ON GROUPS WITH SMALL ORDERS OF ELEMENTS

Narain D. Gupta and Victor D. Mazurov

To Bernhard Neumann on his 90th birthday

For a periodic group G, denote by $\omega(G)$ the set of orders of elements in G. We prove that if $\omega(G)$ is a proper subset of the set $\{1,2,3,4,5\}$ then either G is locally finite or G contains a nilpotent normal subgroup N such that G / N is a 5 -group.

Let G be a periodic group. Denote by $\omega(G)$ the set of orders of elements in G. It is obvious that a group with $\omega(G)=\{1,2\}$ is elementary Abelian. Levi and van der Waerden [5] proved that if $\omega(G)=\{1,3\}$ then G is nilpotent of class at most 3. B.H. Neumann [6] described the groups with $\omega(G)=\{1,2,3\}$. Sanov [8] and M. Hall [1] stated that a group G with $\omega(G) \subseteq\{1,2,3,4\}$, respectively with $\omega(G) \subseteq\{1,2,3,6\}$, is locally finite. Nothing is known about local finiteness of groups of exponent 5 , but it follows from [11] that every group G with $\omega(G)=\{1,2,3,5\}$ is isomorphic to the alternating group A_{5}.

In this direction, we prove the following results.
Theorem 1. Let G be a group with $\omega(G)=\{1,3,5\}$. Then one of the following holds:
(i) $\quad G=F T$ where F is a normal 5 -subgroup which is nilpotent of class at most 2 and $|T|=3$;
(ii) G contains a normal 3-subgroup T which is nilpotent of class at most 3 such that G / T is a 5 -group.

Theorem 2. If $\omega(G)=\{1,2,5\}$ then G contains either an elementary Abelian 5 -subgroup of index 2, or an elementary abelian normal Sylow 2-subgroup.

Theorem 3. If $\omega(G)=\{1,2,4,5\}$ then one of the following holds:
(i) $\quad G=T D$ where T is a non-trivial elementary Abelian 2-group and D is a non-Abelian group of order 10 ;
(ii) $G=F T$ where F is an elementary Abelian normal 5 -subgroup and T is isomorphic to a subgroup of a quaternion group of order 8.

[^0](iii) G contains a normal 2-subgroup T which is nilpotent of class at most 6 such that G / T is a 5 -group.

In a forthcoming paper, we prove that every group G with $\omega(G)=\{1,2,3,4,5\}$ is locally finite. In this connection, we propose a conjecture that every group in the conclusion of Theorems 1-3 is also locally finite. This is equivalent to the following

Conjecture 1. Let A be an automorphism group of an elementary Abelian $\{2,3\}$-group G such that every non-trivial element of A fixes in G only the trivial element. If A is of exponent 5 then A is cyclic.

Notation and preliminary results

If H is a subgroup of a group $G, x, y \in G, X, Y$ are subsets of G then $x^{y}=$ $y^{-1} x y, X^{y}=\left\{y^{-1} x y \mid x \in X\right\},[x, y]=x^{-1} x^{y}, x^{Y}=\left\{x^{y} \mid y \in Y\right\}, X^{Y}=\left\{x^{y} \mid x \in\right.$ $X, y \in Y\}, N_{H}(X)=\left\{g \in H \mid X^{g}=X\right\},\langle X\rangle$ is the subgroup generated by $X,[X, Y]=$ $\langle[x, y]| x \in X, y \in Y]\rangle, C_{H}(X)=\{h \in H \mid(\forall x \in X)[h, x]=1\}, Z(G)=C_{G}(G)$. For a prime $p, O_{p}(G)$ is the product of all normal p-subgroups of G, A_{m} and S_{m} denote, respectively, the alternating and symmetric group on m letters.

An automorphism group of a group is said to be regular if every non-trivial element of it is fixed-point-free.

LEMMA 1. If $R=\langle r\rangle$ is a regular automorphism group of order 3 of a finite group H then, for every Abelian subgroup A of $H,\left\langle A^{R}\right\rangle=\left\langle A, A^{r}\right\rangle$ and $\left\langle A, A^{r}\right\rangle$ is Abelian.

Proof: Let $H R$ be the natural semi-direct product of H and R. Then $H R$ is a Frobenius group and hence $\left(h r^{-1}\right)^{3}=1$ for every element $h \in H$. Since $\left(h r^{-1}\right)^{3}=$ $h h^{r} h^{r^{2}}$, we have $h^{r^{2}}=\left(h^{-1}\right)^{r} h^{-1}$. Therefore $A^{r^{2}} \leqslant\left\langle A, A^{r}\right\rangle$. Let $a, b \in A$. Then $1=$ $a b(a b)^{r}(a b)^{r^{2}}=a b\left(a^{r} b^{r}\right) a^{r^{2}} b^{r^{2}}=a\left(b b^{r}\right)\left(a^{r} a^{r^{2}}\right) b^{r^{2}}=a\left(b^{-1}\right)^{r^{2}} a^{-1} b^{r^{2}}=\left[a^{-1}, b^{r^{2}}\right]$. Therefore $\left[a, b^{r^{2}}\right]=1$ and $\left[a^{r}, b\right]=1$. This means that A^{r} centralises A. The lemma is proved.

An element of order 2 in a group is called an involution. The proof of the following well-known lemma is straightforward.

Lemma 2. Let i, j be involutions. Then the following hold:

1. For every $x \in\langle i j\rangle, x^{i}=x^{j}=x^{-1}$.
2. If the order of $i j$ is finite and odd then i, j are conjugate by an element in $\langle i j\rangle$ and by an involution in $i\langle i j\rangle$.
3. If the order of $i j$ is finite and even, then $\langle i j\rangle$ contains an involution which commutes with i and j.

Lemma 3. Suppose that t is an involution in the automorphism group A of a periodic group G. If t is fixed-point-free then, for every $g \in G, g^{t}=g^{-1}, G$ is Abelian and t lies in the centre of A.

Proof: Let $H=G\langle t\rangle$ be the natural semi-direct product and $g \in G$. Since $C_{H}(t)=$ $\langle t\rangle$ and $t^{g} t=g^{-1} t g t=g^{-1} g^{t} \in G$, the order of $t^{g} t$ is odd, by part 3 of Lemma 2. By part 2 of Lemma 2 there exists an involution $i \in t G$ such that $t^{g i}=t$ and hence $g i=1$ or $g i=t$. If $g i=1$ then $g=i \in t G$ which is not the case. Thus $g i=t, g=t i$ and by part 1 of Lemma 2, $g^{t}=g^{-1}$. If $h \in G$ then $g h=\left(h^{-1} g^{-1}\right)^{-1}=\left(h^{t} g^{t}\right)^{t}=h g$, and G is Abelian. If $a \in A$ then $g^{t a}=\left(g^{-1}\right)^{a}=\left(g^{a}\right)^{-1}=g^{a t}$ and hence $t a=a t$. The lemma is proved. $]$

Lemma 4. Let A be a proper subgroup of a group H. If A contains no elements of order 3 and every element in $H \backslash A$ is a 3-element then A is normal in H and A is nilpotent of class at most 2.

Proof: It is obvious that A is normal in H. Let x be an element of order 3 in H. Then, for every $a \in A, a x^{-1} \notin A$, so $\left(a x^{-1}\right)^{3}=1$ and hence $a a^{x} a^{x^{2}}=1$. It was proved by B.H. Neumann [7] that, in this situation, every element of A commutes with each of its conjugates. By a result of Levi [4], A is nilpotent of class at most 3 and the third term T of the lower central series of A is of exponent 3 . By assumption, $T=1$. The lemma is proved.

Lemma 5. Let G be a finite group with $\omega(G)=\{1,3,5\}$. Then G contains a normal Sylow subgroup of prime index with non-cyclic centre.

Proof: Since the order of G is divisible only by two distinct prime numbers, G is soluble and $O_{p}(G) \neq 1$ for $p=3$ or $p=5$. If $F / O_{p}(G)$ is a minimal normal subgroup of $G / O_{p}(G)$ then F is a Frobenius group and $Z\left(O_{p}(G)\right)$ is non-cyclic. By [3, Theorem V.8.15], $F / O_{p}(G)$ is cyclic and hence $F=G$.

Lemma 6. Let $\omega(G)=\{1,2,4,5\}$. If $V=O_{2}(G) \neq 1$ and $G=V D$ where D is a dihedral group of order 10 generated by an involution t and an element r of order 5 then V is elementary Abelian, $[V, t]=C_{V}(t)$ and $\left|V: C_{V}(t)\right|>2$.

Proof: Suppose that V is elementary Abelian. If $v \in C_{V}(t)$ then $W=\left\langle v^{(r)}\right\rangle$ is a D-invariant subgroup of order $16, v \in[W, t]$ and $2<\left|W: C_{W}(t)\right| \leqslant\left|V: C_{V}(t)\right|$. Thus, it suffices to prove that V is elementary Abelian. Since G is locally finite, we can assume that G is finite and proceed by induction on $|G|$. Suppose that V is not elementary Abelian. Let Z be a minimal normal subgroup of G. Then $Z \leqslant Z(V),|Z|=16$ and V / Z is elementary Abelian. If $C / Z=C_{V / Z}(t)$ and C contains an element u of order 4 then $U=\left\langle u^{(r)}\right\rangle Z$ is a D-invariant subgroup and all elements in $U \backslash Z$ are of order 4. But then G contains an element of order 8 . Thus C is elementary Abelian. Let $v \in V$ be an element of order 4. Then, by induction, $V=\left\langle v^{\langle r\rangle}\right\rangle Z,|V|=2^{12}$ and $|C|=2^{8}$. If $c \in C \backslash Z$ then $U_{c}=\left\langle c^{(r)}\right\rangle Z$ is an elementary Abelian group of order 2^{8} and $U_{c_{1}} \cap U_{c_{2}}=Z$ if $c_{1} Z \neq c_{2} Z$. Thus $V=U_{c_{1}} U_{c_{2}}$ for some c_{1}, c_{2} and there exists a uniquely defined D-homomorphism ϕ of the tensor product $X \otimes Y$ of a D-module $X=U_{c_{1}} / D$ and D-module $Y=U_{c_{2}} / Z$ into a D module Z which extends the map $x Z \otimes y Z \rightarrow[x, y]$. Let F be a splitting field of D over a
field F_{2} of order $2, \bar{X}=X \otimes_{F_{2}} F, \bar{Y}=Y \otimes_{F_{2}} F, \bar{Z}=Z \otimes_{F_{2}} F$. Then there exists a uniquely defined homomorphism $\bar{\phi}$ of $\bar{X} \otimes \bar{Y}$ into \bar{Z} which extends ϕ. Let $1 \neq \lambda \in F, \lambda^{5}=1$. We can choose bases $\left\{x_{i} \mid i=1, \ldots, 4\right\},\left\{y_{i} \mid i=1, \ldots, 4\right\}$ and $\left\{z_{i} \mid i=1, \ldots, 4\right\}$ of $\bar{X}, \bar{Y}, \bar{Z}$, respectively, such that $x_{i}^{r}=\lambda^{i} x_{i}, y_{i}^{r}=\lambda^{i} y_{i}, z_{i}^{r}=\lambda^{i} z_{i}, i=1, \ldots, 4$ and $x_{1}^{t}=x_{4}, x_{2}^{t}=x_{3}, y_{1}^{t}=y_{4}, y_{2}^{t}=y_{3}, z_{1}^{t}=z_{4}, z_{2}^{t}=z_{3}$. Denote $(x, y)=\bar{\phi}(x \otimes y)$. Since $\left(x_{i}, y_{i}\right)^{r}=\left(x_{i}^{r}, y_{i}^{r}\right)=\left(\lambda^{i} x_{i}, \lambda^{j} y_{j}\right)=\lambda^{i+j}\left(x_{i}, y_{j}\right)$, we see that
(1) $\left(x_{i}, y_{j}\right)=0$ for $(i, j) \in\{(1,4),(2,3),(3,2),(4,1)\}$, and, for other pairs (i, j), $\left(x_{i}, x_{j}\right)=\alpha_{i j} z_{k}$ where $\alpha_{i j} \in F$ and k is defined by $\lambda^{i+j}=\lambda^{k}, 1 \leqslant k \leqslant 4$.
Since C is Abelian,
(2) $\left(x_{1}+x_{4}, y_{1}+y_{4}\right)=\left(x_{1}+x_{4}, y_{2}+y_{3}\right)=\left(x_{2}+x_{3}, y_{1}+y_{4}\right)$

$$
=\left(x_{2}+x_{3}, y_{2}+y_{3}\right)=0
$$

By (1), (2) gives $0=\left(x_{1}+x_{4}, y_{1}+y_{4}\right)=\left(x_{1}, y_{1}\right)+\left(x_{4}, y_{4}\right)=\alpha_{11} z_{2}+\alpha_{44} z_{3}$ and hence

$$
\left(x_{1}, y_{1}\right)=\left(x_{4}, y_{4}\right)=0
$$

Similarly,

$$
\begin{aligned}
\left(x_{1}, y_{2}\right)= & \left(x_{4}, y_{2}\right)=\left(x_{1}, y_{3}\right)=\left(x_{4}, y_{3}\right)=0 \\
\left(x_{2}, y_{1}\right)=\left(x_{3}, y_{1}\right) & =\left(x_{2}, y_{4}\right)=\left(x_{3}, y_{4}\right)=0 \\
\left(x_{2}, y_{2}\right) & =\left(x_{3}, y_{3}\right)=0
\end{aligned}
$$

Thus $\bar{\phi}$ is the zero-homomorphism, $[x, y]=1$ for $x \in U_{c_{1}}, y \in U_{c_{2}}$ and V is elementary Abelian. The lemma is proved.

Lemma 7. Let $\omega(G) \subseteq\{1,2,4,5\}$. If G is locally finite then either G has a normal Sylow subgroup or $G=V D$ where $V=O_{2}(G)$ is a non-trivial elementary Abelian group and D is a dihedral group of order 10.

Proof: Suppose first that G is finite and proceed by induction on G. If $V=$ $O_{2}(G) \neq 1$ then, by induction, G / V contains a normal Sylow 5-subgroup P / V. If $P=G$ then the conclusion is true. If $P \neq G$, then $P \neq V$ and, by [3, Theorem V.8.15], $|P: V|=5, G / V$ is a Frobenius group of order 10 or 20 . In particular, there exist involutions $x, y \in G \backslash P$ such that $x y$ is not a 2-element and hence $D=\langle x, y\rangle$ is a dihedral group of order 10. Let $H=O_{2}(G) D$. By Lemma $6, V=O_{2}(H)$ is elementary Abelian. If G / V contains an element of order 4 then G contains an element of order 8. Thus $H=G$ and the conclusion is true. If $O_{2}(G)=1$ then $P=O_{5}(G) \neq 1$ and $C_{G}(P) \leqslant P$. By Lemma 3, $Z(G / P)$ contains an element of order 2 and hence G / P is a 2-group.

Suppose G is infinite. If the product of every two 2 -elements (every two 5 -elements) in G is a 2-element (respectively, 5-element) then a Sylow 2-subgroup (respectively, a Sylow 5-subgroup) of G is normal in G. Suppose that there exist elements x, y, z, t such that x, y are 2-elements, z, t are 5 -elements, $x y$ is not a 2-element and $z t$ is not
a 5 -element. Then $H=\langle x, y, z, t\rangle$ is a finite group without non-trivial normal Sylow subgroups. Therefore, $V=O_{2}(H)$ is elementary Abelian and $H=V D$ where D is a dihedral group of order 10 . Let $C=C_{G}(V), N=C D$. By Lemma 6, every element in C is of order 2. If $u \in G$ then $\langle u, H\rangle$ is finite and hence $H \leqslant C D=N$. Thus $N=G$ and the lemma is proved.

The following four lemmas can be verified by the coset enumeration algorithm (see, for instance [9]):

Lemma 8. Let $A=\langle a, b \mid R\rangle$. Table 1 gives the order of A for some defining relations R.

Table 1

R	$\|A\|$
$a^{3}, b^{3},(a b)^{3},\left(a b^{-1}\right)^{3}$	27
$a^{3}, b^{3},(a b)^{3},\left(a b^{-1}\right)^{5}$	75
$a^{3}, b^{3},(a b)^{5},\left(a b^{-1}\right)^{5},\left(a b a^{-1} b\right)^{3}$	1
$a^{3}, b^{3},(a b)^{5},\left(a b^{-1}\right)^{5},\left(a b a^{-1} b\right)^{5}$	62400

Table 2

R	$\|A\|$
$[a, b]^{5},\left(a b^{-1} a b\right)^{3}$	5
$[a, b]^{3},\left(a b^{-1} a b\right)^{3}$	$3^{9} \cdot 5$
$[a, b]^{3},\left(a b^{-1} a b\right)^{5}$	5

Lemma 9. Let $A=\left\langle a, b \mid a^{3}, b^{5},(a b)^{5},\left(a b^{-1}\right)^{5},\left(a b^{2}\right)^{5},\left(a b^{-2}\right)^{5}, R\right\rangle$. Table 2 gives the order of A for various values of R.

Lemma 10. Let $A=\left\langle a, b, c \mid a^{3}, b^{3}, c^{3}, a b a^{-1} b^{-1},(a c)^{5},\left(a c^{-1}\right)^{3},(b c)^{3}, R\right\rangle$. Table 3 gives the order of A for various values of R.

Lemma 11. Let $A=\left\langle a, b \mid a^{2}, b^{5}, R\right\rangle$. Table 4 gives the order of A for various values of R.

Proofs of Main Results

Let G be a group with $\omega(G)=\{1,3,5\}$. Note, that if $x^{3}=y^{3}=1$ for $x, y \in G$ then $(x y)^{3}=1$ or $\left(x^{-1} y\right)^{3}=1$. Indeed, $X=\langle x, y\rangle$ is finite by Lemma 8 and if $X \neq 1$ then, by Lemma 5, X contains a normal 5 -subgroup Y of index 3 , hence one of the elements $x y, x^{-1} y$ is not contained in Y. Since every element in $X \backslash Y$ is of order 3, the assertion follows.

If G contains a normal Sylow 5-subgroup P then, by Lemma 4, P is nilpotent of class at most 2 and hence G is locally finite. By Lemma $5,|G / P|=3$. Suppose that there exist elements $a, b \in G$ of order 5 such that $a b$ is not a 5 -element. Then the order of $c=a b$ is equal to 3 and $\langle a, b\rangle=\langle c, a\rangle$. If $\left(c a^{i}\right)^{3}=1$ for $i=1,2,3$ or 4 then, for $d=c a^{i}$, $\langle a, b\rangle=\langle c, a\rangle=\langle c, d\rangle$ is finite by Lemma 8. Suppose that, for $i=1,2,3,4,\left(c a^{i}\right)^{5}=1$. Since $\left(c^{-1} c^{a}\right)^{3}=1$ or $\left(c c^{a}\right)^{3}=1$, by Lemma $9,\langle a, b\rangle=\langle c, a\rangle$ is finite. By Lemma $5,\langle a, b\rangle$ contains a subgroup T of order 9 . Let H be a maximal 3 -subgroup of G which contains T. Then H is nilpotent of class at most 3 by [5]. Suppose that H is not a normal
subgroup of G. Then there exists an element $u \notin H$ of order 3 and an element $v \in H$ such that $v u$ is not a 3-element. Then the order of $v u$ is equal to 5 . Since H is non-cyclic nilpotent, there exists an element $t \in H$ such that $\langle v, t\rangle$ is an elementary Abelian group of order 9. As above, $\langle t, u\rangle$ is finite and one of the elements $t u, t^{-1} u$ is of order 3. We can assume that $(t u)^{3}=1$. By Lemma $10,\langle u, v, t\rangle$ is finite which is impossible by Lemma 5 . Theorem 1 is proved.

Table 3

Table 4

R	$\|A\|$	R	$\|A\|$
$\left(b c^{2}\right)^{3},(a b c)^{3},\left(a b c^{2}\right)^{3},\left(a b^{2} c\right)^{3},\left(b a^{2} c\right)^{3}$	9	$(a b)^{5},[a, b]^{5},(b a b)^{5}$	5
$\left(b c^{2}\right)^{3},(a b c)^{3},\left(a b c^{2}\right)^{3},\left(a b^{2} c\right)^{3},\left(b a^{2} c\right)^{5}$	3	$(a b)^{5},[a, b]^{4},(b a b)^{5}$	$2^{9} \cdot 5$
$\left(b c^{2}\right)^{3},(a b c)^{3},\left(a b c^{2}\right)^{3},\left(a b^{2} c\right)^{5},\left(b a^{2} c\right)^{3}$	3	$(a b)^{5},[a, b]^{5},(b a b)^{4}$	360
$\left(b c^{2}\right)^{3},(a b c)^{3},\left(a b c^{2}\right)^{5},\left(a b^{2} c\right)^{3},\left(b a^{2} c\right)^{3}$	3	$(a b)^{5},[a, b]^{4},(b a b)^{4}$	1
$\left(b c^{2}\right)^{3},(a b c)^{5},\left(a b c^{2}\right)^{3},\left(a b^{2} c\right)^{3},\left(b a^{2} c\right)^{3}$	3	$(a b)^{4},[a, b]^{5},(b a b)^{5}$	1
$\left(b c^{2}\right)^{3},(a b c)^{3},\left(a b c^{2}\right)^{5},\left(a b^{2} c\right)^{3},\left(b a^{2} c\right)^{5}$	1	$(a b)^{4},[a, b]^{4},(b a b)^{5}$	360
$\left(b c^{2}\right)^{3},(a b c)^{3},\left(a b c^{2}\right)^{5},\left(a b^{2} c\right)^{5},\left(b a^{2} c\right)^{3}$	1	$(a b)^{4},[a, b]^{5},(b a b)^{4}$	160
$\left(b c^{2}\right)^{3},(a b c)^{5},\left(a b c^{2}\right)^{3},\left(a b^{2} c\right)^{3},\left(b a^{2} c\right)^{5}$	1	$(a b)^{4},(a, b]^{4},(b a b)^{4}$	2
$\left(b c^{2}\right)^{3},(a b c)^{5},\left(a b c^{2}\right)^{3},\left(a b^{2} c\right)^{5},\left(b a^{2} c\right)^{3}$	75		
$\left(b c^{2}\right)^{5},(a b c)^{3},\left(a b c^{2}\right)^{3},\left(a b^{2} c\right)^{3},\left(b a^{2} c\right)^{3}$	3		
$\left(b c^{2}\right)^{5},(a b c)^{3},\left(a b c^{2}\right)^{3},\left(a b^{2} c\right)^{3},\left(b a^{2} c\right)^{5}$	75		
$\left(b c^{2}\right)^{5},(a b c)^{3},\left(a b c^{2}\right)^{3},\left(a b^{2} c\right)^{5},\left(b a^{2} c\right)^{3}$	1		
$\left(b c^{2}\right)^{5},(a b c)^{3},\left(a b c^{2}\right)^{5},\left(a b^{2} c\right)^{3},\left(b a^{2} c\right)^{3}$	1		
$\left(b c^{2}\right)^{5},(a b c)^{3},\left(a b c^{2}\right)^{5},\left(a b^{2} c\right)^{3},\left(b a^{2} c\right)^{5}$	1		
$\left(b c^{2}\right)^{5},(a b c)^{3},\left(a b c^{2}\right)^{5},\left(a b^{2} c\right)^{5},\left(b a^{2} c\right)^{3}$	1		
$\left(b c^{2}\right)^{5},(a b c)^{5},\left(a b c^{2}\right)^{3},\left(a b^{2} c\right)^{3},\left(b a^{2} c\right)^{3}$	1		
$\left(b c^{2}\right)^{5},(a b c)^{5},\left(a b c^{2}\right)^{3},\left(a b^{2} c\right)^{3},\left(b a^{2} c\right)^{5}$	1		
$\left(b c^{2}\right)^{5},(a b c)^{5},\left(a b c^{2}\right)^{3},\left(a b^{2} c\right)^{5},\left(b a^{2} c\right)^{3}$	1		

Proof of Theorem 2: Let G be a group with $\omega(G)=\{1,2,5\}$. By Lemma 11, every subgroup H of G generated by an element of order 5 and an element of order 2 is finite. If H contains a normal Sylow 5 -subgroup P then, by Lemma 3, P is elementary Abelian and hence H is a dihedral group of order 10. Suppose first that all subgroups of G generated by an element of order 5 and an element of order 2 are of this type. Then the product of every two 5 -elements is a 5 -element and hence $O_{5}(G) \neq 1$. By Lemma 3, $G / O_{5}(G)$ contains at most one involution and hence is a 2 -group. Thus there exists an H containing a non-trivial Sylow 2-subgroup T, and hence G contains an elementary Abelian subgroup V of order 4 . Let F be the subgroup of G generated by all involutions in G. If F is a 2-group then the conclusion of the theorem is true.

Suppose that F is not a 2-group. Then there exists an element $x \in G$ of order 5 such
that $x=t_{1} t_{2} \cdots t_{s}$ where every $t_{i}, i=1,2, \ldots, s$ is an involution. Choose x such that s is minimal. Then $t_{1} \cdots t_{s-1}$ is an involution and $X=\left\langle x, t_{s}\right\rangle$ is a dihedral group of order 10 . Let $t=t_{s}$. If $C_{G}(t)$ contains only one involution then, by Lemma 2 , every involution in G is a conjugate of t, t is contained in a subgroup which is a conjugate of V and hence $C_{G}(t)$ contains an involution $u \neq t$. If $(u x)^{2}=1$ then the involution $u t$ centralises x which is impossible by assumption. Thus $\langle u, x\rangle$ is a finite subgroup which has a non-trivial normal Sylow 2-subgroup. This subgroup is t-invariant and hence $X=\langle u, x, t\rangle$ is a finite group which has no non-trivial normal Sylow subgroups. It is easy to see that H must contain an element of order 4 contrary to the assumption. Thus, G contains a non-trivial normal Sylow p-subgroup P. If $p=5$ then, by Lemma $3, P$ is Abelian, G / P contains only one involution and (i) holds. If $p=2$ then P is elementary Abelian. Theorem 2 is proved. [] Proof of Theorem 3: Let G be a group with $\omega(G)=\{1,2,4,5\}$.

Lemma 12. Suppose that every finite non-trivial subgroup of G contains a nontrivial normal Sylow subgroup. Then G contains a non-trivial normal Sylow subgroup and (ii) or (iii) in the conclusion of Theorem 3 holds.

Proof: Let F be the subgroup of G generated by all involutions in G. If F is a 2-group then G / F does not contain an element of order 4 or 10 . By Theorem 3, the conclusion of the theorem is true. Hence F is not a 2-group. It follows that there exists an element $x \in G$ of order 5 such that $x=t_{1} t_{2} \cdots t_{s}$ where every $t_{i}, i=1,2, \ldots, s$ is an involution. Choose x such that s is minimal. Then $t_{1} \cdots t_{s-1}$ is a non-trivial 2-element and, by Lemma 11, $X=\left\langle x, t_{s}\right\rangle$ is a finite group which cannot contain a normal Sylow 2-subgroup. Thus X is a dihedral group of order 10 . Let $t=t_{s}$. If $C_{G}(t)$ contains only one involution then $C_{G}(t)$ is a finite 2-group, by [10], G is locally finite and hence contains, by Lemma 7, a non-trivial normal Sylow 5 -subgroup.

Suppose that $C_{G}(t)$ contains an involution $u \neq t$. If $(u x)^{2}=1$ then the involution $u t$ centralises x which is impossible by assumption. Thus $\langle u, x\rangle$ has a normal Sylow 2 -subgroup and hence $(u x)^{5}=1$. Thus $\langle u, x\rangle$ is a finite subgroup which has a nontrivial normal Sylow 2-subgroup. This subgroup is t-invariant and hence $\langle u, x, t\rangle$ is a finite group which has no non-trivial normal Sylow subgroups. This contradicts the assumption. Therefore, G contains a non-trivial normal Sylow p-subgroup P. If $p=5$ then, by Lemma 3, P is Abelian, G / P contains only one involution and, by [3, Theorem V.8.15], (ii) holds. If $p=2$ then P is locally finite. Let $x_{1}, \ldots, x_{7} \in P, y \in G \backslash P$. Then the order of y is 5 and $Y=\left\langle x_{1}, \ldots, x_{7}, y\right\rangle$ is a finite group with a normal Sylow 2-subgroup $Z=P \cap Y$. By assumption, $\langle y\rangle$ acts regularly on Z and Z is nilpotent of class at most 6 by [2]. In particular, $\left[\left[\ldots\left[\left[x_{1}, x_{2}\right], x_{3}\right], \ldots\right], x_{7}\right]=1$. This means that P is nilpotent of class at most 6 and (iii) holds. The lemma is proved.

Suppose that G does not contain a non-trivial normal Sylow subgroup.
LEmMA 13. There exists a non-trivial elementary Abelian subgroup V in G such
that $N=N_{G}(V)=V D$ where D is generated by an element r of order 5 and an involution t with $r^{t}=r^{-1}$. Furthermore, if V_{0} is a non-trivial normal subgroup of N which is contained in V then $N_{G}\left(V_{0}\right)=N$.

Proof: By Lemmas 7 and 12, there exists a finite subgroup H of G such that $U=O_{2}(H)$ is a non-trivial elementary Abelian group and $H=U D$ where D is generated by an element r of order 5 and an involution t with $r^{t}=r^{-1}$. Let $V=C_{G}(U)$. Then V is a locally finite 2-group and $N=V D$ is also locally finite. By Lemma 7, V is elementary Abelian and, since $U \leqslant V, C_{G}(V)=V$. Therefore $O_{2}\left(N_{G}(V)\right)=O_{2}\left(N_{G}(V)\right) D$ is also elementary Abelian and hence $O_{2}\left(N_{G}(V)\right)=V$. If $N_{G}(V) / V$ contains an invariant Sylow 5-subgroup then, by Lemma $12, N_{G}(V)$ is locally finite. By Lemma $7, N_{G}(V) / V \simeq D$.

If $N_{G}(V) / V$ does not contain an invariant Sylow 5 -subgroup then, by Lemma 7, $N_{G}(V) / V$ contains a subgroup S such that $O_{2}(S) \neq 1$ and $S / O_{2}(S) \simeq D$. The full preimage U of $O_{2}(S)$ in G is again elementary Abelian and hence $U=V$ contrary to the choice of S. Thus $N_{G}(V)=N$.

Suppose that $1 \neq V_{0} \leqslant V$ and V_{0} is normal in N. Then $V \leqslant C_{G}\left(V_{0}\right), C_{G}\left(V_{0}\right)$ is a N-invariant 2-group and $C_{G}\left(V_{0}\right) D$ is locally finite. Again, by Lemma $7, C_{G}\left(V_{0}\right)$ is elementary Abelian and $C_{G}\left(V_{0}\right) \leqslant C_{G}(V)=V$. Thus $C_{G}(V)=V$ and $N_{G}\left(V_{0}\right) \leqslant$ $N_{G}\left(C_{G}\left(V_{0}\right)\right)=N_{G}(V)=N$. The lemma is proved.

Throughout the rest of the proof, N, V, D, r, t are the subgroups and elements of G defined in Lemma 13.

Lemma 14. If v is an involution in V then $C_{G}(v) \leqslant N$.
Proof: Suppose that there exists $x \in C_{G}(v) \backslash N$. Then $V_{0}=\left\langle v^{D}, x\right\rangle$ is a finite 2-subgroup in $C_{G}(v)$ and $V_{0} \nless N$. Let $V_{1}=V \cap V_{0}$. Then $V \leqslant C_{G}\left(V_{1}\right) \leqslant C_{G}\left(\left\langle v^{D}\right\rangle\right) \leqslant V$. If V_{1} is normal in V_{0} then $V_{0} \leqslant N_{G}\left(V_{1}\right) \leqslant N_{G}\left(C_{G}\left(V_{1}\right)\right)=N_{G}(V)=V$ contrary to the choice of V_{0}. Thus $V_{2}=N_{V_{0}}\left(V_{1}\right) \neq V_{3}=N_{V_{0}}\left(V_{2}\right)$. Let $y \in V_{3} \backslash V_{2}$. Then $V_{1}^{y} \neq V_{1}, V_{1}^{y} \neq$ $V, V_{1}^{y} \leqslant V_{2} \leqslant N$ and $\left|V_{1} V_{1}^{y}: V_{1}\right|=2$. But then $\left|V_{1}: C_{V_{1}}\left(V_{1}^{y}\right)\right|=2$, contradicting Lemma 6.

Lemma 15. If v is an involution in $N \backslash V$ then $C_{G}(v) \leqslant N$.
Proof: Since $\left\langle v, v^{r}\right\rangle / V \simeq D, v v^{r}$ is of order 5 and hence $v \in N_{N}(R)$ for some Sylow 5 -subgroup R of N. Therefore v is a conjugate of t in N and we can assume that $v=t$. Let V_{0} be a subgroup of order 4 in $C_{v}(t)$. Then $V_{1}=\left\langle V_{0}, t\right\rangle$ is an elementary Abelian group of order 8 in $C_{G}(t)$. Let x be an element in $C_{G}(t) \backslash N$. Then $V_{2}=\left\langle V_{1}, x\right\rangle$ is a finite subgroup in $C_{G}(t)$. Let $V_{3}=V_{2} \cap N$. Then $V_{3}=V_{4} \times\langle t\rangle$ where $V_{4} \leqslant V$ and there exists $y \in N_{V_{2}}\left(V_{3}\right) \backslash N$. Since $\left|V_{3}: V_{4}\right|=2<\left|V_{4}\right|, C_{V_{4}}(y) \neq 1$. This contradicts Lemma 14. $]$

Lemma 16. $N=G$.
Proof: There exists an involution $v \in N$ such that $C_{N}(v)$ is non-Abelian. Since, By Lemma $15, C_{G}(t)$ is Abelian, not all involutions of N are conjugate in G. If all
involutions of G are contained in N then N is normal in G and hence $G \leqslant N_{G}(V)=N$. Suppose that $N \neq G$ and let x be an involution in $G \backslash N$. Then there exists an involution $y \in N$ which is not a conjugate of x in G. By Lemma 2, there exists an involution $z \in Z(\langle x, y\rangle)$. By Lemmas 14 and $15, z \in C_{G}(y) \leqslant N$ and $x \in C_{G}(z) \leqslant N$ contrary to the choice of x. The lemma and Theorem 3 are proved.

References

[1] M. Hall Jr. 'Solution of the Burnside problem for exponent six', Ilinois J. Math. 2 (1958), 764-786.
[2] G. Higman, 'Groups and rings having automorphisms without non-trivial fixed elements', J. London Math. Soc. 32 (1957), 321-334.
[3] B. Huppert, Endliche Gruppen I (Springer Verlag, Berlin, Heidelberg, New York, 1979).
[4] F.W. Levi, 'Groups in which the commutator operation satisfies certain algebraical conditions', J. Indian Math. Soc. 6 (1942), 87-97.
[5] F. Levi, B.L. van der Waerden, 'Über eine besondere Klasse von Gruppen', Abh. Math. Sem. Univ. Hamburg 9 (1932), 154-158.
[6] B.H. Neumann, 'Groups whose elements have bounded orders', J. London Math. Soc. 12 (1937), 195-198.
[7] B.H. Neumann, 'Groups with automorphisms that leave only the neutral element fixed', Arch. Math. 7 (1956), 1-5.
[8] I.N. Sanov, 'Solution of Burnside's problem for exponent 4', (Russian), Leningrad State Univ. Annals [Uchenye Zapiski] Math. Ser. 10 (1940), 166-170.
[9] M. Schönert, et al., Groups, algorithms and programming (Lehrstuhl D für Mathematik, RWTH Aachen, 1993).
[10] V.P. Shunkov, 'On periodic groups with an almost regular involution', (Russian), Algebra i Logika 11 (1972), 470-493. Algebra and Logic 11 (1972), 260-272.
[11] A.K. Zhurtov and V.D. Mazurov, 'A recognition of simple groups $L_{2}\left(2^{m}\right)$ in the class of all groups', (Russian), Sibirsk. Mat. Zh. 40 (1999), 75-78. Siberian Math. J. 40 (1999), 62-64.

Department of Mathematics
University of Manitoba
Winnipeg R3T 2N2
Canada
e-mail: ngupta@cc.umanitoba.ca

Institute of Mathematics
Novosibirsk 630090
Russia
e-mail: mazurov@math.nsc.ru

[^0]: Received 21st April, 1999
 This work was carried out during a visit of the second author to the University of Manitoba, Canada.
 Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/99 \$A2.00+0.00.

