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Abstract

In order to use the method of asymptotic matching for low frequencies, the
equations of plane elastostatics are reformulated in terms of the two scalar
potentials commonly used in plane elastodynamics. It is shown that the resulting
equations of plane elastostatics can be reduced to those first obtained by Musk-
helishvili. The use of the formulation is illustrated by considering the case of
the plane diffraction of a P wave by a circular, cylindrical cavity of small
radius. The results agree with those obtained from the exact solution of the
problem.

1. Introduction

Although the method of asymptotic matching was used many years ago, in prin-
ciple, by Lord Rayleigh [4] and is now used frequently in fluid mechanics, the
technique does not seem to have been generally adopted as yet to study the diffrac-
tion of elastic waves by small cylindrical obstacles. While certain specialized cases
have been considered by Sabina and Willis [5] and Lutz [2], perhaps the main
difficulty is that in elastodynamics we have two wave equations, and the basic
equation in elastostatics is the biharmonic equation.! The relationship between the
two types of equation is not obvious [Sternberg, 7].

In this paper the equations of plane elastostatics are evolved in terms of the same
displacement potentials that are commonly used in elastodynamics. It will be
shown that the potentials satisfy generalized Cauchy-Riemann relations, leading
to a complex variable formulation which is very similar to that of Muskhelishvili
[3], although the latter used the Airy stress function as a starting point. The
consequent theory is convenient for the asymptotic matching procedure. As an
illustration, the method is used to determine the asymptotic form of the diffraction
of a plane dilatational wave by a circular cylindrical cavity, the diameter of which
is small compared with the length of the incident wave.

t Note added in proof. The author has discovered that R. P. Kanwal (J. Math. Phys. 44 (1965),
275-283) proposed a technique similar to the one in this paper. Unfortunately, Kanwal's scheme
implies that the electrostatic problem can be reduced generally to the solution of Laplace's equation,
a result which is well-known to be incorrect.
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496 V. T. Buchwald

2. Basic formulation

Referred to plane Cartesian coordinates (x',y'), the linear equations
of an elastic solid with no body forces are

6 8 2 0

dx'T*x dy'Txy

5 d 2

[2]

of motion

(2.1a)

(2.1b)

where TXX, xxy, %yy are the components of the stress tensor in these coordinates, (w, v)
is the displacement vector, p is the density, and a harmonic time factor exp(-/o7)
is assumed implicitly in the dependent variables.

Assume the displacements are given in terms of potentials <j>,\l> by

, d(j> d\f/

dx' dy''

, 5 $ dij/

dy' dx''

so that the usual isotropic linear stress-strain relations may be written

xxx = X' V2(j) + 2n' —-p: — 2 ,
dx dx' dy'

Xxy -* dx'dy''' dx'2 dy'2'

In these equations, V^ is the two-dimensional Laplacian operator, X,
stants given in terms of the Lame constants X, /i by

X' = X/(X + 2fi), \i' = n/(X + 2n),

so that X' + 2n' = 1.
Let L be a typical constant length, and choose x = x'/L, y = y'jL,

(2.1) and (2.3)

(2.2a)

(2.2b)

in the form

(2.3a)

(2.3b)

(2.3c)

\i are con-

(2.4)

when from

(2.5a)

(2.5b)
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[3] Diffraction of elastic waves 497

where the non-dimensional wave number k is given by

k2=p<J2L2/n,

and V2 is the Laplacian in the (x,y) coordinates. Clearly solutions of the pair of
equations

(V2 + n' k2) <f> = 0, (2.6)

(V2 + k2)il/ = 0, (2.7)

are solutions of (2.5), and it is well known that for a given dynamic boundary value
problem, solution of (2.6) and (2.7) is sufficient to obtain the complete solution of
(2.5).

Now assume that k<£ 1, and let us postulate the perturbation expansions

\-k2<f>2 + ..., (2.8a)

\-k2ip2 + .... (2.8b)

In order to find the equations for<ph i/>,-, however, it is necessary to substitute the
perturbation expansions in the full equations (2.5). After comparing coefficients of
powers of k, the generalized Cauchy-Riemann relations

for i = 1,2,3 ..., are obtained and the right-hand sides are zero when i = 1,2. It
follows that

V (2.10a)

(2.10b)

and, for / = 1,2, the functions <£,-, ip, satisfy the biharmonic equation

VV, = 0, V V , = 0, i = l , 2 . (2.11).

The case of plane elastostatics is obtained by taking the limit of (2.5), as k-+0,
leading to biharmonic equation for <j> and \j/.

3. Plane Elastostatics

Standard derivations of the equations of plane elastostatics involve the Airy
stress function (Muskhelishvili [3]; Sokolnikoff [6]). However, it is difficult to
relate the Airy stress function to the displacement potentials of elastodynamics, and
an alternative formulation of the equations of plane elastostatics is desirable in
order to consider the diffraction problems posed in this paper.
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Let z = x + iy, z = x — iy, and

, (3.1)

where </>, \}i are given in (2.2), but with the frequency a = 0. Noting that

d d 8
2T=z—'V'oz ox oy

we may rewrite (2.5), with k = 0, as the single equation

| ^ (3.2)

which has as its general solution

iv = 20(2) + A(z) + 5(2), (3.3)

where Q(z), A(z), B(z) are arbitrary functions of z which are analytic in the regions
considered.

If x(z) ' s a n y analytic function of z, and

where pi,p2 are conjugate, real harmonic functions, then direct substitution into
(2.2) shows that if

u'* =0* + / ^ =Pl + in'p2 =i(l+/0x(z) + «l-/0x(z)> (3.4)

then u = v = 0. In other words, if w* is expressed in terms of /(?) by (3.4), then w*
is an arbitrary "null solution" which has zero displacements and stresses every-
where. Now let

X(z)=-2B(z)l(l-n'),
and

Since we may subtract w* from (3.3) without changing the displacements and
stress, a general expression for w in terms of two arbitrary functions Cl(z), o(z) is

w = zQ.(z)+\(o(z)dz. (3.5)

The following expressions may now be derived by substitution of (3.5) and (3.1) in
(2.2) and (2.3)

0 = T « + TW = 2(1 -n')V24> = 4(1 -n') [Q'(z) + n'(z)], (3.6)

rrx, = -8(1 " / O ^ r = -4 (1 - /0 [zH'(z) + S'(2)]. (3.7)
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Also, let the complex displacement D be given by

(3.8)

and then
D = Kfi(z)-zri'(z)-«(z), (3.9)

where K = (1 +n')/(l -ft').
The choice of w in terms of the two functions in (3.5) is sufficient, but not unique.

This particular choice, however, results in expressions (3.6) to (3.9) which are
almost identical to the standard complex variable expressions derived by Musk-
helishvili. The importance of the above derivation is that it is possible to determine
directly the displacement potentials <j>, ifr in terms of O, co, while it is not obvious
how this is to be done in the Muskhelishvili theory. Nevertheless, having derived
(3.6) to (3.9), it is possible to use all existing results in the Muskhelishvili theory
without substantial modifications. For instance, additional useful results may be
derived as follows.

If 0 ' , 4*' are the complex stress combinations

©' = Tnn + Tss, O' = Tnn-Tss + 2/Tns, (3.10)

referred to rotated axes

z' =n + is = ze~'', (3.11)

then it may be shown that

0 ' = 0 and O' = Oe"2ia. (3.12)

An additional useful result derived in Appendix A is that the resultant force on
an arc F is

X+iY= -2 / ( l - / i ' ) [zn ' (z ) + n(z) + co(z)]r, (3.13)

so that the condition that an arc F is free of stress is that

zW(z) + fi(z) + w(z) = const. (3.14)
on F.

Finally, it should also be noted that the choice

QD(z) = 0, coD(z) = Cl + iC2 (3.15)

gives a rigid body translation D = - ( C , + /C2), with the corresponding

(j)D = r(C, cos 6 - C2 sin 0), \pD = r(Cy sin 6 + C2 cos 9),

while, for real E,

nR = Eiz, coR(z) = 0 (3.16)

correspond to the rigid body rotation

D = (K-\)Eiz,

https://doi.org/10.1017/S1446181100001826 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100001826


500 V. T. Buchwald [6]

4. Diffraction by a circular cylindrical hole

Let there be a circular hole for x'2 +y'2 <a2, and the circle x'2+y'2 = a2 is
assumed free of stress. An incident plane P wave is assumed to be of form

<t>, = exp[i(Kx'-at)], ^ = 0, (4.1)

The scattered waves due to diffraction by the cylinder have the general form,
taking symmetry into account,

j } r') cos 9, t, = X Bj H« >(Kr'/vV) sinjO, (4.2)

where (r', 0) are polar coordinates with r' = (x'2+y'2)*, H(jl) is the Hankel function
of the first kind, and the Aj, Bj are to be determined so that xrr = rrfl = 0 on the
cylinder surface.

Make the coordinate transformation

z = x + iy, x = x'/a, y = y'/a, aK=kx, (4.3)

where k\ = fi' k2, as in Section 2. Assuming kx <1, it may be shown from (4.1)
and (2.3) that the stresses due to the incident wave near \z\ = 1 are given by

K~2TXX=-(\+iktx)+O(k2), ?xy = 0, K~2zyy = -!'(\ + iklx) + O(k2), (4.4)

so that in polar coordinates, on \z\ = 1, the stress due to the incident wave is given
by

K ~ 2(rrr + i t j = T, = T}°> + ik, T< ' > + O(k2), (4.5)
where

T<0 )= -{l-n' + li'e-2W), (4.6)
and

tf) = -±[(\-ll')e
a + e-a + vl e-™]. (4.7)

Noting that the change of scale gives a factor a2 in the formulae for the complex
stresses, direct substitution in (3.6, 3.7, 3.10, 3.12) shows that

n o ( z ) = - a o z " ' , wo(z) = a 1 z - 1 - a o z - 3 , (4.8)

where

«o = - b ' * ? / ( l - A «i =**?, (4-9)

gives the solution of the static problem in |z| > 1 in which

Trr + /T19=-K2T<°> (4.10)

on |z| = 1. Similarly, the functions

ni(z) = i5ologz-i?1z-2, ft),(z)= -Kp0\ogz-p2z-\ (4.11)
where

i?o = ^ 2 , 2Pl=p2 = Mk2J(l-v') (4.12)
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yield the solution of the static problem in \z\ > 1 in which

=-K2^ (4.13)

on \z\ = 1. Note that the coefficient K/?0 of log z in (o^z) in (4.11) is chosen to
ensure that the complex displacement D in (3.9) is single valued for complete
circuits around z = 0.

Noting that

ty<= zfi(z) + L(z) dz, (4.14)

the field in the "inner" region near the obstacle is now determined in the form

(4.15)

where <j>0, \j/0 are found from (4.8) to be, in polar coordinates,

<£o = a 1 l og r - a o ( l - 2 / - - 2 ) co s20 , $0 = «, e+ao(\-2r2), (4.16)

j . i / ' , are found from (4.11) to be

(4.17a)

(4.17b)

and (p*, \jj* are arbitrary at this stage, but </>* and i/'*/^' are conjugate harmonic
functions, as in (3.4).

The method of asymptotic matching consists of finding a general solution of the
exact equations in an "outer region", and matching the result, as r->0, with the
limit, as r->oo, of the solution of the approximate equations with the correct
boundary condition in an "inner region". Here the general solution in the outer
region is given in (4.2). We make the transformation (4.3) to the scattered field in
(4.2), and match the limit, as r-*0, with the limit, as r->oo, of the solution in the
inner region in (4.15). Obviously, comparing coefficients of cos«0, sin«0, the
required outer solution is of the form

<l>s=<t>os+<Pis, ̂  = ^ o , + ^ i , , (4-18)

where

cj)0s = A0H\)
l)(k1r) + A2H^\klr)cos2e, (4.19a)

</rOs = B2H
(
2
l)(kr) sin20, (4.19b)

(4.19c)

(4.19d)
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502 V. T. Buchwald [8]

Consequently, as r-*0, we obtain, using the approximations to the Hankel functions
listed in Appendix C,

^ l ^ ( l ) 2 0 O ( 2 l ) (4.20a)
n"\'k\r2)'

0(r2logr). (4.20b)to*

These expressions are compared with those in (4.16) and we find that

<£os = 0o+0*o, <Aos = "Ao + iAo, (4-21)

where (f>'Q, ^*Qln' are conjugate harmonic functions if

Ao == lnik\(l-n')/n', A2=-B2= -friklix'Kl -/x'), (4.22)
and

xl/'0 = ̂ 'XQe-n' X2 sin 28/r 2,

where A'o = — xJn', X2 = 4a0/^2, and a0, at are given in (4.9).
Similarly, as r-*0

"T0i»= —+^k1r(b-2\ogk1-2\ogr) Ljcose (4.23a)

(4"23a)

f2 1
in\l/ls= —+±kr(b-2\ogk-2logr) LBjSi

L^r J
)' ( 4 - 2 3 b )

where b = 1 -2y +in+ 2\og2, and y is Euler's constant. Then, matching as before,

where </>!, i/^ are given in (4.17), and it is necessary to introduce the "null potentials"

~3 cos 30, (4.25a)

, r ~3 sin 30, (4.25b)

and the rigid body translation, as in (3.15),

0D = Qrcosfl, î D = Ct r sin 0,

in order to complete the matching. It follows that

(4.26)
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A3 = -B3kjk = \nk\pu (4.27)

where po,Pi are given in (4.12), provided that

(1 -n')X, = 2j90, *, r , = -4i/f0, A:, * 3 = -8//?,,

2TT/(1 - / i ' ) ^ i = (kl -k)b + 2k\ogk-2kl log*,,

2TT/(1 - / i ' ) (Ci + Kj8o) = 2k\ogk-2n'kl logJt, + (k-n'kl)b.

5. Discussion

Given an incident wave of the form in (4.1), the diffracted wave is

where the coefficients Ani Bn are determined in (4.22), (4.26), and terms of O(k\) are
neglected. These results agree with those derived in Appendix B by approximating
expressions computed from the exact solution. Some numerical results for mod-
erately large k are given in Table 1, in the case fi' = 0.33.

Although some care is needed to take into account the null potentials </>*, \\i* and
rigid body displacements, the techniques described in this are suitable for obtaining
asymptotic approximations for low frequency scattering of elastic waves in two
dimensions by cylindrical obstacles. The method is suitable for any obstacle with a
cross-section that can be mapped conformally onto a circle. Investigations of some
specific examples of scattering by non-circular cylindrical cavities are at an
advanced stage.

TABLE 1

Modulus and argument of An, obtained from Appendix B, compared with the asymptotically
determined A*n, when//' = 0.33, n = 1,2 and kt = 0.1,0.2. The error is of the order A2 in each case

n

1

1

2

2

*.

0.1

0.2

0.1

0.2

k

0.174
0.348

0.174

0.348

M.I

0.0077
0.0029

0.0081

0.0033

0.0079
0.0031

0.0079

0.0031

0.015
0.058

-1.53

-1.4

arg/f;

0
0

-1.57

-1.57
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504 V. T. Buchwald

Appendix A. The resultant force on an arc

[10]

Let n be the normal and s the tangent to the arc F in the sense of (3.11), as in
Figure 1. If A", / a r e the resultant forces on the arc in the x,y directions, it may be
shown that

(Al)

y i >

Fig. 1. Illustrating the co-ordinates n and s.

where a is the angle n makes with the x axis. Using (3.10) and (3.12),

which, together with (3.6), (3.7) and (3.11", yields the result

From (3.5) and (3.1),

(A2)

(A3)

(A4)

The result (3.13) follows immediately from (A3) and (A4).
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Appendix B. Scattering by a hollow circular cylinder

505

The incident wave in (4.1) may be written as an expansion in Bessel functions

0f =./o(*i 0 +2 £ (0" Ukxr)cos«0, (Bl)

in terms of the non-dimensional quantities r = r'/a, kt = kl(p.')* = aK. The scat-

tered wave is

a. <*•

<Ps = Z ^ #..(*! /-)cosii0, iK = £ BnHn{kr) sin nO,
n=0 n=1

where //„ is the Hankel function of the first kind (usually written as H{
n
l) = J,

when the implicit time factor is exp(-io7)- T h e boundary conditions rrr =
at r = 1 may be written as

\ 2 u ' (o \ 3 \ \ £.[0 1 \ oii/j
1 ^7^ , I | J \((bf "\~(h ) — "•( — *— — ) — ^ Oj

(B2)

(B3)

(B4)

at r=\. Substitution of (Bl, B2) into (B3, B4) yields, on comparison of co-
efficients of cos«0,sin/j0, and the use of the Bessel function recurrence relations,

Tll<p)Am + T12WB. = Sl(«),

T1 f \ A i T1 (-m^\ D C* (v>\
J -j | I /7 1 A ~r -* ? 7\ ft) &n ^ = O i l " / )

where

7 n = (k2 — 2n'n — 2iJ,'n2)Hn(k{) + 2n'ki ^n_i(fci),

J21 = -2//'/j[(n+l)//n(/c:1)-^ii/n-i(fci)],

T22 = {k2 -2n-2n2) Hn{k) + 2&//n _, (k),

and en = 2(0" for «S* 1, with e0 = 1. Equations (B5) may be solved to find
but we are interested here in their approximate solution for small k.

(B5a)

(B5b)

(B6)

An, Bn,
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We make use of the approximations for the Bessel functions given in Appendix
C. Noting that //_, = - / / , , we find from (B5a) that for n = 0,

Ao = \nik\{\ -n')lii'+ OiklXogk,), (B7)

while (B5b) is then satisfied identically. For «^ 1, it can be shown the lowest order
terms in (B5a) and (B5b) are consistent only if, for small k,

n'k"An+k\Bn=O(kn+2), n>\. (B8)

Subtraction of (B5b) from (B5a) yields the result that for O 2

In particular,

A2 = -B2 = -titin'klKl-rt+OVc*). (BIO)

When n = 1, some terms vanish, and the result is

A, = -kBJkl ^inkj + O(kilogkt). (Bll)

Appendix C. Asymptotic expansions for the Bessel functions

For small arguments, the required asymptotic forms for the Bessel functions are
(Abramowitz and Stegan, [1]),

/ , (0 = r/2"n! + O«"+2), 0 0 , (Cl)
and, for n ̂  2,

For «=0,1, we have

| | ^ (C3)

H0(0 = 1 + h[y + log (K)] + O(e log 0, (C4)

where y is Euler's constant.
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