BULL. AUSTRAL. MATH. SOC. Vol. 60 (1999) [197-205]

ON GROUPS WITH SMALL ORDERS OF ELEMENTS

NARAIN D. GUPTA AND VICTOR D. MAZUROV

To Bernhard Neumann on his 90th birthday

For a periodic group G, denote by $\omega(G)$ the set of orders of elements in G. We prove that if $\omega(G)$ is a proper subset of the set $\{1, 2, 3, 4, 5\}$ then either G is locally finite or G contains a nilpotent normal subgroup N such that G/N is a 5-group.

Let G be a periodic group. Denote by $\omega(G)$ the set of orders of elements in G. It is obvious that a group with $\omega(G) = \{1,2\}$ is elementary Abelian. Levi and van der Waerden [5] proved that if $\omega(G) = \{1,3\}$ then G is nilpotent of class at most 3. B.H. Neumann [6] described the groups with $\omega(G) = \{1,2,3\}$. Sanov [8] and M. Hall [1] stated that a group G with $\omega(G) \subseteq \{1,2,3,4\}$, respectively with $\omega(G) \subseteq \{1,2,3,6\}$, is locally finite. Nothing is known about local finiteness of groups of exponent 5, but it follows from [11] that every group G with $\omega(G) = \{1,2,3,5\}$ is isomorphic to the alternating group A_5 .

In this direction, we prove the following results.

THEOREM 1. Let G be a group with $\omega(G) = \{1, 3, 5\}$. Then one of the following holds:

- (i) G = FT where F is a normal 5-subgroup which is nilpotent of class at most 2 and |T| = 3;
- (ii) G contains a normal 3-subgroup T which is nilpotent of class at most 3 such that G/T is a 5-group.

THEOREM 2. If $\omega(G) = \{1, 2, 5\}$ then G contains either an elementary Abelian 5-subgroup of index 2, or an elementary abelian normal Sylow 2-subgroup.

THEOREM 3. If $\omega(G) = \{1, 2, 4, 5\}$ then one of the following holds:

- (i) G = TD where T is a non-trivial elementary Abelian 2-group and D is a non-Abelian group of order 10;
- (ii) G = FT where F is an elementary Abelian normal 5-subgroup and T is isomorphic to a subgroup of a quaternion group of order 8.

Received 21st April, 1999

This work was carried out during a visit of the second author to the University of Manitoba, Canada.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/99 \$A2.00+0.00.

(iii) G contains a normal 2-subgroup T which is nilpotent of class at most 6 such that G/T is a 5-group.

In a forthcoming paper, we prove that every group G with $\omega(G) = \{1, 2, 3, 4, 5\}$ is locally finite. In this connection, we propose a conjecture that every group in the conclusion of Theorems 1-3 is also locally finite. This is equivalent to the following

CONJECTURE 1. Let A be an automorphism group of an elementary Abelian $\{2,3\}$ -group G such that every non-trivial element of A fixes in G only the trivial element. If A is of exponent 5 then A is cyclic.

NOTATION AND PRELIMINARY RESULTS

If H is a subgroup of a group G, $x, y \in G$, X, Y are subsets of G then $x^y = y^{-1}xy$, $X^y = \{y^{-1}xy \mid x \in X\}$, $[x, y] = x^{-1}x^y$, $x^Y = \{x^y \mid y \in Y\}$, $X^Y = \{x^y \mid x \in X, y \in Y\}$, $N_H(X) = \{g \in H \mid X^g = X\}$, $\langle X \rangle$ is the subgroup generated by X, $[X, Y] = \langle [x, y] \mid x \in X, y \in Y] \rangle$, $C_H(X) = \{h \in H \mid (\forall x \in X)[h, x] = 1\}$, $Z(G) = C_G(G)$. For a prime p, $O_p(G)$ is the product of all normal p-subgroups of G, A_m and S_m denote, respectively, the alternating and symmetric group on m letters.

An automorphism group of a group is said to be *regular* if every non-trivial element of it is fixed-point-free.

LEMMA 1. If $R = \langle r \rangle$ is a regular automorphism group of order 3 of a finite group H then, for every Abelian subgroup A of H, $\langle A^R \rangle = \langle A, A^r \rangle$ and $\langle A, A^r \rangle$ is Abelian.

PROOF: Let HR be the natural semi-direct product of H and R. Then HR is a Frobenius group and hence $(hr^{-1})^3 = 1$ for every element $h \in H$. Since $(hr^{-1})^3 = hh^r h^{r^2}$, we have $h^{r^2} = (h^{-1})^r h^{-1}$. Therefore $A^{r^2} \leq \langle A, A^r \rangle$. Let $a, b \in A$. Then $1 = ab(ab)^r (ab)^{r^2} = ab(a^r b^r)a^{r^2}b^{r^2} = a(bb^r)(a^r a^{r^2})b^{r^2} = a(b^{-1})^{r^2}a^{-1}b^{r^2} = [a^{-1}, b^{r^2}]$. Therefore $[a, b^{r^2}] = 1$ and $[a^r, b] = 1$. This means that A^r centralises A. The lemma is proved.

An element of order 2 in a group is called an *involution*. The proof of the following well-known lemma is straightforward.

LEMMA 2. Let i, j be involutions. Then the following hold:

- 1. For every $x \in \langle ij \rangle$, $x^i = x^j = x^{-1}$.
- 2. If the order of ij is finite and odd then i, j are conjugate by an element in $\langle ij \rangle$ and by an involution in $i\langle ij \rangle$.
- 3. If the order of ij is finite and even, then $\langle ij \rangle$ contains an involution which commutes with i and j.

LEMMA 3. Suppose that t is an involution in the automorphism group A of a periodic group G. If t is fixed-point-free then, for every $g \in G$, $g^t = g^{-1}$, G is Abelian and t lies in the centre of A.

199

PROOF: Let $H = G\langle t \rangle$ be the natural semi-direct product and $g \in G$. Since $C_H(t) = \langle t \rangle$ and $t^g t = g^{-1}tgt = g^{-1}g^t \in G$, the order of $t^g t$ is odd, by part 3 of Lemma 2. By part 2 of Lemma 2 there exists an involution $i \in tG$ such that $t^{gi} = t$ and hence gi = 1 or gi = t. If gi = 1 then $g = i \in tG$ which is not the case. Thus gi = t, g = ti and by part 1 of Lemma 2, $g^t = g^{-1}$. If $h \in G$ then $gh = (h^{-1}g^{-1})^{-1} = (h^tg^t)^t = hg$, and G is Abelian. If $a \in A$ then $g^{ta} = (g^{-1})^a = (g^a)^{-1} = g^{at}$ and hence ta = at. The lemma is proved.

LEMMA 4. Let A be a proper subgroup of a group H. If A contains no elements of order 3 and every element in $H \setminus A$ is a 3-element then A is normal in H and A is nilpotent of class at most 2.

PROOF: It is obvious that A is normal in H. Let x be an element of order 3 in H. Then, for every $a \in A$, $ax^{-1} \notin A$, so $(ax^{-1})^3 = 1$ and hence $aa^x a^{x^2} = 1$. It was proved by B.H. Neumann [7] that, in this situation, every element of A commutes with each of its conjugates. By a result of Levi [4], A is nilpotent of class at most 3 and the third term T of the lower central series of A is of exponent 3. By assumption, T = 1. The lemma is proved.

LEMMA 5. Let G be a finite group with $\omega(G) = \{1, 3, 5\}$. Then G contains a normal Sylow subgroup of prime index with non-cyclic centre.

PROOF: Since the order of G is divisible only by two distinct prime numbers, G is soluble and $O_p(G) \neq 1$ for p = 3 or p = 5. If $F/O_p(G)$ is a minimal normal subgroup of $G/O_p(G)$ then F is a Frobenius group and $Z(O_p(G))$ is non-cyclic. By [3, Theorem V.8.15], $F/O_p(G)$ is cyclic and hence F = G.

LEMMA 6. Let $\omega(G) = \{1, 2, 4, 5\}$. If $V = O_2(G) \neq 1$ and G = VD where D is a dihedral group of order 10 generated by an involution t and an element r of order 5 then V is elementary Abelian, $[V, t] = C_V(t)$ and $|V : C_V(t)| > 2$.

PROOF: Suppose that V is elementary Abelian. If $v \in C_V(t)$ then $W = \langle v^{(r)} \rangle$ is a D-invariant subgroup of order 16, $v \in [W, t]$ and $2 < |W : C_W(t)| \leq |V : C_V(t)|$. Thus, it suffices to prove that V is elementary Abelian. Since G is locally finite, we can assume that G is finite and proceed by induction on |G|. Suppose that V is not elementary Abelian. Let Z be a minimal normal subgroup of G. Then $Z \leq Z(V)$, |Z| = 16 and V/Zis elementary Abelian. If $C/Z = C_{V/Z}(t)$ and C contains an element u of order 4 then $U = \langle u^{(r)} \rangle Z$ is a D-invariant subgroup and all elements in $U \setminus Z$ are of order 4. But then G contains an element of order 8. Thus C is elementary Abelian. Let $v \in V$ be an element of order 4. Then, by induction, $V = \langle v^{(r)} \rangle Z$, $|V| = 2^{12}$ and $|C| = 2^8$. If $c \in C \setminus Z$ then $U_c = \langle c^{(r)} \rangle Z$ is an elementary Abelian group of order 2^8 and $U_{c_1} \cap U_{c_2} = Z$ if $c_1 Z \neq c_2 Z$. Thus $V = U_{c_1} U_{c_2}$ for some c_1, c_2 and there exists a uniquely defined D-homomorphism ϕ of the tensor product $X \otimes Y$ of a D-module $X = U_{c_1}/D$ and D-module $Y = U_{c_2}/Z$ into a Dmodule Z which extends the map $xZ \otimes yZ \to [x, y]$. Let F be a splitting field of D over a field F_2 of order 2, $\overline{X} = X \otimes_{F_2} F$, $\overline{Y} = Y \otimes_{F_2} F$, $\overline{Z} = Z \otimes_{F_2} F$. Then there exists a uniquely defined homomorphism $\overline{\phi}$ of $\overline{X} \otimes \overline{Y}$ into \overline{Z} which extends ϕ . Let $1 \neq \lambda \in F$, $\lambda^5 = 1$. We can choose bases $\{x_i \mid i = 1, \ldots, 4\}$, $\{y_i \mid i = 1, \ldots, 4\}$ and $\{z_i \mid i = 1, \ldots, 4\}$ of $\overline{X}, \overline{Y}, \overline{Z}$, respectively, such that $x_i^r = \lambda^i x_i$, $y_i^r = \lambda^i y_i$, $z_i^r = \lambda^i z_i$, $i = 1, \ldots, 4$ and $x_1^t = x_4$, $x_2^t = x_3$, $y_1^t = y_4$, $y_2^t = y_3$, $z_1^t = z_4$, $z_2^t = z_3$. Denote $(x, y) = \overline{\phi}(x \otimes y)$. Since $(x_i, y_i)^r = (x_i^r, y_i^r) = (\lambda^i x_i, \lambda^j y_j) = \lambda^{i+j}(x_i, y_j)$, we see that

(1) $(x_i, y_j) = 0$ for $(i, j) \in \{(1, 4), (2, 3), (3, 2), (4, 1)\}$, and, for other pairs (i, j), $(x_i, x_j) = \alpha_{ij} z_k$ where $\alpha_{ij} \in F$ and k is defined by $\lambda^{i+j} = \lambda^k$, $1 \leq k \leq 4$.

Since C is Abelian,

(2)
$$(x_1 + x_4, y_1 + y_4) = (x_1 + x_4, y_2 + y_3) = (x_2 + x_3, y_1 + y_4)$$

= $(x_2 + x_3, y_2 + y_3) = 0.$

By (1), (2) gives $0 = (x_1 + x_4, y_1 + y_4) = (x_1, y_1) + (x_4, y_4) = \alpha_{11}z_2 + \alpha_{44}z_3$ and hence

$$(x_1, y_1) = (x_4, y_4) = 0.$$

Similarly,

$$(x_1, y_2) = (x_4, y_2) = (x_1, y_3) = (x_4, y_3) = 0,$$

 $(x_2, y_1) = (x_3, y_1) = (x_2, y_4) = (x_3, y_4) = 0,$
 $(x_2, y_2) = (x_3, y_3) = 0.$

Thus $\overline{\phi}$ is the zero-homomorphism, [x, y] = 1 for $x \in U_{c_1}, y \in U_{c_2}$ and V is elementary Abelian. The lemma is proved.

LEMMA 7. Let $\omega(G) \subseteq \{1, 2, 4, 5\}$. If G is locally finite then either G has a normal Sylow subgroup or G = VD where $V = O_2(G)$ is a non-trivial elementary Abelian group and D is a dihedral group of order 10.

PROOF: Suppose first that G is finite and proceed by induction on G. If $V = O_2(G) \neq 1$ then, by induction, G/V contains a normal Sylow 5-subgroup P/V. If P = G then the conclusion is true. If $P \neq G$, then $P \neq V$ and, by [3, Theorem V.8.15], |P:V| = 5, G/V is a Frobenius group of order 10 or 20. In particular, there exist involutions $x, y \in G \setminus P$ such that xy is not a 2-element and hence $D = \langle x, y \rangle$ is a dihedral group of order 10. Let $H = O_2(G)D$. By Lemma 6, $V = O_2(H)$ is elementary Abelian. If G/V contains an element of order 4 then G contains an element of order 8. Thus H = G and the conclusion is true. If $O_2(G) = 1$ then $P = O_5(G) \neq 1$ and $C_G(P) \leq P$. By Lemma 3, Z(G/P) contains an element of order 2 and hence G/P is a 2-group.

Suppose G is infinite. If the product of every two 2-elements (every two 5-elements) in G is a 2-element (respectively, 5-element) then a Sylow 2-subgroup (respectively, a Sylow 5-subgroup) of G is normal in G. Suppose that there exist elements x, y, z, t such that x, y are 2-elements, z, t are 5-elements, xy is not a 2-element and zt is not

a 5-element. Then $H = \langle x, y, z, t \rangle$ is a finite group without non-trivial normal Sylow subgroups. Therefore, $V = O_2(H)$ is elementary Abelian and H = VD where D is a dihedral group of order 10. Let $C = C_G(V)$, N = CD. By Lemma 6, every element in C is of order 2. If $u \in G$ then $\langle u, H \rangle$ is finite and hence $H \leq CD = N$. Thus N = G and the lemma is proved.

The following four lemmas can be verified by the coset enumeration algorithm (see, for instance [9]):

LEMMA 8. Let $A = \langle a, b | R \rangle$. Table 1 gives the order of A for some defining relations R.

Table 1	Table 2		
<u></u>	A	R	
$egin{aligned} &a^3, b^3, (ab)^3, (ab^{-1})^3\ &a^3, b^3, (ab)^3, (ab^{-1})^5\ &a^3, b^3, (ab)^5, (ab^{-1})^5, (aba^{-1}b)^3\ &a^3, b^3, (ab)^5, (ab^{-1})^5, (aba^{-1}b)^5 \end{aligned}$	27 75 1 62400	$egin{array}{l} [a,b]^5, (ab^{-1}ab)^3\ [a,b]^3, (ab^{-1}ab)^3\ [a,b]^3, (ab^{-1}ab)^5\ [a,b]^3, (ab^{-1}ab)^5 \end{array}$	5 3 ⁹ · 5 5

LEMMA 9. Let $A = \langle a, b \mid a^3, b^5, (ab)^5, (ab^{-1})^5, (ab^{-2})^5, R \rangle$. Table 2 gives the order of A for various values of R.

LEMMA 10. Let $A = \langle a, b, c | a^3, b^3, c^3, aba^{-1}b^{-1}, (ac)^5, (ac^{-1})^3, (bc)^3, R \rangle$. Table 3 gives the order of A for various values of R.

LEMMA 11. Let $A = \langle a, b \mid a^2, b^5, R \rangle$. Table 4 gives the order of A for various values of R.

PROOFS OF MAIN RESULTS

Let G be a group with $\omega(G) = \{1, 3, 5\}$. Note, that if $x^3 = y^3 = 1$ for $x, y \in G$ then $(xy)^3 = 1$ or $(x^{-1}y)^3 = 1$. Indeed, $X = \langle x, y \rangle$ is finite by Lemma 8 and if $X \neq 1$ then, by Lemma 5, X contains a normal 5-subgroup Y of index 3, hence one of the elements $xy, x^{-1}y$ is not contained in Y. Since every element in $X \setminus Y$ is of order 3, the assertion follows.

If G contains a normal Sylow 5-subgroup P then, by Lemma 4, P is nilpotent of class at most 2 and hence G is locally finite. By Lemma 5, |G/P| = 3. Suppose that there exist elements $a, b \in G$ of order 5 such that ab is not a 5-element. Then the order of c = ab is equal to 3 and $\langle a, b \rangle = \langle c, a \rangle$. If $(ca^i)^3 = 1$ for i = 1, 2, 3 or 4 then, for $d = ca^i$, $\langle a, b \rangle = \langle c, a \rangle = \langle c, d \rangle$ is finite by Lemma 8. Suppose that, for i = 1, 2, 3, 4, $(ca^i)^5 = 1$. Since $(c^{-1}c^a)^3 = 1$ or $(cc^a)^3 = 1$, by Lemma 9, $\langle a, b \rangle = \langle c, a \rangle$ is finite. By Lemma 5, $\langle a, b \rangle$ contains a subgroup T of order 9. Let H be a maximal 3-subgroup of G which contains T. Then H is nilpotent of class at most 3 by [5]. Suppose that H is not a normal

subgroup of G. Then there exists an element $u \notin H$ of order 3 and an element $v \in H$ such that vu is not a 3-element. Then the order of vu is equal to 5. Since H is non-cyclic nilpotent, there exists an element $t \in H$ such that $\langle v, t \rangle$ is an elementary Abelian group of order 9. As above, $\langle t, u \rangle$ is finite and one of the elements $tu, t^{-1}u$ is of order 3. We can assume that $(tu)^3 = 1$. By Lemma 10, $\langle u, v, t \rangle$ is finite which is impossible by Lemma 5. Theorem 1 is proved.

Table 4

Table 3

		Table 4	
R		<u></u>	
$(bc^2)^3, (abc)^3, (abc^2)^3, (ab^2c)^3, (ba^2c)^3$	9	$(ab)^5, [a, b]^5, (bab)^5$	5
$(bc^2)^3, (abc)^3, (abc^2)^3, (ab^2c)^3, (ba^2c)^5$	3	$(ab)^5, [a, b]^4, (bab)^5$	$2^{9} \cdot 5$
$(bc^2)^3, (abc)^3, (abc^2)^3, (ab^2c)^5, (ba^2c)^3$	3	$(ab)^5, [a, b]^5, (bab)^4$	360
$(bc^2)^3, (abc)^3, (abc^2)^5, (ab^2c)^3, (ba^2c)^3$	3	$(ab)^5, [a, b]^4, (bab)^4$	1
$(bc^2)^3, (abc)^5, (abc^2)^3, (ab^2c)^3, (ba^2c)^3$	3	$(ab)^4, [a, b]^5, (bab)^5$	1
$(bc^2)^3, (abc)^3, (abc^2)^5, (ab^2c)^3, (ba^2c)^5$	1	$(ab)^4, [a, b]^4, (bab)^5$	360
$(bc^2)^3, (abc)^3, (abc^2)^5, (ab^2c)^5, (ba^2c)^3$	1	$(ab)^4, [a, b]^5, (bab)^4$	160
$(bc^2)^3, (abc)^5, (abc^2)^3, (ab^2c)^3, (ba^2c)^5$	1	$(ab)^4, [a, b]^4, (bab)^4$	2
$(bc^2)^3, (abc)^5, (abc^2)^3, (ab^2c)^5, (ba^2c)^3$	75		F
$(bc^2)^5, (abc)^3, (abc^2)^3, (ab^2c)^3, (ba^2c)^3$	3		
$(bc^2)^5, (abc)^3, (abc^2)^3, (ab^2c)^3, (ba^2c)^5$	75		
$(bc^2)^5$, $(abc)^3$, $(abc^2)^3$, $(ab^2c)^5$, $(ba^2c)^3$	1		
$(bc^2)^5$, $(abc)^3$, $(abc^2)^5$, $(ab^2c)^3$, $(ba^2c)^3$	1		
$(bc^2)^5, (abc)^3, (abc^2)^5, (ab^2c)^3, (ba^2c)^5$	1		
$(bc^2)^5, (abc)^3, (abc^2)^5, (ab^2c)^5, (ba^2c)^3$	1		
$(bc^2)^5, (abc)^5, (abc^2)^3, (ab^2c)^3, (ba^2c)^3$	1		
$(bc^2)^5, (abc)^5, (abc^2)^3, (ab^2c)^3, (ba^2c)^5$	1		
$(bc^2)^5, (abc)^5, (abc^2)^3, (ab^2c)^5, (ba^2c)^3$	1		
	,		

PROOF OF THEOREM 2: Let G be a group with $\omega(G) = \{1, 2, 5\}$. By Lemma 11, every subgroup H of G generated by an element of order 5 and an element of order 2 is finite. If H contains a normal Sylow 5-subgroup P then, by Lemma 3, P is elementary Abelian and hence H is a dihedral group of order 10. Suppose first that all subgroups of G generated by an element of order 5 and an element of order 2 are of this type. Then the product of every two 5-elements is a 5-element and hence $O_5(G) \neq 1$. By Lemma 3, $G/O_5(G)$ contains at most one involution and hence is a 2-group. Thus there exists an H containing a non-trivial Sylow 2-subgroup T, and hence G contains an elementary Abelian subgroup V of order 4. Let F be the subgroup of G generated by all involutions in G. If F is a 2-group then the conclusion of the theorem is true.

Suppose that F is not a 2-group. Then there exists an element $x \in G$ of order 5 such

[7]

that $x = t_1 t_2 \cdots t_s$ where every t_i , $i = 1, 2, \ldots, s$ is an involution. Choose x such that s is minimal. Then $t_1 \cdots t_{s-1}$ is an involution and $X = \langle x, t_s \rangle$ is a dihedral group of order 10. Let $t = t_s$. If $C_G(t)$ contains only one involution then, by Lemma 2, every involution in Gis a conjugate of t, t is contained in a subgroup which is a conjugate of V and hence $C_G(t)$ contains an involution $u \neq t$. If $(ux)^2 = 1$ then the involution ut centralises x which is impossible by assumption. Thus $\langle u, x \rangle$ is a finite subgroup which has a non-trivial normal Sylow 2-subgroup. This subgroup is t-invariant and hence $X = \langle u, x, t \rangle$ is a finite group which has no non-trivial normal Sylow subgroups. It is easy to see that H must contain an element of order 4 contrary to the assumption. Thus, G contains a non-trivial normal Sylow p-subgroup P. If p = 5 then, by Lemma 3, P is Abelian, G/P contains only one involution and (i) holds. If p = 2 then P is elementary Abelian. Theorem 2 is proved. \square PROOF OF THEOREM 3: Let G be a group with $\omega(G) = \{1, 2, 4, 5\}$.

LEMMA 12. Suppose that every finite non-trivial subgroup of G contains a non-trivial normal Sylow subgroup. Then G contains a non-trivial normal Sylow subgroup and (ii) or (iii) in the conclusion of Theorem 3 holds.

PROOF: Let F be the subgroup of G generated by all involutions in G. If F is a 2-group then G/F does not contain an element of order 4 or 10. By Theorem 3, the conclusion of the theorem is true. Hence F is not a 2-group. It follows that there exists an element $x \in G$ of order 5 such that $x = t_1t_2 \cdots t_s$ where every t_i , $i = 1, 2, \ldots, s$ is an involution. Choose x such that s is minimal. Then $t_1 \cdots t_{s-1}$ is a non-trivial 2-element and, by Lemma 11, $X = \langle x, t_s \rangle$ is a finite group which cannot contain a normal Sylow 2-subgroup. Thus X is a dihedral group of order 10. Let $t = t_s$. If $C_G(t)$ contains only one involution then $C_G(t)$ is a finite 2-group, by [10], G is locally finite and hence contains, by Lemma 7, a non-trivial normal Sylow 5-subgroup.

Suppose that $C_G(t)$ contains an involution $u \neq t$. If $(ux)^2 = 1$ then the involution ut centralises x which is impossible by assumption. Thus $\langle u, x \rangle$ has a normal Sylow 2-subgroup and hence $(ux)^5 = 1$. Thus $\langle u, x \rangle$ is a finite subgroup which has a non-trivial normal Sylow 2-subgroup. This subgroup is t-invariant and hence $\langle u, x, t \rangle$ is a finite group which has no non-trivial normal Sylow subgroups. This contradicts the assumption. Therefore, G contains a non-trivial normal Sylow p-subgroup P. If p = 5 then, by Lemma 3, P is Abelian, G/P contains only one involution and, by [3, Theorem V.8.15], (ii) holds. If p = 2 then P is locally finite. Let $x_1, \ldots, x_7 \in P$, $y \in G \setminus P$. Then the order of y is 5 and $Y = \langle x_1, \ldots, x_7, y \rangle$ is a finite group with a normal Sylow 2-subgroup $Z = P \cap Y$. By assumption, $\langle y \rangle$ acts regularly on Z and Z is nilpotent of class at most 6 by [2]. In particular, $[[\ldots, [[x_1, x_2], x_3], \ldots], x_7] = 1$. This means that P is nilpotent of class at most 6 and (iii) holds. The lemma is proved.

Suppose that G does not contain a non-trivial normal Sylow subgroup.

LEMMA 13. There exists a non-trivial elementary Abelian subgroup V in G such

that $N = N_G(V) = VD$ where D is generated by an element r of order 5 and an involution t with $r^t = r^{-1}$. Furthermore, if V_0 is a non-trivial normal subgroup of N which is contained in V then $N_G(V_0) = N$.

PROOF: By Lemmas 7 and 12, there exists a finite subgroup H of G such that $U = O_2(H)$ is a non-trivial elementary Abelian group and H = UD where D is generated by an element r of order 5 and an involution t with $r^t = r^{-1}$. Let $V = C_G(U)$. Then V is a locally finite 2-group and N = VD is also locally finite. By Lemma 7, V is elementary Abelian and, since $U \leq V$, $C_G(V) = V$. Therefore $O_2(N_G(V)) = O_2(N_G(V))D$ is also elementary Abelian and hence $O_2(N_G(V)) = V$. If $N_G(V)/V$ contains an invariant Sylow 5-subgroup then, by Lemma 12, $N_G(V)$ is locally finite. By Lemma 7, $N_G(V)/V \simeq D$.

If $N_G(V)/V$ does not contain an invariant Sylow 5-subgroup then, by Lemma 7, $N_G(V)/V$ contains a subgroup S such that $O_2(S) \neq 1$ and $S/O_2(S) \simeq D$. The full preimage U of $O_2(S)$ in G is again elementary Abelian and hence U = V contrary to the choice of S. Thus $N_G(V) = N$.

Suppose that $1 \neq V_0 \leq V$ and V_0 is normal in N. Then $V \leq C_G(V_0)$, $C_G(V_0)$ is a N-invariant 2-group and $C_G(V_0)D$ is locally finite. Again, by Lemma 7, $C_G(V_0)$ is elementary Abelian and $C_G(V_0) \leq C_G(V) = V$. Thus $C_G(V) = V$ and $N_G(V_0) \leq N_G(C_G(V_0)) = N_G(V) = N$. The lemma is proved.

Throughout the rest of the proof, N, V, D, r, t are the subgroups and elements of G defined in Lemma 13.

LEMMA 14. If v is an involution in V then $C_G(v) \leq N$.

PROOF: Suppose that there exists $x \in C_G(v) \setminus N$. Then $V_0 = \langle v^D, x \rangle$ is a finite 2-subgroup in $C_G(v)$ and $V_0 \notin N$. Let $V_1 = V \cap V_0$. Then $V \notin C_G(V_1) \notin C_G(\langle v^D \rangle) \notin V$. If V_1 is normal in V_0 then $V_0 \notin N_G(V_1) \notin N_G(C_G(V_1)) = N_G(V) = V$ contrary to the choice of V_0 . Thus $V_2 = N_{V_0}(V_1) \neq V_3 = N_{V_0}(V_2)$. Let $y \in V_3 \setminus V_2$. Then $V_1^y \neq V_1, V_1^y \neq V, V_1^y \notin V_2 \notin N$ and $|V_1V_1^y : V_1| = 2$. But then $|V_1 : C_{V_1}(V_1^y)| = 2$, contradicting Lemma 6.

LEMMA 15. If v is an involution in $N \setminus V$ then $C_G(v) \leq N$.

PROOF: Since $\langle v, v^r \rangle / V \simeq D$, vv^r is of order 5 and hence $v \in N_N(R)$ for some Sylow 5-subgroup R of N. Therefore v is a conjugate of t in N and we can assume that v = t. Let V_0 be a subgroup of order 4 in $C_v(t)$. Then $V_1 = \langle V_0, t \rangle$ is an elementary Abelian group of order 8 in $C_G(t)$. Let x be an element in $C_G(t) \setminus N$. Then $V_2 = \langle V_1, x \rangle$ is a finite subgroup in $C_G(t)$. Let $V_3 = V_2 \cap N$. Then $V_3 = V_4 \times \langle t \rangle$ where $V_4 \leq V$ and there exists $y \in N_{V_2}(V_3) \setminus N$. Since $|V_3 : V_4| = 2 < |V_4|$, $C_{V_4}(y) \neq 1$. This contradicts Lemma 14.

LEMMA 16. N = G.

PROOF: There exists an involution $v \in N$ such that $C_N(v)$ is non-Abelian. Since, By Lemma 15, $C_G(t)$ is Abelian, not all involutions of N are conjugate in G. If all involutions of G are contained in N then N is normal in G and hence $G \leq N_G(V) = N$. Suppose that $N \neq G$ and let x be an involution in $G \setminus N$. Then there exists an involution $y \in N$ which is not a conjugate of x in G. By Lemma 2, there exists an involution $z \in Z(\langle x, y \rangle)$. By Lemmas 14 and 15, $z \in C_G(y) \leq N$ and $x \in C_G(z) \leq N$ contrary to the choice of x. The lemma and Theorem 3 are proved.

References

- M. Hall Jr. 'Solution of the Burnside problem for exponent six', *Illinois J. Math.* 2 (1958), 764-786.
- G. Higman, 'Groups and rings having automorphisms without non-trivial fixed elements', J. London Math. Soc. 32 (1957), 321-334.
- [3] B. Huppert, Endliche Gruppen I (Springer Verlag, Berlin, Heidelberg, New York, 1979).
- [4] F.W. Levi, 'Groups in which the commutator operation satisfies certain algebraical conditions', J. Indian Math. Soc. 6 (1942), 87-97.
- [5] F. Levi, B.L. van der Waerden, 'Über eine besondere Klasse von Gruppen', Abh. Math. Sem. Univ. Hamburg 9 (1932), 154-158.
- B.H. Neumann, 'Groups whose elements have bounded orders', J. London Math. Soc. 12 (1937), 195-198.
- B.H. Neumann, 'Groups with automorphisms that leave only the neutral element fixed', Arch. Math. 7 (1956), 1-5.
- [8] I.N. Sanov, 'Solution of Burnside's problem for exponent 4', (Russian), Leningrad State Univ. Annals [Uchenye Zapiski] Math. Ser. 10 (1940), 166-170.
- [9] M. Schönert, et al., Groups, algorithms and programming (Lehrstuhl D für Mathematik, RWTH Aachen, 1993).
- V.P. Shunkov, 'On periodic groups with an almost regular involution', (Russian), Algebra i Logika 11 (1972), 470-493. Algebra and Logic 11 (1972), 260-272.
- [11] A.K. Zhurtov and V.D. Mazurov, 'A recognition of simple groups L₂(2^m) in the class of all groups', (Russian), Sibirsk. Mat. Zh. 40 (1999), 75-78. Siberian Math. J. 40 (1999), 62-64.

Department of Mathematics University of Manitoba Winnipeg R3T 2N2 Canada e-mail: ngupta@cc.umanitoba.ca

[9]

Institute of Mathematics Novosibirsk 630090 Russia e-mail: mazurov@math.nsc.ru