.

For each n ∈ N, we put

Rn = {((x1, x2), (y1, y2)) ∈ X × X : xi,m = yi,m for i = 1, 2 and m > n},

where xi,m, yi,m ∈ Ei,m mean the m-th coordinate of the infinite paths xi, yi ∈ Xi . It

is not hard to see that Rn is a compact open subequivalence relation of Rϕ with the
relative topology from Rϕ. Therefore R =

⋃

n∈N
Rn is an AF subequivalence relation

of Rϕ. Note that R is minimal because B1 and B2 are simple.

For i, j = 0, 1 and n ∈ N, we define continuous functions λ
i j
n : X → {0, 1}

inductively as follows. Let (x1, x2) ∈ X. We denote the n-th coordinate of xi by
xi,n ∈ Ei.n. At first, put

λ00
1 (x1, x2) =

{

1 x1,1 is maximal,

0 otherwise,
λ01

1 (x1, x2) =

{

1 x2,1 is minimal,

0 otherwise,

λ11
1 (x1, x2) =

{

1 x1,1 is minimal,

0 otherwise,
λ10

1 (x1, x2) =

{

1 x2,1 is maximal,

0 otherwise.
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Then for n ≥ 2, we define λ
i j
n by

λ00
n (x1, x2) =











λ00
n−1(x1, x2) x1,n is maximal and x2,n is maximal,

1 x1,n is maximal and x2,n is not maximal,

0 otherwise,

λ01
n (x1, x2) =











λ01
n−1(x1, x2) x1,n is maximal and x2,n is minimal,

1 x1,n is not maximal and x2,n is minimal,

0 otherwise,

λ11
n (x1, x2) =











λ11
n−1(x1, x2) x1,n is minimal and x2,n is minimal,

1 x1,n is minimal and x2,n is not minimal,

0 otherwise,

λ10
n (x1, x2) =











λ10
n−1(x1, x2) x1,n is minimal and x2,n is maximal,

1 x1,n is not minimal and x2,n is maximal,

0 otherwise.

It is easily checked that λ
i j
n is well defined and continuous.

The following is an immediate consequence of the definition of λ
i j
n .

Lemma 2.1 Let (i, j) ∈ {0, 1}2. For ((x1, x2), (y1, y2)) ∈ Rn, if λ
i j
n (x1, x2) =

λ
i j
n (y1, y2), then we have λ

i j
m(x1, x2) = λ

i j
m(y1, y2), for all m > n.

For every n ∈ N, we define a subset R ′

n of Rn by

R
′

n = {((x1, x2), (y1, y2)) ∈ Rn : λi j
n (x1, x2) = λi j

n (y1, y2) for all i, j = 0, 1}.

Lemma 2.2 For every n ∈ N, R ′

n is a compact open subequivalence relation of Rn, and

R ′

n is contained in R ′

n+1.

Proof It is obvious that R ′

n is a subequivalence relation of Rn. Since λ
i j
n is con-

tinuous, R ′

n is compact and open. From the lemma above we can see R ′

n ⊂ R ′

n+1.

Define R ′
=

⋃

n∈N
R ′

n. By the lemma above, R ′ is an AF equivalence relation
on X.

Lemma 2.3 Let ((x1, x2), (y1, y2)) ∈ R.

(i) If x1 is not in {ϕn
1(p1) : n ∈ Z}, then ((x1, x2), (y1, y2)) ∈ R ′.

(ii) If x2 is not in {ϕn
2(p2) : n ∈ Z}, then ((x1, x2), (y1, y2)) ∈ R ′.

Proof It suffices to show (i). There exists n ∈ N such that ((x1, x2), (y1, y2)) ∈ Rn.
We can find a natural number m > n such that x1,m is not maximal. Then λ00

m (x1, x2)
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equals zero. From x1,m = y1,m, we get λ00
m (x1, x2) = λ00

m (y1, y2) = 0. It is easy to see
that λ01

m (x1, x2) depends only on x2,m, and so we have λ01
m (x1, x2) = λ01

m (y1, y2).

We can find a natural number l > n such that x1,l is not minimal. It is clear
that λ11

l (x1, x2) = 0 and λ10
l (x1, x2) depends only on x2,l. In a similar fashion to the

preceding paragraph, we get λ11
l (x1, x2) = λ11

l (y1, y2) and λ10
l (x1, x2) = λ10

l (y1, y2).

By virtue of Lemma 2.1, we can conclude that ((x1, x2), (y1, y2)) is in R ′

k, where k

is the maximum of m and l.

Put p = (p1, p2) ∈ X. The above lemma tells us that the four R-orbits [p]R,
[ϕ(1,0)(p)]R, [ϕ(0,1)(p)]R and [ϕ(1,1)(p)]R may split in R ′, but the other R-orbits do

not split in R ′.

Lemma 2.4 The equivalence relation R ′ is minimal.

Proof Let (x1, x2) ∈ X. It suffices to show that [(x1, x2)]R ′ is dense in X. If x1

does not belong to {ϕn
1(p1) : n ∈ Z} or x2 does not belong to {ϕn

2(p2) : n ∈ Z},

then we have nothing to do, because the R ′-orbit of (x1, x2) is equal to the R-orbit
of it. Suppose that (x1, x2) is in {ϕa(p) : a ∈ Z

2}. Without loss of generality, we
may assume that (x1, x2) belongs to [p]R. Take finite paths (e1,1, e1,2, . . . , e1,n) in B1

and (e2,1, e2,2, . . . , e2,n) in B2. Thus ei,k ∈ Ei,k and r(ei,k) = s(ei,k+1). We can find

m > n + 2 such that both x1,m and x2,m are maximal. It follows that λ01
m (x1, x2) = 0,

λ11
m (x1, x2) = 0 and λ10

m (x1, x2) = 1. We have two possibilities: λ00
m (x1, x2) is equal to

0 or 1.

Let us consider the case that λ00
m (x1, x2) is 1. We can find edges ei,k ∈ Ei,k for

i = 1, 2 and k = n + 1, n + 2, . . . ,m − 1 such that the following are satisfied.

• r(ei,k) = s(ei,k+1) and r(ei,m−1) = s(xi,m) for all i = 1, 2 and k = n, n+1, . . . ,m−2.
• e1,m−1 is maximal and e2,m−1 is not maximal.

Put

x ′

i = (ei,1, ei,2, . . . , ei,n, ei,n+1, . . . , ei,m−1, xi,m, xi,m+1 . . . ) ∈ Xi

for each i = 1, 2. Then it is clear that ((x1, x2), (x ′

1, x
′

2)) ∈ Rm. Moreover, it is not
hard to see λ00

m (x ′

1, x
′

2) = 1, λ01
m (x ′

1, x
′

2) = 0, λ11
m (x ′

1, x
′

2) = 0 and λ10
m (x ′

1, x
′

2) = 1.

Therefore we get ((x1, x2), (x ′

1, x
′

2)) ∈ R ′

m.

Suppose that λ00
m (x1, x2) is zero. In this case we choose the edges ei,k ∈ Ei,k so that

the following are satisfied.

• r(ei,k) = s(ei,k+1) and r(ei,m−1) = s(xi,m) for all i = 1, 2 and k = n, n+1, . . . ,m−2.
• e1,m−1 is not maximal.

Then we can again obtain ((x1, x2), (x ′

1, x
′

2)) ∈ R ′

m. Hence we can conclude that the

R ′-orbit of (x1, x2) is dense in X.
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Lemma 2.5 For every m ∈ N \ {1} we have the following.

lim
n→∞

(λ00
n × λ01

n × λ11
n × λ10

n )(p1, ϕ
1−m
2 (p2)) = (1, 0, 0, 1),(1)

lim
n→∞

(λ00
n × λ01

n × λ11
n × λ10

n )(ϕ1(p1), ϕ1−m
2 (p2)) = (0, 0, 1, 0),(2)

lim
n→∞

(λ00
n × λ01

n × λ11
n × λ10

n )(p1, ϕ
m
2 (p2)) = (1, 0, 0, 0),(3)

lim
n→∞

(λ00
n × λ01

n × λ11
n × λ10

n )(ϕ1(p1), ϕm
2 (p2)) = (0, 1, 1, 0),(4)

lim
n→∞

(λ00
n × λ01

n × λ11
n × λ10

n )(ϕ1−m
1 (p1), p2) = (0, 0, 0, 1),(5)

lim
n→∞

(λ00
n × λ01

n × λ11
n × λ10

n )(ϕ1−m
1 (p1), ϕ2(p2)) = (1, 1, 0, 0),(6)

lim
n→∞

(λ00
n × λ01

n × λ11
n × λ10

n )(ϕm
1 (p1), p2) = (0, 0, 1, 1),(7)

lim
n→∞

(λ00
n × λ01

n × λ11
n × λ10

n )(ϕm
1 (p1), ϕ2(p2)) = (0, 1, 0, 0).(8)

Proof Straightforward computation.

Take a clopen subset Ui ⊂ Xi which does not contain pi and ϕi(pi) for each
i = 1, 2. Put

B = ({p1}×U2) ∪ (U1 ×{p2}) and B∗
= ({ϕ1(p1)} ×U2) ∪ (U1 ×{ϕ2(p2)}).

Lemma 2.6 Both B and B∗ are closed R ′-étale thin subsets.

Proof It suffices to show the statement for B. Suppose that ((x1, x2), (y1, y2)) is in
R ′ ∩ (B × B). Without loss of generality, we may assume x1 = p1. Suppose y2 = p2.

Then x2 must be ϕ1−m
2 (p2) for some m ∈ N, and m is not 1 because p2 is not in U2.

Similarly y1 must be ϕ1−l
1 (p1) for some l ∈ N \ {1}. But

((p1, ϕ
1−m
1 (p2)), (ϕ1−l

1 (p1), p2))

can never be in R ′, by the lemma above. Hence we have y1 = p1. Thus
((x1, x2), (y1, y2)) is equal to ((p1, x2), (p1, ϕ

m
2 (x2))) for some m ∈ Z. Define V =

{((a, b), (c, d)) ∈ R ′ : a = c, d = ϕm
2 (b) and b, d ∈ U2}. Then V is a clopen neigh-

borhood of ((p1, x2), (p1, ϕ
m
2 (x2))) in R ′. For ((a, b), (c, d)) ∈ V , it is obvious that

(a, b) ∈ B if and only if (c, d) ∈ B, which implies that B is étale.

We would like to show that a probability measure on X = X1×X2 is R-invariant if
and only if it is R ′-invariant. If this is shown, thinness of B easily follows. But, except
for countably many (x1, x2)’s, the equivalence class [(x1, x2)]R is equal to [(x1, x2)]R ′ .

Since every invariant measure is nonatomic, we can finish the proof.
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Lemma 2.7 We have R ′ ∩ (B × B∗) = ∅.

Proof Suppose that ((x1, x2), (y1, y2)) is contained in R ′ ∩ (B × B∗). Without
loss of generality, we may assume x1 = p1. Then y1 can never be ϕ1(x1), be-
cause ((p1, x2), (ϕ1(p1), y2)) does not belong to R. It follows that y2 = ϕ2(p2) and
((x1, x2), (y1, y2)) = ((p1, ϕ

m
2 (p2)), (ϕ1−l

1 (p1), ϕ2(p2))) for some m, l ∈ N \ {1}.

This pair, however, never belongs to R ′ by virtue of Lemma 2.5, which completes the
proof.

We define a homeomorphism β : B → B∗ as follows. For (p1, x2) ∈ {p1} × U2,
we put β(p1, x2) = (ϕ1(p1), x2). For (x1, p2) ∈ U1 × {p2}, we put β(x1, p2) =

(x1, ϕ2(p2)).

Lemma 2.8 The homeomorphism β : B → B∗ induces an isomorphism between

R ′ ∩ (B × B) and R ′ ∩ (B∗ × B∗).

Proof Since the topology of R ′ ∩ (B × B) and R ′ ∩ (B∗ × B∗) is inherited from
R, it suffices to show that β is a well-defined bijection between R ′ ∩ (B × B) and
R ′ ∩ (B∗×B∗). Let ((x1, x2), (y1, y2)) ∈ R ′ ∩ (B×B). Without loss of generality, we

may assume that x1 = p1 and x2 ∈ U2. By the proof of Lemma 2.6, we get y1 = p1

and y2 ∈ U2. It follows that β(p1, x2) = (ϕ1(p1), x2) and β(p1, y2) = (ϕ1(p1), y2).
If x2 does not belong to {ϕn

2(p2) : n ∈ Z}, then the R ′-orbit of (ϕ1(p1), x2) is equal
to the R-orbit of it. Hence we have ((ϕ1(p1), x2), (ϕ1(p1), y2)) ∈ R ′ ∩ (B∗ × B∗).

Suppose that x2 and y2 belong to {ϕn
2(p2) : n ∈ Z}. Since ((p, x2), (p, y2)) ∈

R ′ ⊂ R, we have two possibilities: both x2 and y2 belong to {ϕ1−n
2 (p2) : n ∈ N},

or both x2 and y2 belong to {ϕn
2(p2) : n ∈ N}. Without loss of generality, we may

assume the latter. Thus, x2 = ϕn
2(p2) and y2 = ϕm

2 (p2) for some n,m ∈ N. Because
x2 and y2 is in U2, n and m are greater than 1. It follows from Lemma 2.5 that

((ϕ1(p1), ϕn
2(p2)), (ϕ1(p1), ϕm

2 (p2))) belongs to R ′. The proof is complete.

Lemma 2.9 Let R̃ be the equivalence relation generated by R ′ and the graph of β.

Then Rϕ is generated by R̃ together with

(p, ϕ(0,1)(p)), (ϕ(0,1)(p), ϕ(1,1)(p)), and (ϕ(1,1)(p), ϕ(1,0)(p)).

Proof Evidently Rϕ is generated by R and the graph of β. As mentioned before, if
(x1, x2) is not contained in the Rϕ-orbit of p = (p1, p2), then its R-orbit agrees with

its R ′-orbit. It follows that the R̃-orbit of (x1, x2) agrees with the Rϕ-orbit of it.

Let us consider [p]Rϕ
. Notice that it splits into four orbits in R, namely the

R-orbits of p,ϕ(0,1)(p),ϕ(1,0)(p) andϕ(1,1)(p). From Lemma 2.5 we can see that these
orbits split into eight orbits in R ′, namely the R ′-orbits of p, ϕ(−1,0)(p), ϕ(0,1)(p),
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ϕ(0,2)(p), ϕ(1,0)(p), ϕ(1,−1)(p), ϕ(1,1)(p) and ϕ(2,1)(p). It can be easily seen that

[p]
R̃

= [p]R ′ ∪ [ϕ(1,−1)(p)]R ′ ,

[ϕ(0,1)(p)]
R̃

= [ϕ(0,1)(p)]R ′ ∪ [ϕ(−1,0)(p)]R ′ ,

[ϕ(1,0)(p)]
R̃

= [ϕ(1,0)(p)]R ′ ∪ [ϕ(2,1)(p)]R ′ ,

[ϕ(1,1)(p)]
R̃

= [ϕ(1,1)(p)]R ′ ∪ [ϕ(0,2)(p)]R ′ .

Therefore, by glueing the R̃-orbits of p, ϕ(0,1)(p), ϕ(1,0)(p) and ϕ(1,1)(p), we can
recover the equivalence relation Rϕ.

By [HPS, Theorem 4.6], every minimal homeomorphism on the Cantor set is

conjugate to a Bratteli–Vershik transformation on a simple properly ordered Bratteli
diagram. Hence we can summarize the results obtained in this section as follows.

Theorem 2.10 Let (X1, ϕ1) and (X2, ϕ2) be two Cantor minimal Z-systems and let

p1 ∈ X1 and p2 ∈ X2. Take clopen subsets U1 ⊂ X1 and U2 ⊂ X2 so that pi and ϕi(pi)

do not belong to Ui for each i = 1, 2. Put B = ({p1} × U2) ∪ (U1 × {p2}) and B∗
=

({ϕ1(p1)} ×U2) ∪ (U1 × {ϕ2(p2)}). Define β : B → B∗ by β(p1, x2) = (ϕ1(p1), x2)
and β(x1, p2) = (x1, ϕ2(p2)). Let ϕ be the Z

2-action on X = X1 × X2 induced by

ϕ1 × id and id×ϕ2. Put p = (p1, p2).

Then we can find a subequivalence relation R ′ ⊂ Rϕ such that the following are

satisfied.

(i) R ′ is a minimal AF equivalence relation, where the topology is given by Rϕ.

(ii) Both B and B∗ are closed R ′-étale thin subsets.

(iii) R ′ ∩ (B × B∗) is empty.

(iv) β : B → B∗ induces an isomorphism between R ′ ∩ (B × B) and R ′ ∩ (B∗ × B∗).

(v) The equivalence relation Rϕ is generated by R ′, the graph of β and

{(p, ϕ(0,1)(p)), (ϕ(0,1)(p), ϕ(1,1)(p)) (ϕ(1,1)(p), ϕ(1,0)(p))}.

3 The Main Result

Let (X, ϕ) and (Y, ψ) be two Cantor minimal Z
2-systems and let π : (Y, ψ) → (X, ϕ)

be a factor map.

Lemma 3.1 Suppose that R is an open subequivalence relation of Rϕ. For

S = {(y, y ′) ∈ Rψ : (π(y), π(y ′)) ∈ R},

we have the following.

(i) If R is compact and open, then S is also compact and open.

(ii) If R is AF, then S is also AF.
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Proof (ii) follows immediately from (i). Suppose that R is compact and open. Since
π× π : Rψ → Rϕ is proper and continuous, we can see that S = Rψ ∩ (π× π)−1(R)

is compact and open.

Lemma 3.2 Suppose that R is an open subequivalence relation of Rϕ. Let S = Rψ ∩
(π × π)−1(R). If B ⊂ X is a closed R-étale thin subset, then π−1(B) is a closed S-étale

thin subset.

Proof Let µ be an S-invariant probability measure. Then we have

µ(π−1(B)) = π∗(µ)(B) = 0,

because π∗(µ) is a R-invariant probability measure.
Take (y, y ′) ∈ S. By the étaleness of B, we can find a clopen neighborhood V of

(π(y), π(y ′)) in R such that, for (x, x ′) ∈ V , we have x ∈ B if and only if x ′ ∈ B. It is
clear that U = Rψ ∩ (π×π)−1(V ) is a clopen neighborhood of (y, y ′) in S. Suppose
(z, z ′) ∈ U . Because of (π(z), π(z ′)) ∈ V , we have

z ∈ π−1(B) ⇔ π(z) ∈ B ⇔ π(z ′) ∈ B ⇔ z ′ ∈ π−1(B).

It follows that π−1(B) is S-étale.

Now we are ready to prove the main theorem.

Theorem 3.3 Let π : (Y, ψ) → (X, ϕ) be a factor map between Cantor minimal

Z
2-systems. If (X, ϕ) is conjugate to a product of two Cantor minimal Z-systems, then

Rψ is affable.

Proof We may assume that (X, ϕ) is equal to the product of two Cantor mini-
mal Z-systems (X1, ϕ1) and (X2, ϕ2), that is, X = X1 × X2 and ϕ(n,m)(x1, x2) =

(ϕn
1(x1), ϕm

2 (x2)) for all (n,m) ∈ Z
2. Let p = (p1, p2), U1,U2, B, B∗, β : B → B∗ and

R ′ be as in Theorem 2.10.
Put S = Rψ ∩ (π × π)−1(R ′). Thanks to Theorem 2.10(i) and Lemma3.1, the

equivalence relation S is AF, where the topology is given by Rψ . In order to show

that S is minimal, let us choose xi ∈ Xi \ {pi} and put x0 = (x1, x1) ∈ X. Take
y ∈ Y arbitrarily. The closure of [π(y)]R ′ is X, because R ′ is minimal. It follows
that the closure of [y]S contains a preimage of x0, namely y0 ∈ Y . On account of
[y0]Rψ

= [y0]S, we can see that [y0]S is dense in Y . Therefore [y]S is dense in Y .

Put C = π−1(B) and C∗
= π−1(B∗). By means of Theorem 2.10(ii) and Lem-

ma 3.2, we have that both C and C∗ are closed S-étale thin subsets. Moreover, it is
easily seen that S ∩ (C ×C∗) is empty.

We define a homeomorphism γ : C → C∗ as follows. Take y ∈ C . If π(y) =

(p1, x2) for some x2 ∈ U2, then we set γ(y) = ψ(1,0)(y). If π(y) = (x1, p2) for some
x1 ∈ U1, then we set γ(y) = ψ(0,1)(y). It is routine to check that γ is a well-defined
homeomorphism from C to C∗ and γ induces an isomorphism between S∩ (C ×C)
and S ∩ (C∗ ×C∗).
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Let S̃ be the equivalence relation generated by S and the graph of γ. We can apply
the absorption theorem [GPS2, Theorem 4.18] to S and γ : C → C∗ and get that S̃ is

affable.
The equivalence relation S̃ is a little smaller than Rψ . We resolve this problem by

using the absorption theorem three more times. Let

D1 = π−1(p), D2 = π−1(ϕ(0,1)(p)),

D3 = π−1(ϕ(1,1)(p)), D4 = π−1(ϕ(1,0)(p)).

At first, we apply the absorption theorem to ψ(0,1) : D1 → D2. Notice that

S̃ ∩ (Di × Di) = {(y, y) : y ∈ Di}

for each i = 1, 2 and that S̃ ∩ (D1 × D2) is empty. Therefore the hypothesis of

the absorption theorem is trivially satisfied. It follows that the equivalence relation
generated by S̃ and {(y, ψ(0,1)(y)) : y ∈ D1} is affable. Theorem 2.10(v) and two
more applications of the absorption theorem imply that Rψ is affable.
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