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§ Introduction and notations.
The purpose of the present paper is to study the prolongations of G-

structures on a manifold M to its tangent bundle T{M), G being a Lie
subgroup of GL{n,R) with n = dimM. Recently, K. Yano and S. Kobayashi
[9] studied the prolongations of tensor fields on M to T{M) and they
proposed the following question: Is it possible to associate with each G-
structure on M a naturally induced G'-structure on T{M), where Gr is a
certain subgroup of GL{2n,R)? In this paper we give an answer to this
question and we shall show that the prolongations of some special tensor
fields by Yano-Kobayashi for instance, the prolongations of almost
complex structures are derived naturally by our prolongations of the
classical G-structures. On the other hand, S. Sasaki [5] studied a prolonga-
tion of Riemannian metrics on I to a Riemannian metric on T(M), while
the prolongation of a (positive definite) Riemannian metric due to Yano-
Kobayashi is always pseudo-Riemannian on T{M) but never Riemannian.
We shall clarify the circumstances for this difference and give the reason
why the one is positive definite Riemannian and the other is not.

The crucial starting point for our study is the following simple fact
(§ 1): The tangent bundle (space) T{Rn) of the n-dimensional real euclidean
space Rn is also a vector space and the tangent bundle T(GL(n,R)) of the
general linear group can be identified to a subgroup of GL(2n, R), the
tangent bundle T{G) of a Lie group G being a Lie group by the natural
group multiplication. From this fact we can show that, if we denote by
F(M) the bundle of frames of M, T(F(M)) can be imbedded canonically
into F{T{M)) (§ 2). Using this imbedding and the above identification of
T{GL(n,R)) to a subgroup of GL(2n,R), we can associate with each G-
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6 8 AKIHIKO MORIMOTO

structure P on M (i.e. P is a G-subbundle of F{M)), a canonically induced

G-structure P on T(M), where G is a Lie subgroup of GL{2n, R), G being

isomorphic to T{G) (§3). We will call P the prolongation of P . In §4,

we shall prove that, if a diffeomorphism / of a manifold M onto another

which induces an isomorphism of a G-structure P on M to a G-structure Pr

on M', then the induced diffeomorphism Tf of T(M) onto T(M') is an

isomorphism of P onto JP' and vice versa. In § 5, we shall see that a G-

structure P on M is integrable (cf. Def. 5. 1) if and only if the prolongation

P is integrable. In §6, we shall consider some classical G-structures and

see that a certain geometric structure on M induces canonically a geometric

structure of the same kind on T(M). In § 7, we shall consider the relations

of our prolongations of G-structures with the prolongations of tensor fields

due to Yano-Kobayashi and Sasaki. In particular, we shall see that an

almost complex structure on M induces an almost complex structure on

T(M) and in fact, this structure coincides with the one given in [9]. At the

end of §3 we shall show that, for a G-structure P on M, we can associate

with each connection Γ on the pricipal fibre bundle P a naturally induced

Go-structure PΓ on T(M), where Go is a subgroup of GL(2n,R) which is

isomorphic to G itself, more precisely Go is the subgroup consisting of the

matrices f ) for a e G . Applying this fact for G = 0{n), we see that,

with each Riemannian metric g on M and a connection Γ on the orthogonal

frame bundle P on M, we can associate a Riemannian metric gΓ on T(M).

At the end of § 7 we see that the associated Riemannian metric gΓ with the

Riemannian connection Γ induced by the metric g is exactly the same metric

studied by Sasaki mentioned above. In § 8, we shall give some remarks about

the relations between the G-structure P and the induced G0-structure PΓ.

In this paper, all manifolds and mappings are assumed to be differenti-

able of class C°°, unless otherwise stated. We denote by T(M) the tangent

bundle of a manifold Λf, TX{M) being the tangent space of M at x e M.

For manifolds M and N, T(Mx N) is often identified with T(M) x T(N).

We shall denote by F(M) the frame bundle of M, i.e. the set of all linear

isomorphisms z : Rn — > TX{M) with n = dim M. The isomorphism z will

be identified with the frame (zfo), , z(en)), where et = {δ\, , 5?) e Rn,

di being the Kronecker symbol. For a map f:M—>N, we denote by

Tf or T(f) the induced map of T(M) into T(N), which will be sometimes
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PROLONGATIONS OF G-STRUCTURES 6 9

called the tangential map of / . If / is a difΓeomorphism, we denote by

Ff or F{f) the induced map of F{M) to F(N), i.e. (F f) (z) = (T f)oZ for

z e F{M). For several maps / : Mτ — > M" , g : M—• M', A : Mt — > iV< (i =

1,2) we have the following formulas which can be verified by the definitions:

T(fog)=T foT g,

T(1M) = 1T(M), F(1M)=1F(M),

ΆA x /2) = T A x T /2,

where 1^ stands for the identity map of M. We denote 1 = 1^ if the

manifold M is clear from the context.

For a coordinate neighborhood U in M with a local coordinate system

{a?1, , xny we can define canonically a coordinate system {a;1, , xn,

x1

9 > xn} on T(U), i.e. a tangent vector 2 ώΐ ^~^i~) has the coordi-

nates (a;1, , xn, x1, , xn) if the point x e ί/ has the coordinates

(a;1, , α;w). We will call this local coordinate system {a;1, , xn,

xι> * 9 xn} the induced local coordinate system on T{U) by {α1, , # n } .

Similarly we can define the induced local coordinate system {a?1, , xn;

• 9 V j , } on F(U), i.e. a frame z = ( , J ] 2/} ("a^ϊ") » ' ' ' ) h a s

the coordinates (x1

9 , xn; , yj, ) . We shall sometimes omit the

summation notation Σ for repeated indices, for instance 2 Vj ( dχi ) =

If / : M—>ΛΓ is a map of a set M into ΛΓ and A is a subset of M9

we often denote by / itself the restriction f\A of / to A, if there is no

confusion.

In the following, Rn always denotes the n dimensional real number

space. The group of all linear automorphisms of Rn will be denoted by

GL{n, R), GL{Rn) or simply by GL{n). If a} e R for i, j' = 1,2, , n , we

denote by (#)) the matrix of degree n whose (ί,y)-entry is a) .

§1. Imbedding of T(GL(n,R)) into GL{2n,R).

Let M be a manifold. As usual, we denote by X + Y and cX the sum

of tangent vectors I , F e TX(M) and the scalar multiplication of X by _c e R .

Let rΛ : i?71^—>7?Λ be the translation of Rn by x s= Rn, i.e. r ^ H a + t /

for y ^ Rn and let <7C : Rn — > Rn be the scalar multiplication by c e J?, i.e.

<τc(a0 = ca; for x ^ Rn .
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70 AKIHIKO MORIMOTO

DEFINITION 1. 1. Take two tangent vectors X e Tx(Rn) and Y e Ty{Rn).

We define the sum X®Y of X and Y and the new scalar multiplication

c o X by c e i? as follows:

PROPOSITION 1. 2. 7%* tangent bundle T{Rn) of Rn is a vector space of

dimension 2n with respect to the sum " © " and the scalar multiplication " o "

Proof Let a?* be the ί-th component oΐ x <E Rn, then X e Γ^/?") and

FeT^T?7 1) can be expressed as follows:

for some a{, bt e i?, t = 1,2, , « . We see readily that

and so

x+y

Similarly c o X = 2 c Λ* ( , ) . From these expressions of the sum and
\ OX ' ex

the scalar multiplication, it is clear that T(Rn) becomes a vector space of

dimension 2n , i.e. T(Rn) has the induced "global" coordinate system
J /yl . . . vn ϊ1 ^ n " V\ Λ , , Λ , ί ϋ , • • • > » / .

PROPOSITION 1. 3. Let f : Rn — > Rm be a linear map. Then, the, tangential

map T f : T(Rn) — > T(Rm) is also a linear map of the vector space T(Rn) into

T(Rm).

Proof Let xι be the /-th component of x e i ? " and yj be the y-th

component of y e Rm. Let f(x) be the y-th component of f{x). Then

fJ\x) is expressed as follows: f'(x) = Σ α{ α* for some a{ <Ξ R. Then we
f = l

have:

= V c
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PROLONGATIONS OF G-STRUCTURES 71

for Ci e R, f = 1,2, , n . From this expression, it follows that T f is a

linear map, for instance:

= (T

The following proposition is easily verified:

PROPOSITION 1. 4. For β?y> ̂ m'fe dimensional vector space V the tangent bundle

T(V) becomes a vector space with respect to the natural sum and the scalar multipli-

cation " ©, o " . If V is the direct sum of two sub spaces W and W then T{V) is

isomorphic canonically to the direct sum of T{W) and T(W).

DEFINITION 1. 5. We denote by p: GL(n,R) x Rn—>Rn the natural

operation of GL(n,R) on Rn, i.e. p(y, x) = y x for y e GL{n,R) and x e Rn.

It is well known that if G is a Lie group, then T{G) is also a Lie

group by taking Tμ as the group multiplication, where μ : G X G — > G is

the group multiplication of G.

PROPOSITION 1. 6. By the tangential map Tp: T(GL(n)) x T(Rn) — > T(Rn)

of p, the Lie group T{GL{n)) operates effectively on T(Rn) as a linear group.

Proof (i) Take two tangent vectors Xo e TXQ{Rn), Fo e Tyo{GL{n)) and

c e R. We shall prove:

(l.i) Wβ,coχβ) = co^(r,, *β).

First, we define the functions x3 : Rn — > R, y{: GL(n) x Rn — > R, yί :

GL{n) — > R and xk : GL(n) x i?w — > R, as follows: x'(x) = a;-7', yί(y, x) = y{,

vi(v) = yί > $k(Vf x) = xk for χ(ΞRn, y = {y{) e GL(»), ; ,* = 1,2, , n .
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Then we have: xJ o p(y, x) =χi(y x) = χ\{^ y\ χ%) = Σ 2/£ a* = Σ (H «*) (v>

x). Therefore, it follows that

(7>(F0, c o X,)) - x1 = (F o, c o *,) («' o p)

+ Σ ^(3/0, ex,) - (Fo, c o Xo)»*

On the other hand, we have

(c o (7>(F0, Xt))) - Xs = Tcr.CTpίr,, XJ) • xJ

Thus, (TpiYt , c o l , ) ί ' = (c» {TpiY,, Xt))) xy for j = 1,2, • , n, hence (1, 1)

holds.

(ii) Take Fo e 7\0 (GL(n)), Xt e Γ,.(/?"), ί = 1,2.

We shall prove:

(1. 2) 7>(F0, Λi ® Z2) = 7>(y,, X,) 0 ^ ( F o , Z 2 ).

Keeping the notations as in (i), we calculate as follows:

7>(F0, X, @ X,)x} = (Fo, Ai θ ^ ) x J o p

= Σ Y, ϋί' (asf + *i) + Σ (».)ί (Xι

= ΈY*yί- M + *!) Σ (»

where we have used following calculations in the above fourth equality:

[X, 0 X2)x* = (Trx2X, + Γτ
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X2{xk + xk) = Xxx
k + X2x

k. Hence we have Tp(YQ, Xx ® X2)xj = (7>(70, Xx) ®

Tp{YQ,X2))xj for j = 1,2, , n , which shows that (1,2) holds.

(iii) For every yQ e GL{n), a; o ei? f t , r<y G i? and cj e i?, we shall

prove the following:

(1.3)

In fact, from the calculation in (i) we proved the following:

TP(Yt, Xo)xj = ^ (Yoyi xl + (yβ)ί ^ β * z ) .

Applying this equality for Fo = Σ r iy Γ-^-) and Xo = Σ cy (-*rψ)

obtain the following:

*rψ) we
OX /Λ?O

= Σ ( Σ r<t,«{ίέafJ + (2/0)ί Σ
/ i.v v

Σ

On the other hand we have:

Hence, the values of both hand sides of (1. 3) at x3 are equal for any

j — 1,2, , n, which shows that (1. 3) holds.

(iv) Take Y, Yr e T(GL{n)) and X e T(i?n).

We shall prove:

where Y Y' = Tμ{Y, Yr), μ being the group multiplication of GL(n)

Since GL{n) operates on Rn, we have
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p o (μ X lR9i) = po ( l σ L ( f t ) X io) .

Hence* we calculate as follows:

Tp(Y r,X) = TP(Tμ(Y,Y'),X)

= Tpo(TμXlτ(Rn))(Y,Y',X)

= (TpoT(μxlRn))(Y,Y',X)

= T(po(μχlRn))(Y,Y>,X)

= T(po(lGL(n)Xp))(Y,Y',X)

= Tp(TlGL(n)xTP)(Y,Y',X)

= Tp(Y,Tp(Y',X)).

By (i) ~~ (iv) we proved that the group T{GL(n)) operates effectively on T{Rn)

as a linear group. Thus Proposition 1. 6 is proved.

DEFINITION 1.7. For F e T(GL(n)) and X<ΞT{Rn) we define Y-X by

Y-X=Tp(Y9X).

More generally we see, by the same argument as in the proof (iv) in Prop.

1. 6, that, if G operates on a manifold M then T{G) operates on T{M).

DEFINITION 1. 8. We denote by Ra : GL{n) — • GL[n) the right transla-

tion of GL(n) by a e GL{n), i.e. Ra(y) = ya for y <EΞ GL{n). Take a

tangent vector Y e Ta{GL{n)). Then B = TRa-i{Y) is a tangent vector of

GL(n) at the unit element # of GL{n), namely 2? is an element of the Lie

algebra gl(w) of GL(n). Conversely for any pair α e GL{n) and 5 e gl(«),

we obtain a tangent vector F e Ta{GL(n)) by F = TRa(B). We express this

vector F by : F = [a, B]. On the other hand any X e Tx{Rn) is expressed

by 1 = 2 ^ (~τ) . We shall denote: X = {x, υ) e

PROPOSITION 1. 9. We have the following equality:

[a,B] (x,v) = (β #, 5 β a; + β z;)

/or Λn-v β G GL{n), B e gί(n) awrf x,v <Ξ Rn .

Proof First, we shall show that
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PROLONGATIONS OF G-STRUCTURES 75

for a = {a}) e GL(n), b e GL(n) and i,/ = 1,2, , n . In fact, denoting

by ft( , yj, ) = Σ Vm' fl? the (fc, /)-entry of Λα(y), we see that
m

By using (1. 4) and several definitions and by putting B - Σ b% ( m ) we

calculate as follows:

[β, B] (at,») = (TRa - B) Σ vt ( - g | r ) β

= (a x, B' a* x + a υ).

Thus proposition 1. 9 is proved.

Remark 1. 10. We can easily verify the following

[a, B] [<f, B'} = [oaf, B + ad{aι)B'\

for «, β' e GL(w) and JB, 5 r e gl(n).

DEFINITION 1. 11. We shall denote by

j n : T(GL{n,R))—>GL(2n,R)

the operation oΐT(GL{n,R)) on R2n = T(Rn) proved by Proposition 1.6, i.e.

By Proposition 1. 9 we have proved the following
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PROPOSITION 1. 12. For any C G GL(n) and B e ql(n) we have the following

equality :

/a 0\
JΛa,B])=(Ba J,

§2. Imbedding of T{F{M)) into F(T{M)).

DEFINITION 2. 1. Let P{M,π,G) be a principal fibre bundle with

bundle space P, base space M, projection π and structure group G. If

{U«} is an open covering of M, P being trivial bundle over UΛ, and if

g«β :Ua Π Uβ —> G is the transition function of P, we express this fibre

bundle by

If G is a subgroup of a group G' and : G —> Gf is the injection map,

then there is a fibre bundle Pr ={Ua, o ^ } and the injection : P—>P'

which is a bundle homomorphism, i.e.

j{z a) = ;(z) a

for any z e P and a^G. (cf. [7])

DEFINITION 2. 2. If P(M,π,G) is a principal fibre bundle, then

T{P){T(M),Tπ,T(G)) is again a principal fibre bundle (cf. [4]).

PROPOSITION 2. 3. If P = {Ua, g«β}, then T(P) = {T(Ua), Tg*&.

Proof Let ΦΛ:Uax G π"W ) be the trivialization of P over Ua.

Then, by definition,

Φ*1 ° Φβ(x9 g) = ( B , 9aβ{x) 0)

for a ; e ί / a n ^ a n d ^ G G . Since (TTΓΓHTWJ) = TVW*)), it is sufficient

to prove the following:

, L) = (X, T^(X) L),

for (X, L) e (T(ί/β) Π T(ί/^)) x T(G). To prove this it is sufficient to prove

the following assertion:

Let / : U —> G be a map, for which we define the map Ψ :U x G —>

UxG by
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Ψ(x,g) = (x,f(χ)-g)
m

for (x9 g) e U x G . Then ΊV{X, L) = (X, T/(Z) . L) for (X, L) e T(ί/) x Γ(G).

To prove this assertion we denote by πx : £/ x G — > U, π2 :U X G — > G the

projections and μ : G x G — > G the group multiplication.

Since π2 o Ψ(x,g) = f(x) -g = (μ o (/ x lG)) (χ,g), we have ττ2 o r = ^ o (/ x iσ) p

and hence

Tπ2 o T?F = T(ττ2 o ψ) = T(μ o (/ x iσ))

= Tμ o T(/ X lσ) = Tμ o (T/ X l r ( σ )) .

Therefore,

Tπ2 o T?Γ(X, L) = Tμ(Tf(X), L) = Tf(X) -L .

On the other hand, Tπ, o T?F(X, L) = Tί^ o ?r) {X, L) = TTΓ^X, L) = X. Thus,

Tf(Z, L) = (X, Tf{X) L) and hence Proposition 2. 3 is proved.

THEOREM 2. 4. For any manifold M, there is a canonical injection

T(F(M)) c F(T(M)).

Proof. Let M = U ί/β be the open covering of M by coordinate neigh-

borhoods Ua with a local coordinate system {x1, , #TO} . We denote by

Λ/3 : ί̂ α Π Uβ—>GL(n,R), n = dim M, the Jacobian matrix with respect

to the local coordinate systems {#£, , xζ} and {Xβ, , xffi, i.e.

for x<ΞU*nUβ. Then F(M) = {UΛ, J«,β}, F(M) being the bundle of

frames of M. By Proposition 2. 3 and the remark in Definition 2. 1 we

have:

W -U * \ F \M)) = \1 [U <J, 1 JaβJ C {1 (C/β), Jn° 1 Jo-βJ 9

j n being defined in Definition 1. 11. Now, we denote by {xl, , xl,

άί, , x'ΐ} the induced local coordinate system on T{U9), and by

Jaβ :T(Ua) Π T(Uβ)—>GL(2n,R) the Jacobian matrix with respect to the

local coordinate systems {&£,•••,&;, i ί , , a;?} and {αj, , αg, i j , .

• , άj}, i.e.

f ^ ^^ ^ ^ ^ ' * ' # ' x"& ' ^ ' ' ' ' 9 ^
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We shall prove

(2. 2) J.β = j n o TJ.β on T(Ua) Π T(Uβ).

Put a* = xi , y* = a j , U = Ua9 U' = Uβ9 J = /β/9 and / = /α / 3. Then

2/* = /*(#), where /* is a function on U [\Ut for z" = 1,2, , n and so

- 2

From these relations between two local coordinate systems:

dfk

yι = /'(«) and 2/fc = Σ ** T~Γ"> w e obtain:
ox

(2.3)

0 \

Now, for any map g : U—>GL(n,R) we have

(2. 4) 7
>x k,l OX

where x^U and g(x) = {ff^{x)). We calculate as follows:

j n o τj(x, x) = i J 7 ( Σ * ' ( l | r ) Λ )

- . (^J

/(*) 0

Γl)l)-J{χ) J(χ)

0

d%*
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where we have used (1. 4) in the fifth equality and used (2. 4) in the third

equality. Since we proved (2. 2), we see, by (2. 1), that T[F(M)) c

{T(UJ, /«/?} = F{T(M)). Thus Theorem 2. 4 is proved.

DEFINITION 2. 5. We denote by jM:T(F(M))—> F(T[M)) the injection

obtained by Theorem 2. 4. The injection jM is independent of the choice

of the open covering {Ua} of M with coordinate neighborhoods {Ua}.

If U is a coordinate neighborhood in M, then there is the canonical

trivialization Φυ : U x GL{n) — • F(U) and Ψυ : T(U) x GL(2n) — > F{T(U)) of

ί\M) and F(T{M)) over Z7 and T(U) respectively. By virtue of (2. 2) in the

proof of Theorem 2. 4 we see readily the follwing

PROPOSITION 2. 6.

jM\ΆF(U)) = ΨΌ o (1T(U) x J o (TΦσ)-i.

The following proposition is also clear from our construction of j M :

PROPOSITION 2. 7. Let π : F{M) — > M, π : F{T(M)) — > T{M) be the pro-

jections. Then the map j M is a bundle homomorphism of T{F[M)) into F{T(M))

with respect to j n , i.e.

for X^T{F{M)), Y^T(GL(n)) and we have the following commutative diagram:

T(F(M)) ——> F(T(M))

H , l
T{M) > T(M) .

§ 3. Prolongations of G-structures.

DEFINITION 3. 1. Let G be a Lie subgroup of GL{n,R). We shall

denote by G the image of T{G) by jn:G = jn{T(G)) (cf. Def. 1. 11). Clearly

G is a Lie subgroup of GL(2n, R) and isomorphic to T[G).

DEFINITION 3. 2. Let M be a manifold of dimension n and G be a

Lie subgroup of GL(n,R). A G-structure on M is, by definition, a G-

subbundle P{M,π,G) of the frame bundle F(M) of Λf. Therefore, a G-

structure on M is nothing but a reduction of the structure group GL(n, R)

of F(M) to the subgroup G of GL{n, R). (For the general theory of G-

structures see, for instance [1], [2], [8]).
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THEOREM 3. 3. If a manifold M has a G-structure P, then T{M) has a

canonical G-structure P .

Proof Let M = U U* be an open covering of M by Ua, over which

the bundle P(M,π,G) is trivial and let gΛβ : Ua Π Uβ—>G be the transition

function. Then, by proposition 2. 3, T(P) = {T(U9),Tgafά. Put P = jM{T{P)).

Then we see that P={T(t/α), jnoTgaβ}. Since jnoTgaβ maps T(Ua)nT(Uβ)

into (5, we obtained a G-structure P on T{M).

DEFINITION 3. 4. We shall call P in Theorem 3. 3 the prolongation of

the G-structure P on M to the tangent bundle T(M).

We can prove the following well known fact:

COROLLARY 3. 5. If a manifold M is completely parallelizable, then T(M)

is also completely parallelizable.

Proof Since M is completely parallelizable, M has a {^-structure,

where en is the unit matrix of GL(n,R)9 n = dimM. Then, by Theorem

3.3, T(M) has a yn(T({*J))-structure. Clearly jn(T({en})) = {e2J, which

implies that T(M) is completely parallelizable.

PROPOSITION 3. 6. If a manifold M has a G-structure P, then T{M) has a

/a 0\K a u\
/

Proof Since Go is a closed subgroup of G such that the quotient space

G/Go is diίfeomorphic to the Lie algebra of G, and hence G/Go is diffeo-

morphic to a euclidean space. Let P/Go be the space obtained by identify-

ing z and z a0 for z e P and β0

 e Go. Then P/Go is a fibre bundle with

base T(M), fibre G/GQ and structure group G. Since the fibre G/Go is

diffeomorphic to a euclidean space, this bundle P/GQ has a global cross

section <τ and hence the structure group G of P is reduced to the subgroup

Go (cf. [7]), which means that T(M) has a G0-structure P o . We remark that

Po is not canonical since the cross section a is not canonical (cf. Remark

8. 4.). Thus Proposition 3. 6 is proved.

Remark 3. 7. Let P(M,π,G) be a G-structure on M, and let Γ be a

connection on the principal fibre bundle P, then T(M) has a G0-structure

Pr canonically induced by Γ. In fact, the connection Γ defines a global
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cross section oΓ of P/Go and hence σΓ induces a G0-structure on T{M) as

in the proof of Proposition 3. 6.

§4. Prolongations of isomorphisms of G-structures.

DEFINITION 4. 1. Let M and M be manifolds of dimension n and G

be a Lie subgroup of GL(n, R) and let P and Pf be G-structures on M and

M respectively. Let / : M—> M be a difFeomorphism of M onto M . We

call / an isomorphism of P to P' if (Ff){P) = P ' . (cf. Introduction).

THEOREM 4. 2. Zeί f be a diffeomorphism of M onto M'. Then we have:

(4.1)

Proof. Let {77α} be an open covering of M by coordinate neighborhood

UΛ . Put Va = /(i/β). Then we have M = U F α and F α is a coordinate

neighborhood. Let

<Pί : F Λ x G L ( n ) —

be the trivialization of F(M) and F(Mr) over UΛ and Kα respectively. Then

we have the following commutative diagram:

F(Ua) < C7β X GL{n)

< F α X GL(n),

where we have defined the diffeomorphism fa by

fΛ =Φ^oFfoφΛ.

The diagram (4. 2) induces the following commutative diagram:

T(F(U9)) <^- T(U.) x T(GL{n))

(4. 3) TFf I I
Ψ TΦ'a Ψ

On the other hand, let

TΦ'a Ψ

x Γ(GL(n)).

: T(U.) x GL(2«)

x GL(2n)
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be the local trivializations of F{T{M)) (and F(T{M'))) over T{Ua) (resp. T{Va)

induced by the local coordinate system on Ua (resp. Va). Then, we have

the following commutative diagram:

T(U9) X GL(2n) - ^ - > F(T(U9))

(4.4) /« |

Γ(7) x

where we have defined the diίfeomorphism / α by

Let /α = lj ( σ α) X j n and ί = l Γ ( r α ) X ; n . By virtue of Proposition 2. 6, we

have:

f JM a j a ( β ) o n
(4. 5)

ί i n y: (TΦ:) 1 on

To prove (4. 1), it is now sufficient to prove that the following diagram

T(Ua) X T(GL(n)) > T(UU) X GL(2n)

X T(GL(n)) > T(7α) x

is commutative, since the diagrams (4. 3) and (4. 4) are commutative and

since (4. 5) holds.

To prove the commutativity of the diagram (4. 6), we take the local

coordinate system {a1, , xn} on U9 and {y1, , yn} on Va. Then

T(Ua) (and T(Va)) has the induced local coordinate system {x1, , xn,

x1, , xn} {y1, , yn, y1, , yn} resp.). Similarly F(Ua) (and F(Va))

has the induced local coordinate system {ίc1, , xn, , wj, }

({y19 * * > yn, ' 9 Zj 9 ' •} resp.) Now this local coordinate system on

F{Ua) induces the local coordinate system {x1, , xn, w), x1, , xn, wfi

on T(F(Ua))({y>, , y», zj, y\ , yn, i}} on Γ(F(7β)) resp.). Let

/ : UΛ — > V* be expressed by

in terms of the above local coordinate systems. Then the maps Tf, fa,

Tfa are expressed as follows:
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dx*

(4.7) 7 7 . :

dxkdxι dxk

On the other hand, the local coordinate system {cc1, , xn, x1, , in}

on T(U9) ({y1, , yn, y\ , yn} on T(Va) resp.) induces the local coordi-

nate system -O1, , xn, x\ , x", wζ} μ, \> = 1,2, , 2n on F(T(U*))
2n

{{y\ -- ,yn, y1, o n resp.). Since ^ = r hY

putting fί+n{x,x) = 2 ' T * ^fc> a n ( i ^ ί + ? ? = **> w e c a n e xP ress the map

by the following equations:

(4.8)

v* =

A ~k df

+"= Σ dx'dx*
X 1 Λli''"rK. ί

for i,j = 1,2, ,n; v = 1,2, '> ,2n. We now remark that, if X^T(GL(n))

has the coordinates wj and wj then, we have:

(4.9)

In fact, since ^ = Σ *}

)n(X) =
(wj) 0

- . Σ ι
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(wj) 0 \ / {w)) 0

(tiίiw-1)}) (w{) (w}) I " \ (wj) (w})

where we have used the notations in Definition 1. 8 and the formula (1. 4).

Now take an element X= [x9x9wί,wί) e T{Ua) X T(GL(n)), then by (4. 7)

we have

TUX) = (/'(*), Σ-ffr Λ (zί), (H)),

where z{, z{ are given in (4. 7). Hence, by (4. 9) we have:

af* I (zί) 0
f

/
(4.10) ί o T/.(^) = ( / ' ( * ) ,

\

Now, by using (4. 9) and (4. 8) we obtain:

(wί) 0

(ύl)

where a;{ and έ{ are the same as in (4. 10). Finally we obtain yi°T/(X=/αoy<X5

whence Theorem 4. 2 is proved.

THEOREM 4. 3. Let P and Pr be G-structures on M and M respectively. Let

f be a diffeomorphism of M onto M. Then f is an isomorphism of P to Pr if

and only if Tf is an isomorphism of P to Pr.

Proof. By the definition of P and Pr we have:

P=jMT(P), P'=jM,T(P>).

Suppose / is an isomorphism of P to Pr. Then

FTf(P) - FTf(JM(ΆP))) = JM>(TFf(T{P)))

and hence Tf is an isomorphism of P to Pr.

Conversely, suppose Tf is an isomorphism of P to P ' . Then

FTf{P)~P', and hence FTfUM(T(P))) = jM,(T(P')) and so j*TFf(T(P)) =

jM>(T{P')). Since V is injective5 we have TFf{T(P)) = T{P'), which
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implies that F/(P) = P' , whence / is an isomorphism of P to P ' . Thus
Theorem 4. 3 is proved.

COROLLARY 4. 4. Let P be a G-structure on M and let f be a diffeomorphism

of M onto itself. Then, f is an automorphism of P if and only if Tf is an

automorphism of P .

§ 5. Integrability of the prolongations of G-structures

DEFINITION 5. 1. Let P{M9π,G) be a G-structure on M. The G-

structure P is called integrable (or flat) if for each point p e l there is a

coordinate neighborhood U with local coordinate system {sc1, , xn} on U

such that the frame

for any x e U.

LEMMA 5. 2. Let {xι

9 , xn} be a local coordinate system on a neighborhood

U in M and let f : U—>GL{tn,R) be a map, fj{x) being the {i,j)-entry of f(x)

for a ε ί / . Then we have

(5.1) (jmoTf)(x,x) =

where {x, x) = (2c1, ,

T(U).

Proof. We have

.β -

•, xn) is the induced local coordinate system on

-Σ*•

Applying (4. 9) for m, we see that (5. 1) holds.

PROPOSITION 5. 3. Let {xx

9 , xn} be a local coordinate system on a

neighborhood U in M. Let φ be a cross section of F[M) over U, which is expressed

by:
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for x^U. Define φ = jM°Tφ . Then φ is a cross section of F{T{M)) over

T(U) and is expressed by the following:

where -[ίc1, , xn, x1, , xn} in the right hand side is the induced local coordi-

nate system on T{U) and X = Σ x* {"^r)x

 e τ(u)

Proof Let π : F(M)—>M and π : F(T(M))—>T(M) be the projections.

Let Φv and Ψυ be the local trivialization of F(M) and F(T(M)) over U and

T(U) respectively as in Definition 2. 5. By Proposition 2. 6 we have

jM\TF(U) = Ψv o (lτ(u) x J

First, πoφ =πojMoTφ =TπoTφ =T{πoφ) = T\υ = lτ(u), which shows that φ

is a cross section of F{T(M)) over T(ί/). Now, by putting f{x) = {φ}{x)) for

x e ί/, and using Lemma 5. 2 we calculate as follows:

φ = ΨΌ o (lΓ(l7) X ;Λ) o (TΦ,,)"1 o T{Φσ o Φ^τ o φ)

which implies

/ / (Φί(x)

l

Thus, Proposition 5. 3 is proved.

COROLLARY 5. 4. Let P be an integrable G-structure on M, then the prolon-

gation P of P is also integrable.

Proof Take any XQ e TP(M) Let U be a coordinate neighborhood of
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p in M with the local coordinate system -(V, , xn} such that, if we define

φ by φ(x) = ( >(~TΊr) » * •) for as e i7, then ^ is a cross section of P

over U. Let -[a?1, , xn, xι

9 , xn} be the induced local coordinate

system on T{U). Then, by Proposition 5. 3 φ = jM° Tφ is a cross section of

F(T(M)) over T(U) and is expressed by

* W - ( .(-ϊϊr),. . (-!&.-),.•••)

for X= Σ ^(-T-r) e ?W) Now we have:

= P,

which shows that φ is actually a cross section of P over T{U). Since

Xo

 e T(M) is arbitrary, we have proved Corollary 5. 4.

Conversely, we have the following:

PROPOSITION 5. 5. Let P be a G-structure on M. If the prolongation P of

P is integrable, then P is also integrable.

Proof Take a point p e M and take a coordinate neighborhood U of

p with local coordinate system {as1, , a?71} on £7 such that there is a local

cross section φ : U—>P of P over J7. Then by Proposition 5. 3 and the

proof of Corollary 5. 4, φ = j M o Tφ is a cross section of P over Γ(£7).

Now, let Xo e T(£/) be the zero tangent vector of M a t p . Since P

is integrable, there can be found a coordinate neighborhood ϋ of Xo with

local coordinate system {y1, - -, y2n} such that UcT(U) and that if we

define φQ by

ô is a cross section of P over [7. Since ^|[7 and φ0 are both cross sections

of P over ί7, there exists a map </: ϋ — > G such that

(5.2)

for X e ί7. By virtue of Proposition 1. 12, we can write

9(X) 0
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where g : U—>G9 B :U—>g are C°°-maps5 g being the Lie algebra of G.

Since {t/1, , y2n} and {as1, , # w , ά1, ,xw} are both coordinate

systems on Ό we can express:

for (#,#) e t/, where / v are differentiable functions for v — 1,2, , 2n

Now, if

#(*) = (Σ Φi(x) (-g|r)β, , Σ ^ίW

for x &U, then by Proposition 5. 3, (5. 2) can be written as follows:

(5.3)

where flr(JSΓ) = (g}(X)) and B(X) = (5}(X)) for Jfe£f.

dp-), - s-^ί-s^),. '5 3»
be written as follows:

2n n

Comparing the coefficients of Γ k λ for ί ^ n in (5. 4), we have:

(5 5)

for i, s = 1,2, , n . Now, define maps /, : Ur — > R {s = 1,2, , n)

and g : U' — • G by

/.(a) = /5(α;,0) and (g(α )-1)} = g}(x,0)

for α e £/' = 7r(ί/). Putting xk = 0 (fc = 1,2, , Λ) in (5. 5) we get

(5.6) | ^
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for ί c e ί / ' . Now define x\x) = ft{x) for x e U', then there exists a neigh-

borhood UQ oΐjp such that {β1, , z71} is a coordinate system on ί/0,

because, det Γ } j φ 0 by virtue of (5. 6). We shall prove

(5.7) Φ(χ) = Φ(χ) - g(χ)

for a;Gί/0, where we have defined φ by

for cc e £/„. In fact, since (-ΓT) = Σ - τ « - ( ~ ^ ~ ) > w ^ n a v e
\ όX / x oX \ oX Jx

Φ(χ) g(%) = ( , Σ Φ*Λ

Since gr(aj) e G for as e £70, the map φ : ί/0̂ —> F(M) is a cross section of P.

Thus, for any point p e M, there exists a coordinate neighborhood £/0 of

p with coordinate system {x1, , x71} such that the map φ defined by

(5. 8) is a cross section of P over Uύ. Thus Proposition 5. 5 is proved.

Combining Corollary 5. 4 and Proposition 5. 5 we obtain the following

T H E O R E M 5. 6. Let P be a G-structure on a manifold M. Then, P is

integrable if and only if the prolongation P is integrable.

§6. Prolongations of some classical G-structures.

(I) G = GL{n,C).

We take a linear automorphism / : R2n—> R2n such that J2 = —1, and

denote by GL(n, C) the group of all a e GL{2n, R) such that a o / = / o a.

More precisely, GL{n,C) will be denoted by GL(n,C; J).

LEMMA 6. 1. The tangential map TJ of J is a linear automorphism of the

vector space T(R2n) such that {TJ)2 = - 1 .
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Proof By virtue of Proposition 1. 3, TJ is a linear endomorphism of

T(R2n). Moreover,

{TJ)2 = TJoTJ = T{J2) = T(-l) = - 1 .

Thus Lemma 6. 1 is proved.

PROPOSITION 6. 2. Let G = GL{n,C; J), then G c GL{{2n,C; TJ).

Proof Take an element a e G . We can take an element A e T(G)

such that a = ΛΛC^) Then, by the notations in Definition 1. 8, we can

write A — [a, B], where α e G and β G g , § being the Lie algebra of G .

Hence, by Proposition 1. 12 we have the following expressions:

Since 5 e g , we

aoTJ

a = hn([a

TJ - J2n(\

have the

~ \ Ba

I

\

IJ fVl) — I

equality

:)(

a

Ba

' J

\ 0

BJ =

J

0

Ί
a)

<M
J 1

JB.

))

9

|

Therefore,

\ BaJ

we get

1

, =TJoa,
JBa Ja

where we have used the equality BJ = JB in the third equality. Thus

a e GL(2n,C; TJ) and Proposition 6. 2 is proved.

THEOREM 6. 3. (1) If a manifold M has an almost complex structure, then

T{M) has a canonical almost complex structure.

(2) If a manifold M is a complex manifold, then T{M) has a canonical complex

structure.

Proof (1) As is well known, M has an almost complex structure if

and only if M has a GL{n, C; /)-structure. If M has a G-structure then

T{M) has a canonical G-structure P. Applying this assertion for

G = GL{n,C; J), we see that the G-structure P induces canonically a

GL(2^,C; T/)-structure Pr by virtue of Proposition 6. 2., which means that

T{M) has a canonical almost complex structure. Thus the assertion (1) is

proved.
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(2) It is well known that a GL(n,C; /)-structure is integrable if and

only if the associated almost complex structure is a complex structure.

Therefore, if M is a complex manifold, M has a canonical integrable

GL{n,C; /)-structure P • Then, by Corollary 5. 4 the prolongation P of P

is also integrable. Therefore the canonical GL(2n, C; T/)-structure Pr is

again integrable. Thus T{M) has a canonical complex structure and the

assertion (2) is proved.

(II) G = Sp{tn).

Let / : R2m x R2m—>R be a skew-symmetric non-degenerate bilinear

form on R2m. We denote by Sp{m) the group of all a e GL{2m9 R) such

that

f{ax,ay) = f{x,y)

for all x,y e R2m. More precisely, we write Sp{m) = Sp(m,f). We shall

denote by π the projection of T(i?) = R x R onto i? defined by

for c,5Gi?, where ί is the natural coordinate in R.

LEMMA 6. 4. If f is a skew-symmetric non-degenerate bilinear form on R2m,

then f = πoTf is also a skew-symmetric non-degenerate bilinear form on R4=m=T{R2m).

Proof We define r : R2m x R2m—>R2m X R2m by τ{u,v) = {v, u) for

u,v e 7?2™. Then, we have / o r = —/ and hence

TfoTτ = T(f o r) = T(-/) = Γ(-l)oΓ/ = (-l)oΓ/,

where " o" in the last term means the scalar multiplication in T{R2m).

Therefore, we have

(π o Tf) o (7V) = -πoTf.

Thus, / is skew-symmetric on T(R2m). We take a skew-symmetric matrix

{a)) e GL(2m9R) such that

f(χ,v)=

for 35 = (x1, , xn) and 2/ = (2Λ * > 2/w) with n — 2m. Then it follows

that
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τf\\dxi)^,v')~ dx* ( dt λc».»>*" ?* '*( dt

77((l7")<*. J = ~W

»>

Therefore, we have for any bu

Hence, we obtain

= Σ

for any c e i ? , Similarly, we obtain

(6. i) / (Σ 6* (-g | r) β , Σ c, ( - ^ r ) f ) = Σ (MW +

Now, we calculate as follows:
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which means that / is bilinear on T(R2m). If we identify a tangent vector

€= T(Rn) with the vector {x\ , αn, b19 , bn) e # 2 W , then

we have the following expression of / :

(6.2) /((«*, W, (y\cz))

= {x\ . , xn, b19 -, bn)
(aj)

ΐ \

which implies in particular, that / is non-degenerate. Thus, Lemma 6. 4

is proved.

PROPOSITION 6. 5. Let G = Sp{m,f), then G c Sp(2m,f).

Proof. Let <j be the Lie algebra of G. Then, if we denote by A = {aj)

the matrix in the proof of Lemma 6. 4, we have the equality B A+A^B^O

for any 5 e g , *2? being the transpose of B. Now, take any a e G, then

« = hm{X) for some X e Γ(G). By Proposition 1. 12 we can write X = [a, B]

with α e G and 5 e g . Then, we have the following expression:

a =
a

Ba

Now, we can calculate as follows:

0 A

I 0

0 2A\ I *a

a.
a

Ba

%aιB

0

A 0/ \0

%aιB

'a

0aA BaA \

0 αA'α

M 'β aA ιa ιB + BaA ιa

0 A \ 1°
A A-tB + B-Al~~\A

A

0
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I ° Λ\
which means that α e SJ)(2m, / ) , since / is expressed by as in

\ A 0 /
(6. 2). Thus Proposition 6. 5 is proved.

THEOREM 6. 6. (1) If a manifold M has an almost symplectic structure, then

T{M) has a canonical almost symplectic structure.

(2) If M has symplectic structure, then T{M) has a canonical symplectic struc-

ture.

Proof. (1) A manifold M has an almost symplectic structure if and

only if M has a Sp(m)-structure. Hence, by Proposition 6. 5, T{M) has a

canonical almost symplectic structure if M has an almost symplectic struc-

ture.

Now, it is well known that an almost symplectic structure is a

symplectic structure if and only if the associated S.p(m)-structure is integrable.

Therefore, we see that the assertion (2) follows from Corollary 5. 4.

(Ill) G = GL{V, W).

Let V = Rn and W be a vector subspace of V. We denote by GL(V, W)

the group of all a e GL(V) such that a{W) = W. The following lemma is

easily verified:

LEMMA 6. 7. Let G = GL{V, W), then G c GL(T{V), T(W)).

PROPOSITION 6. 8. (1) If a manifold M has a k-dimensional differential

system, (i.e. a differentiable assignement M 3 x — > D(x) c TX{M) of vector subspaces

D(x) with dim D{x) - k for x e M) then T{M) has a canonical 2k-dimensional

differential system.

(2) If a k-dimensional differential systems on M is completely integrable, then

the canonical 2k-dimensional differential system on T(M) is also completely integrable.

Proof. (1) A manifold M has a A -dimensional differential system if

and only if M has a GL{V9 W)-structure with dimF = dim M, dimT^ = k.

If M has a GL{V, WO-structure, then T(M) has a canonical GL{T{V), T{W))-

structure by virtue of Lemma 6. 7. Hence T(M) has a canonical 2k-

dimensional differential system, since dim T(W) = 2k.

(2) It is well known that a differential system on M is completely

integrable if and only if the associated GL{V, WO-structure on M is integrable.

Therefore, the assertion (2) follows from Corollary 5. 4.
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(IV) G=O(fc,w-*0 -

Let / be a symmetric non-degenerate bilinear form on Rn of signature

{k,n — k) and let π :T(R)—>R be the same projection as in (II) and let /

be the map f = πoTf: T{Rn) x T(Rn) —> R . We denote by 0(fc, n - k) the

g r o u p of all α e GL{n) such t h a t f(ax9ay) = f(x,y) for x,y e Rn.

L E M M A 6. 9. The notations being as above, f is a symmetric non-degenerate

bilinear form on T{Rn) of signature {n, ή)

Proof. By the natural basis of T{Rn) induced by the natural basis of

/ 0 A \
Rn, f is expressed by the matrix as in (6. 1), if / is expressed

\ A 0 /

by the matrix A. From this fact, Lemma 6. 9 follows.

The following proposition can be proved in the same way as the proof

of Proposition 6. 5.

PROPOSITION 6. 10. Let G = 0(k, n—k), then G c 0(n, n).

THEOREM 6. 11. If M has a quasi-Riemannian metric, then T(M) has a

canonical quasi-Riemannian metric.

Proof A quasi-Riemannian metric on M is nothing but a 0{k, n — k)-

structure on M. Therefore, the prolongation of this 0(fc, n—fc)-structure

induces a canonical 0{n, w)-structure on T(M) by virtue of Proposition 6. 10,

and hence T{M) has a canonical quasi-Riemannian metric of signature

(n, n).

(V) G = SL(n,R).

As usual, SL(n, R) denotes the group of all a e GL(n) with det (a) = 1.

LEMMA 6. 12. Let G = SL{n, R), then G c SL{2n, R).
I a 0 \

Proof Take a e G 5 then a = jn{X) = , where X = [a, B]
\ Ba a I

with a e G and 5 e g , q being the Lie algebra of G . Since det (a) = 1,

we have det (a) = 1. Thus Lemma 6. 12 is proved.

The following proposition is easily verified:

PROPOSITION 6. 13. If a manifold M has a SL{n, Restructure, then T(M)

has a canonical SL(2n, R)-structure.
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(VI) G = U(n) X 1 c GL(2n + 1, R).

As usual, U(ή) denotes the unitary group of degree n. Then

U{ή) x 1 c GL{n,C) X 1 c GL(2w + 1,R) by the usual injection.

LEMMA 6. 14. Z*tf G = U(n) x 1 a GL(2n + l9 R),

Let / : R2n — > R2n be the linear isomorphism such that

GL(n,C) = GL{n,C; J). We denote by J0:T(R)—>T(R) the linear iso-

morphism of T{R) defined by JQ(a( ^t )) - s( d t ) for a,s ^ R, where

t is the natural coordinate of R . Let / : T(R2n+1)—>T(R2n+1) be the linear

map defined by / = Γ/ X / „ . Then it is readily seen that G c GL(2n + 1,

C; / ) . Thus Lemma 6. 14 is proved.

PROPOSITION 6. 15. If M has an almost contact structure (cf. [3], [6] for the

definition), then T(M) has a canonical almost complex structure.

Proof. An almost contact structure on M induces a U(ή) X 1-structure

P on M. Then, by Lemma 6. 14, the prolongation P of P induces a

canonical GL{2n +1, C)-structure on T(M) , that is, an almost complex

structure on T(M). Thus Proposition 6. 15 is proved.

§7. Relations between the prolongations of G-structures and
the prolongations of tensor fields.

(I) We shall prove that our prolongation of GL{m,C)-structure given

in Theorem 6. 3 is exactly the complete lift of the associated almost complex

structure given by Yano and Kobayashi [9].

Let P{M,π,GL(m,C)) be a G{m9 C)-structure on a manifold M. We take

a coordinate neighborhood U in M with a local coordinate system

{α;1, , xn} with n = 2m. Let φ be a cross section of P over U. Then

the map φ = jMo Tφ is also a cross section of the prolongation P of P by

Proposition 5. 3 and the proof of Corollary 5. 4. Let / be the linear

isomorphism of R2n such that GL{m,C) = GL(m,C; J) and let ψ{x):Tx{M)

—>TX{M) be the map defined by

ψ(x) = φ(x) o / o

for x G U. Then ψ is the (globally defined) almost complex structure

https://doi.org/10.1017/S002776300002660X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300002660X


PROLONGATIONS OF G-STRUCTURES 97

associated with the GL{m9 C)-structure P . If we take (• 1 ) ,

( n \ ] as a basis of the tangent space TX{M) we can write φ(x) and
\ ox /x>

as follows:

( 7 β l )

We define 0(X) :TX{T{M))—>TX{TM)) by

for X e T(E7). Then, since (T/)2 = - 1 , we have {φ(X))2 = - 1. Thus £

is an almost complex structure on T(M). In fact, we see easily that ψ is

the canonical almost complex structure on T{M) given in Theorem 6. 3.

W e t a k e ί ( l ! 0 , ' ' ( l | r)χ ( l | r ) χ . * > ( l | r ) x ) as the basis of
TX{TM)), where {a1, , xn, ά1, , xn} is the induced local coordinate

system on T[U). Then, using Proposition 5. 3, the map ψ{X) can be

expressed as follows:

(7.2)

for X = (χfχ) = Σ i» (-£-r) e Πt/), where we have TJ = ) by
v ^ ^ \ 0 / /

virtue of Proposition 1. 12.

Now, we shall prove the following

PROPOSITION 7. 1. 7%<? notations being as above, if ψ(x) = {φj{x)) then ψ(X)

is given by the following :

I (Ψ}M) o \

= (a, A).

. By virtue of (7. 1) and (7. 2), it is sufficient to show the following
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(Φi)
(7.3)

/ M)

The left hand side of (7. 3) is equal to

/ (Ψί) (ΦJ)

(7.4)

while the right hand side of (7. 3) is equal to

/ {φi)J 0

Now, from (7. 1) we get the following

(7.1)' M(x))

Differentiating the both hand sides of (7. 1)' with respect to xk, multiplying

xk and summing up for k = 1,2, , n, we obtain

By (7. 1)' and (7. 6) we see that (7. 4) is equal to (7. 5) and hence (7. 3)

holds. Thus Proposition 7. 1 is proved.

THEOREM 7. 2. The canonical almost complex structure ψ on T(M) induced

by a GL(m, Q-structure P on M is just the complete lift ψ° of the associated almost

complex structure ψ with P .

Proof By the formula of the complete lift of a (1,1)-tensor field on M

given in [9] p. 204, we see that ψc = ψ by virtue of Proposition 7. 1.

(II) Take G—0{k,n — k) and a G-structure P(M,π,G) on a manifold

M. Then the prolongation P of P induces an 0(n, n)-structure Q = Q{T{M),

π, 0(n, n)) as proved in Proposition 6. 11. We take a symmetric non-
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degenerate bilinear form / on Rn such that G is the group of. all a e GL{n)

satisfying f(a u,a v) = f{u,v) for u,v e Rn. Then 0(n,n) is the group of all

a e GL{2n) such that /(£ w, β i3f) = /(δ,tθ for δ,ife Γ(J?Λ), where f = πoTf

as in § 6 (IV) .

Let U be a coordinate neighborhood in M with a local coordinate

system {a1, , ccw} such that there is a cross section φ of P over U. For

any x e t/ we denote by 5^ the symmetric non-degenerate bilinear form on

defined by

(7. 7) ^(X, F) =

then g is the associated quasi-Riemannian metric on M with the G-structure

P. We now define, for any X e T(U), the symmetric non-degenerate

bilinear form gx on TX(T(M)) by

(7. 8) &(£ F) = fWX)-^, φ{X)-Ύ)

for ! , ? £ TX{T(M)). We can easily see that g is the (globally defined)

canonical quasi-Riemannian metric on T(M) induced by the prolongation

P of P given in Theorem 6. 11. We shall now study the relations between

g and g. Let (φ*•(%)) be the matrix defined by φ(x) * e} = Σ ̂ j(a?) ( o t

for » G [ / , where 0/ = (3}, , δ7;) e i?n . Let {a1, , xn, χ\ , cc71}

be the induced local coordinate system on T(U). We now define the

functions g^ix) on U and gvμ{X) on T(U) for ί, y = 1, 2, , w and for

v,jκ = l,2, ••• ,2n as follows

for « e ί / and X e T(17), where we have put α;M+ί = ** for ί = 1, 2, , w.

We define 4̂ = (a{) e GL(n,R) by /(*„**) = a*k for j,k = 1, 2, *9 n . Since

OxiΦWej, Φ(x)ek) = f(ej9ek) = a{, (7. 9) implies

(7. 10) J ^

for y, Λ = 1, 2, , w . By virtue of (6. 1) we have

(7.1D / ( Σ δ ^ X , Σ0,(^)3 -ΣίβJ
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for bi9 CyGi?.

On the other hand, by Proposition 5 3 we have

(7.12) TO(Σft.(1|r)J-g«ί(^(«)(1|r)x + - | g - ^

for ^ = Σ * ' ( - g | r ) eΓ(C/). Since &(£(*) β, <?(X)ί>) = /(β t0) for a,ΰ<=T(Rn),

the formulas (7. 9) and (7. 11) imply

(7. 13) 8r (TO Σ ft, (-fcX, TO Σ «

S u b s t i t u t i n g ^ = ^ = 0 , u( = δ{ a n d t;1 = δ\ i n (7. 13) f o r fixed j , k = l , 2, •••,»«,

w e h a v e :

= 0

and hence we obtain, by (7. 9), the following

(7.14) Φ}{χ)Φi(χ)gax) + φ}(χ) - f̂- &ιgι.
OX

= o .

Substituing 6t = 0, t; = 0, c4 = df and ft* = δ{ in (7. 13) we have

and hence we obtain the following

(7. 15) ΦKx)Φl(x)gt..+ΛX) + 4 4 - ^ί(«) Λ+ ..+. W = «2 Similarly,

substituting u = t; = 0, 6« = δ* and c« = δ{ in (7. 13), we have

= 0 a n d w e o b t a ί n

(7 16) ΦιM)φs

k{x)9i+n.,*»{X) = 0 .
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Since det{φ){x)) φ θ , we see that gί+n,s+n{X) = 0, which we insert in (7. 15)

and we obtain the following

Then (7. 10) and (7. 17) imply gitS+n(X) = gitS{x). Therefore we get the

following equality by (7. 14)

and hence we obtain

(7. 18) ΦiΦlBiAX) + (^-ffr-** +1ΪΓ"*1 # « Φ * = °

On the other hand, by differentiating the both hand sides of (7. 10) with

respect to xk, multiplying xk and summing up for k = 1, 2, , n, we

obtain:

{7 19)

Hence, (7. 18) and (7. 19) imply φ)φigitS = φ^φl-^f-x*, and thus we obtain
dx

(7.20) ^ s = ^

Finally we obtain the expression of g with respect to the induced local

coordinate system as follows

which is exactly the complete lift of the pseudo-Riemannian metric g as

written in [9] p. 203. Thus we have proved the following:

THEOREM 7. 3. The canonical pseudo-Riemannian metric on T{M) induced by

the prolongation of 0{k, n — k)-structure P on a manifold M is the complete lift of the

pseudo-Riemannian metric g associated with P

In the same way as in the case of 0(fc, n — fc)-structure we can prove

the analogous fact on a symplectic structure in the following proposition

whose proof will be omitted.
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PROPOSITION 7. 4. The symplectic form on T(M) associated with the prolon-

gation of a Sv(m)structure on a manifold M is the complete lift of the symplectic

form associated with the structure P.

(Ill) Let P(M,π,0(n)) be an 0(w)-structure on Af, 0(w) being the

orthogonal group of degree n . Let Γ be a connection on the principal

fibre bundle P. (We denote by the same letter Γ the connection on F(M)

induced natually by the connection Γ on P, (cf. [4] for the general theory

of connections). Then Γ is nothing but a cross section of the fibre bundle

T(P)/0{n) over T(M) (cf. Remark 3. 7). Then the bundle homomorphism

jM:T(F(M))—>F{T(M)) induces a cross section Γo of P/jn(0(n)) over T(M).

Hence the cross section Γo reduces the structure group G of P to

K
a ®\ I 1

βeθ(n)> and we obtain a ;n(0(n))-subbundle Po of P.
0 a' I j

Now, since jn{0{n)) is included in 0(2w), Po induces canonically an 0(2^)-

structure P19 such that Po is a subbundle of Pj. We denote by g (resp. ^)

the Riemmannian metric on M (resp. on T(M)) associated with the 0(n)-

structure P (resp. 0(2w)-structure JPj). We shall study the relations between

g, Γ and g.

LEMMA 7. 5. Z,^ φ be a cross section of P over an open set U in M, then

we can find a cross section φΓ of P over T{U) such that p o $Γ = Γo on T{U),

where p : P—>Pljn(0(n)) is the natural projection.

Proof Take any tangent vector X e TJJJ), then there is a unique

horizontal tangent vector X of P at φ(x) with respect to the connection Γ

such that {Tπ) X=X, π being the projection of P onto M. We denote

this X by 0Γ(X). Then φΓ is a map of T(U) into T(P) such that

(Tπ) ^ φΓ — 1Γ(EΓ) Now, put ^ Γ = yK o φr, then it is easy to see that the

map φΓ satisfies the required conditions.

LEMMA 7. 6. Let ω be the map of T{P) into Te(G) such that h{X) = X-ω{X)

is the horizontal part of any X^T{P) with respect to the connection Γ. (We

remark that ω is essentially the connection form of Γ, cf [4]). Define 'the map

ώ:P—>Te(G) by

ώ(X')=jn(ω(ΓM

1(X')))
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for I ' G P . Then, we have

(7.21) φΓ(X) = φ(X).ω(φ(X))

for X e T{U), where φ = jM° Tφ as in Proposition 5. 3.

Proof First, we shall prove that φΓ{X) = Tφ{X) ω{Tφ(X)) for X GΞ Γ(£/).

In fact, if X e 7,(17) then Tφ(X) ω{Tφ{X)) is a horizontal tangent vector at

φ(x) and Tπ(Tφ(X) ω{Tφ(X)))=TπTφ(X) = X, and hence φΓ{X) = Tφ{X) ω(Tφ(X))

holds. Now we calculate as follows:

0Γ(Z) - ^ o ̂ (X) = jM(Tφ(X). <

= jM(Tφ(X)) jn(ωTφ(X)) =

= φ(X) (a o £(*)) .

Thus Lemma 7. 6 is proved.

LEMMA 7. 7. Zeί ^ : U — > P be a cross section of P over a coordinate

neighborhood U in M with local coordinate system {_x\ , xn}. Let (φj(x))&GL{n)

j (be the expression of φ with [respect to the basis [Γ j , , ( ~ n) 1 °f

TX(M), i.e. φ(x) ej = Σφj(x)( ^ t ) . Then we have the following
\ OX / x

(7.22)

where (pj(x)) = (φjW)"1 an^ {• •> 2/ί> '3" w ^ natural coordinates in GL(n,R).

Proof Let {a?1, , xn> y}} be the induced local coordinate system on

F{U). Then we have

(7. 23) τ K ( ) j = 1 #

Now, it is easily seen that

for a = ( , Σ « j (-g|ϊ-)β , •) e F(C/) and a = (βj), where Lα : GL(n) — •

GL(n) is the left translation of GL(n) with respect to the element a e GL(n),

i.e. La{y) =a>y for 2/ e GL{n). Using (7. 23) and (7. 24), we obtain (7. 22).
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Thus Lemma 7. 7 is proved.

DEFINITION 7. 8. We define the function Γι

kj : U — > R for

i,j,k = 1,2, , n by

(7.25)

The following Lemma is well known as a property of the form ω.

LEMMA 7. 9.

Now, we define the Riemannian metrics g (and </) on M (resp. on

T(M)) by the following:

(7. 26) gΛ{X9Y) = (φixΓX,φ{xTιY)Rn for I , 7 G TX(M) ,

(7. 27) & ( £ Ϋ) = (^(X)-1 X φΓ{X)~x f)Λ2» for ί , ? 6 TAT(M)),

where ( , )Rn denotes the usual inner product in Rn. These metrics g

and g are independent on the choice of the local cross section φ . In fact

g is the Riemannian metric associated with the 0(n)-structure P and g is the

Riemannian metric canonically induced by g and the connection Γ o n F ,

We define the functions gi} : U—>R and gVβ : T{U)—>R for i,j=1,2, ,n

and y, μ = 1, 2, , 2n in the same way as (7. 9). By using Lemma 7. 6

and Proposition 5.3, we can calculate, for X = Σ xk ( k ) , as fol-

lows:

#r (X) (Σ <-^) . ) - «X) ( ' I ) • ( S

/_3 3 3 3

V3* ' * * ' ~ β ϊ 1 Γ ' l ί r ' " ' Ί ^ ωTφ(X) E
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(Λ

Φ o\

x + φ ωTφ(X) φ

105

dx

\cj

where we have omitted the indices in the matrix of the last term. We

shall put

(7. 28)

Thus we have proved the following

LEMMA 7. 10.

(7. 29) ?AX) ( Σ = Σ u>

Using (7. 26) ~ (7. 28), we obtain the following equalities in the same

way as in the proof of (7. 14) ~ (7. 16):

(7. 30)

(7. 31)

(7. 32)

jΦlSi.s + ΦjΦiSu +n + ΨjΦlS

+ ΦjΦkSi+n.t+n = δ* >

φjφk§i+n.9+n ~ δJ )

for j,k = 1, 2, , n, the summation notations with respect to the repeated

indices being omitted.

On the other hand, since gx(φ{x)ei9 φ(x)βj) = (ei9 ej)Rn = δJj, we have the

following

(7. 33) Φ*,φ}g*.M = δ{ .

Now, (7. 32) and (7. 33) imply

(7. 34) 9i+nJ+n(X) = flf*.i(x)
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By (7. 28), (7. 22) and (7. 25), we see that

Substituting this in (7. 31) and using (7. 34) we get:

which implies

(7. 35) 9ij+n = rl

kix
kgltj.

Combining (7. 30), (7. 31), (7. 33) and (7. 35), we have

where the third and fourth terms of the left hand side cancel each other

and hence we obtain finally:

i. + ΦqjΦlΓlPΓLqώ
ιώmgiti,

or

(7. 36) gitJ = gu + Γk

piΓ
ι

qjx
pxqgktl.

THEOREM 7. 11. If the connection Γ on P is the Riemannian connection

induced by the Riemannian metric g, then the induced metric g on TIM) is exactly

the same Riemannian metric studied by Sasaki [5].

In fact, Sasaki ([5] p. 342, (3. 1) ~ (3. 3)) introduced his Riemannian

metric g on T(M) by the formulas (7. 34) — (7. 36).

§8. Final r e m a r k s .

Let P(M,π,G) be a G-structure on a manifold M, P(T{M),π,G) the

prolongation of P to T{M) and Γ be a connection on the principalwjϊbre

bundle P . Then, as stated in Remark 3. 7, the structure group G of P is

K a 0\\ I _

) \a e G j . We denote by Po the

associated G0-subbundle of P. Let / be a diffeomorphism of M onto'itself.

Suppose / is an automorphism of the G-structure P. Then by Corollary 4. 4,
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the map Tf is an automorphism of the prolongation P. We can prove the

following proposition whose proof will be omitted.

PROPOSITION 8. 1. The tangential map Tf of f is an automorphism of the

Gostructure Po if and only if f is a Γ-transformation, i.e. f preserves the connection

Γ.

DEFINITION 8. 2. Let ζ be a subspace of the vector space Horn {V9V)

of all linear endomorphisms of a vector space 7. We define the map

5$: Horn (7,ή)—>Hom (7 ΛV,V) by the following:

0* S)(u,v) = S(u)(v)-S(v)(u),

for u9v e 7, S G Horn (7,ϊ)). We denote by f)(1) the kernel of 3ή.

Let g be a Lie subalgebra of gl(7) = Horn {V,V). We shall call a to

be of type 1 if a(1) = (0).

PROPOSITION 8. 3. Let g be a Lie subalgebra of gl(7) and g0 be the Lie

subalgebra of gl(7®V) consisting of all Ax A for A e a . Then g0 is of type 1.

Take an element S e Ker dg0. Then we have

(8. 1) S{u ®v){w®x) = S{w ®x){u® v)

for any u, v, w, x e 7 . We define 5, e Horn (7, g0) by S^u) = 5(« 0 0),

S2(v) = §{0®v) for «,t; e 7 . Then, (8. 1) can be written as follows:

(8. 2) SM (w®t) + S2(v) (w ® t)

= SM (v ®v) + S2(t) (u ®υ),

for u,v,w, x e 7 . Now, we define St e Horn (7,g) by St(u) = Si(u) x Ŝ w)

for u e 7 . Then, from (8. 2) we obtain the following two equations:

(8. 3) Sάtήw + S2{v)w = Si(u;)ίi + S2(ί)«

(8. 4) SMt + S2{v)t = ^(^z; + S2(ί)v

for any u, v, w, x e 7 . If we put v = / = 0 in (8. 3), we get S1(u)w=S1(w)u9

which we subtract from (8. 3). Then we get

(8. 5) S2{υ)w = S2{t)u

for any t,u,v,w <Ξ 7 If we put w = 0 in (8.5), we have S2{t)u = 0 for

t, u e 7 and hence S2 = 0. Therefore, we get Si = 0 from (8. 4) and hence

S = 0, which proves Proposition 8. 3.
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REMARK 8. 4. There is, in general, no canonical G0-structure on Γ(M),

even if M has G-structure. In fact, if T(M) has a canioncal G0-structure

for G = GL{n,R), n = dim M, then the group of all diίfeomorphisms of M

onto itself would be a Lie group of finite dimension, since the Lie algebra

of Go is of type 1 by Proposition 8. 3. This will be absurd.

REMARK 8. 5. We shall discuss the relation between the tangent con-

nection T{Γ) of an affine connection Γ [4] and the complete lift Γc of Γ

[9] in a forthcoming paper.
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